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ABSTRACT

FORCE: Machine Predicted Lithology was a classification contest using well logs from
the Norwegian coast of the North Sea. While lithology is the general physical characteris-
tics of rocks our Machine Learning approaches concentrated on the petrology or composi-
tion of rocks sample by sample. We used different solutions for the provided data set, and
created workflows that clean and complete the data. An additional problem was that the
training data was not balanced with 1 class making up 62% of the training data and 7 of
the classes less than 4%. We built two different models, one for balanced predictions using
a gradient boosting algorithm, and another focusing on the common classes using a model
that stacks gradient boosting and random forest probability predictions.

The primary Machine Learning pitfall was balance the petrophysical analysis with the
lithofacies associated training classes. The FORCE label training classes also contain a
mixture of lithofacies within each class and thus a high degree of mineralogy variation or
crosstalk in the confusion matrix. A second pitfall was how the Machine Learning contest
was scored used a penalty matrix metric that did not compensate for the imbalance of the
input data. The first of our approaches had a great balanced accuracy score of 0.561, but
with poor score for the contest metric, scoring -1.35. The second model scored -0.58 on
the contest metric, with a trade-off on the balanced accuracy score, which reduced to 0.41.

INTRODUCTION

Lithofacies classification is an indirect field to determine the subsurface rocks types
from well logs (Wadleigh and Ward, 1984; Crampin, 2008). Geological lithofacies com-
monly measure over meters with characteristics rock physical, chemical and biological
features that distinguishes it from adjacent rocks. Mineral lithology or petrophysical anal-
ysis uses logs to provide similar information as the more expensive core (more precise, but
rare) and generally provides information every foot or 30 cm. Interbedding of mineralogy
is common in lithofacies as an exampling Marlstone have alternating mixture of carbonate
rich mudstones, carbonates, silts and clay layers.

One solution for time optimization is the use of machine learning algorithms. There
are different lines of research which try a wide number of methodologies. Bestagini et al.
(2017); Zhang and Zhan (2017); Caté et al. (2017) use ensemble classifiers (such as random
forests) as an optimization tool. Another commonly used algorithm is the support-vector
machines, or SVM, which optimize the classification boundaries by computing the support
vectors (Caté et al., 2017; Alexsandro et al., 2017; Wrona et al., 2018). Deep-learning
algorithms, such as the Artificial Neural Networks (ANN, or just NN), where successfully
applied by (Silva et al., 2014). Guarido (2019) used feature engineering and stacked differ-
ent algorithms to create a more robust classifier.
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For this paper we choose to use four methods from four different Machine learning
classifiers (Hastie et al., 2001). The first, Logistic Regression has the advantage it creates
output that can easiest be understood from the features (logs). Logistic regression unlike
linear regression, that builds algebraic relationships from the input logs, works more on
dichotomous relationships (yes/no). Correlation between features are not expected to be an
issue but detrending factors such as porosity changes with depth and log normalizing are
expected to be important. One of the our major concern with Logistic Regression is it does
not handle missing data well nor mixed mineralogy within each class. This method was
used for evaluation but not used for any of the final submission for the contest.

Naïve Bayes is a probabilistic classifier known to deal with missing values and small
training sets. The method work by building a probability of each class from each feature
(log) independently and uses a Bayesian summation to produce a final likelihood for each
class. The method provides, along with probability of each class, an estimate of log im-
portance. Regrettably Naïve Bayes like Logistic Regression suffer from multicollinearity
between the input logs.

Random Forest, the third method we investigated, builds a set of decision trees from a
random set of input logs. This methods is good at preventing overfitting and dealing with
uneven data sets with missing variables. The output from each decision tree is summed to
produce a final class likelihood using the mode or median.

Gradient Boosting is an ensemble method which unlike Random Forest combines the
results at each step instead of at the end. This method build a series of decision trees each
solving for the residual error of the previous training tree. Unlike our other three methods,
Gradient Boosting can handle non-linear interaction between the features and the classes.
The method does not work well in the present of noise nor missing data.

For this project, we used the data set from the FORCE: Machine Predicted Lithology
contest and choose to use a more mineralogical/petrological approach than log signature
lithofacies classification. The data set showed to be challenging, with a large scale of
imbalance between the classes and unusual patterns; such as wells which using different
units of measurement, large number of missing data, a considerable number of outliers,
and multiple mineralogy within each class (sandstone class having a mixture of feldspathic,
plagioclase, quartz minerology, and fluvial, deltaic, foreshore, mid-shore, turbidite facies).
In the end, we created a workflow that minimizes most of the issues cited above, as well a
classification method that stacks different algorithms. However, for the contest score, we
realized that the penalty matrix brought some pitfalls to our strategy and a revised approach
was used in the end.

THE DATA

As part of the contest, 108 well logs from the western coast of Norway where provide,
as shown in Figure 1. There were 98 wells for the training set (blue), where they provide
lithofacies classification, and 10 wells for testing (red) without lithofacies class that could
be used for a temporary leaderboard. The winner of the contest was determined by running
contestants’ models over another set of well logs that were not provide nor we had access.
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FIG. 1. Wells location for training (blue) and test (red) data sets

A wide range of information for each well was available for the contest, and an example
of them is show in Figure 2. The data contains the following metadata columns:

• WELL: Well Name

• DEPTH_MD: Measured Depth

• X_LOC: UTM X coordinate

• Y_LOC: UTM Y coordinate

• Z_LOC: Depth

• GROUP: NPD lithostratigraphy group

• FORMATION: NPD lithostratigraphy formation

Several log curves are available, and they are listed bellow:

• BS: Bit Size

• CALI: Caliper

• RHOB: Bulk Density

• DRHO: Density Correction Log

• GR: Raw gamma data

• SGR: Spectral Gamma Ray

• RSHA: Shallow Resistivity

• RMED: Medium Resistivity

• RDEP: Deep Resistivity

• RXO: Flushed Zone Resistivity
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FIG. 2. An example of the logs and facies from the training data.

• RMIC: Micro Resistivity

• NPHI: Neutron Porosity

• PEF: Photoelectric Absorption Factor

• DTS: Sonic (Sheer Slowness)

• DTC: Sonic (Compressional Slowness)

• SP: Self Potential Log

• ROP: Rate of Penetration

• ROPA: Average Rate of Penetration

• MUDWEIGHT: Weight of Drilling Mud

And for the training set, the following interpretation logs were provided:

• FORCE_2020_LITHOFACIES_LITHOLOGY: lithology class label

• FORCE_2020_LITHOFACIES_CONFIDENCE: confidence in lithology interpreta-
tion (1: high, 2: medium, 3: low)
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Due to the large number of missing data and reduced petrophysical importance, not all
of the logs listed above were use for the contest. Figure 3 shows the percentage coverage for
each of the logs and metadata. An exhaustive treatment was required to get the maximum
insights from the logs.

FIG. 3. Percentage of coverage for each of the logs and metadata.

The goal of the contest was, by using all the logs and information listed above, to
correctly classify the interpreted lithofacies. There were 12 classes in the total (Table 1),
along with a class confidence for rows in the data set. A first observation is the existence of
the class Sandstone/Shale as well as a classes Sandstone and Shale: this mixing of mineral
lithology can be a tricky "rocky type" to classify. From the beginning we were expecting
that our model which focused on mineralogy to get confused during the classification of
some classes, which actually happened (we will get into it soon).

Table 1. Class number for each rock type in the contest.

Class Lithology
30000 Sandstone
65030 Sandstone/Shale
65000 Shale
80000 Marl
74000 Dolomite
70000 Limestone
70032 Chalk
88000 Halite
86000 Anhydrite
99000 Tuff
90000 Coal
93000 Basement

Another observation related to the classes is their distribution within the data set (Figure
4). Most of the samples (around 62%) was shale. The other classes rarely surpass the 10%
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mark (only sandstone and sandstone/shale achieve this feature), and most of the classes are
statistically under sampled for our approach. At this point, we need to decide what strategy
we want to follow: focus on the classification of the most common classes (shale, sand-
stone, sandstone/shale, and limestone)? Or try a mode balanced classification by weighting
the least frequent classes, with the cost of reducing the precision of the classification for
the more common classes? We will discuss these options later, showing how this decision
strongly affects the contest score.

FIG. 4. Class distribution of the data.

WORKFLOW

Contest’s data provided was a challenging one, with a large amount of missing data,
imbalanced classes, data gaps, variation in units, and bad data points. Figure 5 shows
the workflow created to treat and model the data for predictions. The first step was Data
Cleaning, on which columns of the original data were edited following different criteria:
the first was to remove column with missing data larger than 50% and low importance in
estimating mineralogy. The second was to select logs that we were most interested to keep
for our predictions, we choose to removed the columns FORMATION and RSHA so the
Machine Learning solutions being test would focus more on the petrophysical analysis.

For the Data Treatment step, we fixed any possible scaling problems by normalizing
each log per well by subtracting its median and divided by its standard deviation. Also, the
resistivity logs (RMED and RDEP) were converted to log10 scale.

The Data Imputation step was one of the most complicated ones. Initially, we imputed
the data only by replacing the missing values using the median of each column (not sep-
arating per well). That is not the most geological solution, but it can work to concentrate
the Machine Learning solution on the remaining real data. Later, the imputation strategy
was replaced by a chained method (van Buuren and Groothuis-Oudshoorn, 2011) on which
the columns with the least amount of missing data are completed with a linear regression
algorithm from the complete columns, for the next log be completed with the new set full
logs, until all the columns are recovered.
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FIG. 5. The project’s workflow.

FIG. 6. Classes distribution after under-sampling.

The classes (lithofacies) are highly imbalanced (Figure 4), and there are different ways
to work with imbalanced data (He and Garcia, 2009), that can be under-sampling (Yen
and Lee, 2009), over-sampling (Han et al., 2005), and weight the data (Liu et al., 2007).
Initially, we work to under-sampling the data randomly using the python package imblearn
(Lemaître et al., 2017) so the most frequent classes have the same counting as tuffstone
samples (Figure 6). However, it reduced considerably the number of rows in the data set (a
reduction of around 90%), with the potential lost of information in the process. Weighting
the classes was then the chosen methodology and the weight wy for a class y is calculated
using the equation 1:
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wy =
Nsamples

NclassesNy

(1)

where Nsamples is the total number of the samples in the data, Nclasses is the number of
classes, and Ny is the number of samples for the class y. During the modeling, classification
algorithms use those weights to classify low frequent classes with higher precision.

The last step of the workflow was Modeling. This is a classification problem, and we
tested the most powerful and/or robust methods: Logistic Regression, Naïve Bayes, Random
Forest, and Gradient Boosting (Hastie et al., 2001). In the end, different combinations of
models, weighted or not, were stacked using a vote system with the package mlxtend
(Raschka, 2018).

DISCUSSION: WHAT WAS THE BEST STRATEGY FOR THE CONTEST?

In this section, we will discuss the difference of the strategies chosen: initially trying to
retrieve a more balanced model for all the classes, then changing to give the models more
freedom to classify without weights, focusing on the most frequent classes and generally
produced the better contest score.

Contest’s Metric

The organizers of the contest decided to use a scoring method that penalizes wrong
lithfacies classification based on a penalty matrix (Figure 7).

FIG. 7. Penalty matrix.
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Scoring S is calculated by summing all the weighted misclassification Aŷiyi for a pre-
diction yi compared to the true label ŷ, and then divide by the N number of observations in
the data set (equation 2):

S = − 1

N

N∑
i=0

Aŷiyi (2)

This scoring method is not weighted for imbalanced classes. The best the model per-
forms, closer the score is to 0.

Results: Balanced Models

Our first strategy was to work harder on the less frequent classes. For that, we under-
sampled the data and also computed the class weights for the remaining data. For the
analysis, we separate 20 wells from the 98 training wells for validation, leaving 78 to train
the models. All the metrics and analysis presented are the results obtained on our validation
set.

Confusion Matrices for Balanced Models
a) b)

c) d)

FIG. 8. Confusion matrix for the a) gradient boosting, b) logistic regression, c) naïve bayes, and d)
stacked classifiers.

Three different algorithms were tested: gradient boosting, logistic regression, and naïve
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bayes. Each one assumes its own strategy for classification, but the gradient boosting is the
only non-linear one. All the algorithms were set to run for imbalanced classes (under-
sampling and class weights) and, in the end, we stack the models by a "soft" voting system
(using each model’s probability outputs). Figure 8 shows the normalized confusion ma-
trix for all the models: a) gradient boosting, b) logistic regression, c) naïve bayes, and d)
stacked classifiers. The gradient boosting alone was the one with the best balanced accu-
racy (accuracy weight by class frequency), scoring 0.561, while the stacked model had a
score of 0.56. Those are good scores for a balanced accuracy, as we have 12 classes (the
balanced random guess would be = 1/12 = 0.08). And we can also note that the logistic
regression and the naïve bayes models are actually did not aid the predictions when stacked.
This comes to the assumption of linear relationship between the logs and lithofacies, what
may not be the case. It is interesting to see that the best model (gradient boosting) did a
great job predicting the less frequent classes, like chalk, halite, anhydrite, tuff, and coal,
with also a good mention for the marlstone. However, it came with the cost of poorer clas-
sification for the most frequent classes (sandstone, shale, and sandstone/shale). Dolomite’s
classification was the trickiest one, and none of our models could learn a pattern to identify
it.

FIG. 9. Predictions with balanced models.

Figure 9 shows the prediction over one of the validation wells. Predicted lithofacies is
promising, but with a large number of misclassification between the most frequent classes.
But overall the model is catching the changes in lithology.

Even tough the best model (according to the balanced accuracy) seems to be stable and
robust, it performed poorly on the contest metric (equation 2), with a score of −1.35. As
a comparison, the imbalanced logistic regression (Figure 10a) predicts all the samples as

10 CREWES Research Report — Volume 32 (2020)



Log Facies Classification Contest Pitfalls

shale, the dominate lithofacies, resulting in a accuracy of 0.08 or equivalent to a random
guess but a contest score of −0.96. This means that the contest’s metric does not take in
consideration class imbalance, only the absolute number of correct classified labels.

Results: Focusing on Contest’s Metric

As the imbalanced models did a poor job on the contest’s metric, the strategy was
changed to create a combine models that used both balance and imbalanced models.

Confusion Matrices for Imbalanced Models
a) b)

c) d)

FIG. 10. Confusion matrix for the a) logistic regression (not used for stacking), b) gradient boosting,
c) random forest, and d) stacked classifiers.

Figure 10 shows the confusion matrix for the a) logistic regression (not used for stack-
ing), b) gradient boosting, c) random forest, and d) stacked classifiers Note that the logistic
regression in this part was just used as a baseline classifier, as it only predicts shale. Naïve
Bayes was dropped and replaced by a random forest algorithm, and it was balanced (by
class weights) and was used as a support classifier for the gradient boosting during the
model stacking. The gradient boosting model was imbalanced, focusing to classify more
correctly the most frequent classes, such as shale, sandstone, and limestone. The class
sandstone/shale is a common class but difficult to be correctly classified, as it tends to get
confused with the sandstone and shale classes (which is not surprising as this is a combi-
nation of the other 2 classes).
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Table 2. Models performance.

Model Balanced Accuracy Contest Metric
1. Gradient Boosting (balanced) 0.56 -1.35
2. Gradient Boosting 0.42 -0.59
3. Random Trees (balanced) 0.40 -2.00
4. Naïve Bayes 0.40 -1.86
5. Logistic Regression (balanced) 0.32 -2.17
6. Logistic Regression 0.08 -0.96
7. Stacked Models (balanced) 0.56 -1.38
8. Stacked Models 0.41 -0.58

Table 2 contains the balanced accuracy and contest metrics for all the tested models.
It became clear that the contest metric, by using the equation 2 and the penalty matrix of
Figure 7, focus on the correct classification of the most common classes. The best con-
test score was achieved by stacking the imbalanced gradient boosting (3) and the balanced
random forest (5) by a voting system (4), scoring −0.58. However the balanced accuracy
dropped significantly to 0.41, and from the Figure 10d, the model did a poor job on clas-
sifying the least frequent classes, in particular the halite and anhydrite, that were almost
always classified as sandstone. Note that the stacked models was mainly controlled by the
gradient boosting, as it probably contain higher probabilities to classify all the classes, even
if misclassifying.

FIG. 11. Predictions with imbalanced models.
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Figure 11 shows the new predictions for the mostly imbalanced stacked model. It looks
visually better then the predictions of Figure 9, as the dominant colours are related to the
most frequent classes.

At this point, to chose a more appropriate classification strategy, we need to understand
what are the goals for the contest and/or a possible client. On the case of the contest,
there was a strong bias to classifying the most common classes correctly, and the winner is
the one who does a better job predicting the classes shale, sandstone, and sandstone/shale
(our imbalanced model struggled on the predictions of the last class). Usually, identifying
reservoir lithofacies and not shale are more important in classification, but was the most
import in determine a score for the contest. Sandstone and limestone have great importance
during reservoir characterization (where the imbalanced model worked well), as for salt
rocks like halite and anhydrite (identified better with the balanced model).

CONCLUSIONS

We presented a workflow for lithofacies classification from well logs that allows dif-
ferent outputs depending on the focus of the research: one output that focus on an overall
balanced classification, great to identify rare occurrences, and another output focused on
the most common labels, scoring better in the contest. The workflow starts with the data
cleaning and ends up with the modeling and prediction of the lithofacies from the well logs.

During the execution of this project, an import lesson was learned related petrophysical
analysis to the goal of the research. Initially, the focus was to create a model that provided
a balanced classification (by weighting a class according to its frequency), focusing on the
balanced accuracy metric. A stable and robust model was generated (balanced gradient
boosting), scoring 0.561 on the balanced accuracy metric, but scored poorly on the contest
metric (−1.35). At that point it was realized that the contest metric penalizes the absolute
values of the misclassification, and not a balanced or normalized one. This means that
to optimize the contest score, the most common classes have a higher importance to be
correctly classified, while correctly classifying the rarer classes reflects on small improve-
ments in the score (important for untie models that already classified the common classes
properly). With this realization, the focus was changed and an imbalanced model (a stack
of an imbalanced gradient boosting and a balanced random forest) was generated, which
worked poorly on rarer classes (like halite and anhydrite), but did a good job on the com-
mon classes (shale, sandstone, and limestone), improving the contest score to −0.58, with
the cost of reducing the balanced accuracy to 0.41.

Of course the perfect scenario is to classify all the lithofacies with 100% accuracy, but it
is unlikely to happen when we are dealing with imbalanced classes and mixed mineralogy
in lithofacies. In the end, the question is: what are the most important classes of a facies
classification project? That is a decision that needs to be taken by the "owners" of the data
(a client or a contest organizer), as the solution varies and may be specific for a selected
block of facies.
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