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ABSTRACT 

The physical modelling system is being upgraded with an arbitrary waveform 

generator (AWG), that will allow us to use non-impulsive source waveforms including 

sinusoidal frequency sweeps, square-wave frequency sweeps, and m-sequences 

(pseudorandom binary sequences). Some of these waveforms, such as constant amplitude 

mono-frequency square waves or mono-frequency spike series can be run without an 

AWG. Square wave signals and spike series have only two normalized values: +1 and -1. 

Therefore, they are called binary-valued sequences, and are much more easily generated 

by electronic circuits for practical usage than are sinusoidal signals. 

This report examines the theoretical effect of running a variety of source waveforms, 

including Vibroseis sweeps, through our system, and predicts our future results if we use 

a pair of millimeter-sized source transducers, which have a characteristic impulse 

response. We also show actual data resulting from a spike series run through 37 mm 

buzzers. Of interest for all source waveforms is the expected amplitude at the receiver for 

10 kHz (equivalent to 1 Hz after scaling by 10000 to real-world seismic exploration 

frequencies), which we need if we wish to run full-waveform inversions (FWI) on 

physically modeled data. Our results show that running a frequency sweep that spends 

proportionately more time near 1 Hz (scaled) can improve our recorded amplitudes at that 

frequency, but enhancing this signal will require further processing. 

INTRODUCTION 

Spread spectrum techniques are a way to obtain a good estimate of the impulse 

response of a linear system in high-noise situations. If one were to use an impulse to 

generate a detectable signal, the energy and peak power of the impulse might need to be 

dangerously high in order to overcome the noise. However, if we spread the required 

energy over a long period of time, the power of the source signal can be reduced to safe 

levels while the total energy remains high. The problem then becomes one of 

compressing the distributed energy back to an impulse-like signal. This is called synthetic 

pulse acquisition. Two types of distributed-energy signals have been found to be highly 

amenable for easy pulse compression: frequency sweeps and pseudo-random periodic 

signals. 

For inversions, including full waveform inversions, we desire low frequencies in our 

seismic data. Typically, we would like to have significant energy at least as low as one 

Hz for seismic data (equivalent to 10 kHz for the physical modelling system. Figures in 

this report will be scaled to seismic frequencies, as that makes it easier to compare to 

seismic data. We are building an arbitrary waveform generator and amplifiers (Wong et 

al., 2020) that will allow us to run Vibroseis sweeps and pseudo-random periodic signals 

through our piezoelectric transducers. The questions that we wish to at least partially 

answer in this report are: 1) what will Vibroseis sweep data look like once we can run 

sweeps on our physical modelling system, 2) can we compensate for issues with low-
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amplitudes at certain frequencies by modifying those sweeps, and 3) can we generate our 

target frequency content using other methods, such as pulsing the piezo-electric 

transducers (spike series) or by using maximal length sequences (m-sequences). 

METHOD 

It is easier to generate constant amplitude square waves or spike series in our 

electronics than it is to generate sinusoids with varying amplitudes. For example, we can 

create the former using a single GPIO pin on a Raspberry Pi but require 9 GPIO pins to 

create a sinusoid. Given a Vibroseis sweep harvested from the auxiliary traces of an 

uncorrelated shot gather, we can convert the sweep to a square wave sweep by 

considering just the sign of each sample (plus one or minus one). The square wave sweep 

can be further converted to a spike series by taking the sample-to-sample difference of 

the square wave. These signals can be digitized and stored as 16-bit integers in a file.  In 

the physical-modelling laboratory, the file is read by a Raspberry Pi 4B microcomputer 

and the data are sent out as a bit stream to an R2R resistor ladder that effectively converts 

the digitized data to an analogue signal. The analogue signal is amplified to a high 

voltage to drive piezoelectric transducers. Comparison of resulting amplitude spectra will 

then help us to determine the relative merits of each input signal for a given frequency or 

frequency band.  

Figure 1 shows the two types of transducers that are considered in this report, 37 mm 

buzzers (a) and piezo-pins (b). Our usual scale factor for the physical modelling system is 

1:10000. This means that a 1 mm piezo-pin placed on a physical model scales to 10 m in 

the real world. Similarly, a 37 mm buzzer scales to 370 m. Clearly, we would prefer to 

use the smallest transducer we can get away with, but we predict that we will be able to 

generate lower frequencies with a larger transducer. 

Piezo-pin impulse response 

Figure 2a shows the impulse response for a single spike input signal to a piezo-pin 

transducer, recorded on an identical transducer at zero offset. The amplitude spectrum 

(Figure 2b) is plotted below a vertical red line at 1 Hz (our frequency of interest) and a 

horizontal magenta line at 30 dB down. The magenta line represents our rule of thumb for 

seismic data, where we will be unable to see any amplitudes less than 30 dB down when 

the data are plotted without further processing/scaling. The red and magenta lines will be 

shown on all amplitude spectra plots in this report. This amplitude spectrum for 

unprocessed data shows good amplitudes between about 25 and about 60 Hz with a 

couple of notches within this narrow frequency range. Amplitudes at 1 Hz for all figures 

in this report are listed in Table A1. 

Land seismic sweeps 

Figures 3 and 4 show linear and low-dwell 1-100 Hz sweeps from the Hussar low-

frequency experiment (Isaac and Margrave, 2011). For this and similar figures in this 

report, the figure shows: The source waveform (a), the first 20 Hz of the amplitude 

spectrum of the source waveform (b), the autocorrelation of the source waveform (c), the 

sign of the source waveform (d), the first 20 Hz of the amplitude spectrum of the sign of 
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a) 

    

 b)

  

FIG. 1. (a) 37 mm Buzzer, and (b) piezo-pins. 

RESULTS 

 

FIG. 2. Impulse response (a) and amplitude spectrum (b) for a pair of piezo-pin transducers 
(Figure 1b). 
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the source waveform (e), the autocorrelation of the sign of the source waveform, (f) the 

result of convolving the sign of the source waveform with the piezo-pin impulse response 

(g), the first 20 Hz of the amplitude spectrum of the sign of the source waveform 

convolved with the impulse response (h), and the autocorrelation of the sign of the source 

waveform convolved with the impulse response. The bottom row of these figure, then, is 

our prediction of what the data will look like once we are able to run this frequency 

sweep on the physical modelling system if we use the piezo-pin transducers. Like Figure 

2, a vertical red line is plotted at 1 Hz a horizontal magenta line is plotted at 30 dB down, 

and the amplitude at 1 Hz is listed in Table A1. 

Conversion to a square wave does more damage to the low-dwell sweep wavelet than 

to the linear sweep wavelet (compare Figure 3e and 3f to 4e and 4f). However, 

convolution with the piezo-pin impulse response results in an almost identical wavelet 

(Figures 3i and 4i), which has larger side-lobes than we see for the unaltered sweep 

(Figures 3c and 4c). The low-dwell sweep has higher amplitudes at 1 Hz than the linear 

sweep after convolution with the impulse response (Figures 3h and 4h). As expected, this 

implies that we should be able to increase recorded amplitudes at 1 Hz if we spend longer 

at that frequency during the sweep. 

Mono-frequency sweeps 

In the absence of an arbitrary waveform generator, we can attempt to improve our 1 

Hz piezo-electric transducer response by using a 1 Hz mono-frequency sweep, or sine 

wave converted to a square wave (Figure 5a) or spike-series with positive spikes only 

(Figure 6a), or a spike series with positive and negative spikes (Figure 7a). While the 

amplitude spectrum for the input sine wave looks quite good, with a well-defined spike at 

1 Hz (Figure 5b, 6b, and 7b), conversion to a square waves or spike series (Figure 5d, 6d, 

and 7d) results in periodic spikes in the amplitude spectra (Figure 5e, 6e, and 7e), which 

is diagnostic of aliasing. Convolution with the impulse response also shows periodic 

spikes in the amplitude spectrum, as we would expect. The resulting wavelet has an 

unexpected low frequency component, together with multiple copies of the wavelet due 

to aliasing (Figures 5i, 6i and 7i), although this is most obvious in the square wave data 

(Figure 5i). However, we do have very good amplitudes at 1 Hz. These data could 

potentially be filtered with a narrow bandpass filter to remove the aliased signal and 

retain just the narrow-band 1 Hz data that we are interested in while discarding all other 

frequencies in the data that are brought in by the impulse response (cf. Figure 2). 

Narrow bandwidth sweeps 

If we have an arbitrary waveform generator, we can mitigate the aliasing observed in 

our mono-frequency sweep by switching to a narrow-bandwidth sweep. Figure 8a shows 

the results for a long 0.5 to 1.5 Hz sweep. The amplitude spectrum for this sweep shows 

no signs of aliasing, but, convolution with the piezo-pin impulse response knocks our 1 

Hz amplitude down to- 93 dB, as compared to -88 dB down for broad-band Vibroseis 

sweep shown in Figure 4. 
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FIG. 3. Top row: (a) Linear 1-100 Hz, 24 s sweep from the Hussar 2011 low-frequency 
experiment (Inova Vibe), (b) amplitude spectrum of 3a and, (c) wavelet after autocorrelation of 3a. 
Middle row: (d) 3a converted to a square wave, (e) amplitude spectra of 3d, and (f) wavelet after 
autocorrelation of 3d. Bottom row: (g) convolution of 3d with piezo-pin impulse response, (h) 
amplitude spectra of 3g, and (i) wavelet after autocorrelation of 3g. 

 

FIG. 4. Top row: (a) Low-dwell 1-100 Hz, 24 s sweep from Hussar 2011 low-frequency 
experiment (Failing Vibe), (b) amplitude spectrum of 4a and, (c) autocorrelation of 4a. Middle row: 
(d) 4a converted to a square wave, (e) amplitude spectra of 4d, and (f) autocorrelation of 4d. 
Bottom row: (g) convolution of 4d with piezo-pin impulse response, (h) amplitude spectra of 4g, 
and (i) wavelet after autocorrelation of 4g. 
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FIG. 5. Top row: (a) 1 Hz, 40 s mono-frequency sweep, (b) amplitude spectrum of 5a and, (c) 
autocorrelation of 5a. Middle row: (d) 5a converted to a square wave, (e) amplitude spectra of 5d, 
and (f) autocorrelation of 5d. Bottom row: (g) convolution of 5d with piezo-pin impulse response, 
(h) amplitude spectra of 5g, and (i) wavelet after autocorrelation of 5g. 

 

FIG. 6. Top row: (a) 1 Hz, 40 s mono-frequency sweep (b) amplitude spectrum of 6a and, (c) 
autocorrelation of 6a. Middle row: (d) 6a converted to a spike series with negative amplitudes 
removed, (e) amplitude spectra of 6d, and (f) autocorrelation of 6d. Bottom row: (g) convolution of 
6d with piezo-pin impulse response, (h) amplitude spectra of 6g, and (i) wavelet after 
autocorrelation of 6g. 
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FIG. 7. Top row: (a) 1 Hz, 40 s mono-frequency sweep, (b) amplitude spectrum of 7a and, (c) 
autocorrelation of 7a. Middle row: (d) 7a converted to a spike series, (e) amplitude spectra of 7d, 
and (f) autocorrelation of 7d. Bottom row: (g) convolution of 7d with piezo-pin impulse response, 
(h) amplitude spectra of 7g, and (i) wavelet after autocorrelation of 7g. 

 

FIG. 8. Top row: (a) 0.5-1.5 Hz, 40 s sweep, (b) amplitude spectrum of 8a and, (c) autocorrelation 
of 8a. Middle row: (d) 8a converted to a spike series, (e) amplitude spectra of 8d, and (f) 
autocorrelation of 8d. Bottom row: (g) convolution of 8d with piezo-pin impulse response, (h) 
amplitude spectra of 8g, and (i) wavelet after autocorrelation of 8g. 
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Maximal length sequences 

Maximal-length sequences (or m-sequences) are a type of pseudo-random binary 

sequence (PRBS). They are well-defined mathematical constructs intimately connected 

with so-called primitive or irreducible polynomials (Watson, 1962). In practice, m-

sequences are easily produced by logic statements in software. They also can be 

generated electronically by simple circuits known as linear shift registers (Golomb, 1967; 

Golomb and Gong, 2005; Holmes, 2007).   

A m-sequence (Figure 9) is a periodic stream of 1’s and -1’s characterized by its 

degree 𝑚, its fundamental length 𝐿, and its base period 𝑡𝑏. The sequence fundamental 

length 𝐿 isgiven by: 

 𝐿 = 2𝑚 − 1 .  (1) 

The base period  𝑡𝑏 is the shortest time in the sequence between transitions from one 

binary value to the other. The m-sequence is periodic, and repeats itself after a time 

 𝑇𝑚 = 𝐿 ∙ 𝑡𝑏 .  (2) 

For seismic applications, it is convenient to express 𝑇𝑚 in milliseconds.  For digitized 

versions, we also specify the sample time 𝑡𝑠, with  

 𝑡𝑠 = 𝑡𝑏/𝑟 , (2)  

where 𝑟 is an integer (typically equal to 1, 2, 4, 8, or 16) that determines over-sampling 

of the m-sequence. The over-sampled length is equal to 𝑟𝐿 points.   

The autocorrelation of a sampled m-sequence is also periodic, showing a series of 

triangular peaks with peak value equal to 𝑟𝐿 and off-peak values equal to −𝑟. If we 

remove the factor 𝑟, we obtain scaled peak and off-peak values of 𝐿 and -1, respectively.  

These autocorrelation values are fundamental properties of any m-sequence. The widths 

of the triangles extend from −𝑟 samples to +𝑟 samples symmetrically about the peaks.  

The normalized amplitude spectrum of an m-sequence approximates the normalized 

amplitude spectrum of a square impulse with duration time equal to the base period (the 

amplitude spectrum of a square impulse is a sinc function). The longer the time length of 

the sequence, the better the approximation will be (Figure 10).  Note that the first notch in 

the spectrum occurs at a frequency equal to 1/𝑡𝑏. There is much literature on using m-

sequences for data acquisition in engineering and earth science has been reported (see the 

reference list). 

Figure 11 shows our predicted result for an example m-sequence. Once again, our 

amplitude a 1 Hz is harmed by convolution with the piezo-pin impulse response, but the 

side-lobes of the resulting wavelet are noticeably smaller than predicted for Vibroseis 

sweeps (compare with Figures 3 and 4). 



Source waveforms 

 CREWES Research Report — Volume 32 (2020) 9 

 

FIG. 9. First 1000 ms of an example m-sequence for driving vibratory sources: m-sequence 
degree = 11; m-sequence fundamental length = 2047; base period = 8 ms; sample time = 1 ms; 
number of digital points = 16376; time length of m-sequence  = 16376 ms. 

 

FIG. 10. Amplitude spectrum of the example m-sequence compared to the amplitude spectrum of 

the sinc function defined by sinc(i) = abs( sin((i)*tb/2)/(i) ), where (i) is the radian 

frequency, and tb is the m-sequence base period in seconds. 
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FIG. 11. Top row: (a) M-sequence, (b) amplitude spectrum of 11a and, (c) wavelet after cross-
correlation of 11a. Middle row: Not shown, because taking the sign of an m-sequence gives a 
result that is identical to the input. Bottom row: (g) convolution of 11a with piezo-pin impulse 
response, (h) amplitude spectra of 11g, and (i) wavelet after autocorrelation of 11g. 

Buzzer data 

Figure 12 shows actual results from the physical modelling system for 37 mm buzzers 

at zero-offset in water before water seepage altered the response (top) and for the same 

buzzers in the air after water seepage altered the response (bottom) for a 10 kHz (1 Hz 

scaled) spike series with positive spikes only. These data are most like the theoretical 

results shown in Figure 6. Amplitudes near zero and periodic spikes in the amplitude 

spectra, which are more obvious in the amplitude spectra if we do not constrain ourselves 

to the first 20 Hz (not shown), and the ringy character of the data are almost certainly due 

to aliasing. 

Figure 13 shows a walk-away survey acquired with 37 mm buzzers immersed in 

water, with traces acquired as the buzzers are progressively moved away from each other. 

Using a scale factor of 10000, the modelled trace spacing is 10 m. There is significant 

near-zero Hz energy in this data, which have had the mean subtracted and a linear trend 

removed before plotting. The dipping red line (Figure 13a) was calculated using a water 

velocity of 1485 m/s and arbitrarily plotted beginning at 0.5 s for comparison with the 

signal. This shows that we can make valid velocity measurements using aliased data 

acquired using the 37 mm buzzers. 

DISCUSSION AND FUTURE WORK 

Regardless of the input source waveform, our ability to record 1 Hz (scaled) data from 

piezo-pin transducers is primarily constrained by the impulse response of the piezo-pin. 

We need to compensate for this by spending proportionally more of the sweep time at 1 

Hz (low-dwell non-linear sweeps), or possibly consider the use of larger diameter 

transducers. 

Without access to an arbitrary waveform generator, we can run mono-frequency 

square waves and spike series. However, this results in heavily aliased data. If we are 

only interested in 1 Hz (for example), it may be possible to isolate this frequency with a 
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very narrow bandpass filter. We can measure the velocity of sound in some medium such 

as water with aliased data, but it would be better to record unaliased data. 

 

FIG. 12: Top row: (a) Buzzer data for 37 mm dry buzzers in water before water seepage changes 
the response and, (b) the amplitude spectrum for 12a. Bottom row: (c) Buzzer data for 37 mm wet 
buzzers in the air before they dry out enough to change the response and (d) the amplitude 
spectrum for 12c  

 

FIG. 13. Walk-away data for 37 mm buzzers in water after subtracting the mean and applying a 
linear detrend to each trace. No filters or AGC. The red reference line plotted over top of 13a was 
calculated using 1485 m/s (water velocity) and arbitrarily positioned to begin at 0.5 s. 

  

c)
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Standard Vibroseis sweeps are severely harmed by convolution with the piezo-pin 

impulse response, which results in large side-lobes in the wavelet that results from cross-

correlation. M-sequence source waveforms are less affected and have noticeably smaller 

side-lobes than the Vibroseis sweeps after cross-correlation. However, while unmodified 

m-sequences have good amplitudes at 1 Hz, convolution with the impulse response still 

reduces those amplitudes significantly. 

Real measurements in the Physical Modelling Laboratory must use a real transducer 

driven by a real electronic signal. The values on Table A1 in the Appendix clearly 

indicate that the best combination to use if we want get significant energy at 1 Hz 

(scaled) is that of the 37-mm-diameter buzzer driven by the m-sequence, or that of the 

piezo-pin driven by the Failing low-dwell sweep. The 37-mm buzzer is too large to be 

ideal for physical modelling, so we will test smaller 13-mm-diameter buzzers to 

determine their amplitude response at 1 Hz (scaled) compared to the amplitude at 50 Hz 

(50 Hz is an important parameter because real seismograms from the exploration world 

generally exhibit reflection wavelets with dominant frequencies near 50 Hz).  

Once the arbitrary waveform generator is functional, we will be able to run Vibroseis 

sweeps and m-sequences through a variety of transducers and compare with our predicted 

results. It may be possible to design non-linear sweeps to compensate for the physical 

characteristics of the piezoelectric transducers. These will likely be much longer than 

sweeps that are typically used for land seismic. It would also be worth investigating post-

acquisition frequency compensating processing steps such as spectral whitening or Gabor 

deconvolution. 
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APPENDIX A 

Table A1 lists the amplitude at 1 Hz for a variety of real and synthetic datasets. If the 

data is shown in this report, the table includes the figure number. If the signal is aliased, 

the Aliased column has a ‘Y.’ If the source waveform requires an arbitrary waveform 

generator, the AWG column has a ‘Y.’ 

Table A1. Amplitudes at 1 Hz 

Figure A (dB) Aliased AWG Filename 

2 -77.6   piezoPin_wavelet 

 -55.3  Y 
Hussar_Failing_Low_Dwell_1-
100Hz_24s_0.2cosTapers.sgy 

3h -88.3  Y Hussar_Inova_Linear_1-100Hz_24s_0.5cosTapers.sgy 

4h -76.7  Y 
Hussar_Inova_Low_Dwell_1-
100Hz_24s_0.2cosTapers.sgy 

 -138.7  Y Pretzel_IVI_Linear_10-150Hz_16s_0.2cosTapers.sgy 

 -93.6  Y 
Snowflake_Inova_Linear_1-

150Hz_16s_0.2cosTapers.sgy 

 -139.1  Y 
VermillianLakes_Inova_Linear_10-

100Hz_10s_0.2cosTapers.sgy 

 -0.1 Y  4 cycles at 1 Hz square wave 

 -77.7 Y  4 cycles at 1 Hz plus spikes 

 -77.3 Y  4 cycles at 1 Hz plus/minus spikes 

5h -0.1 Y  40 cycles at 1 Hz square wave 

6h -77.3 Y  40 cycles at 1 Hz plus spikes 

7h -77.2 Y  40 cycles at 1 Hz plus/minus spikes 

 -96.6  Y 40 cycles 0.5-1.5 Hz plus spikes 

8h -93.2  Y 40 cycles 0.5-1.5 1 Hz plus/minus spikes 

12 -71.6  Y mSeq_deg11_BP(ms)8 

13b -19.4 Y  bzzrWaterDry 

13d -58.8 Y  bzzrAirWet 

13 -57.6 Y  buzzerA 

 


