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ABSTRACT

Full waveform inversion (FWI) can provide accurate estimates of a variety of mechan-
ical properties in the subsurface. Very often, FWI is used to recover subsurface properties
in situations where source properties are well understood. Other seismic inversion strate-
gies exist for the recovery of unknown source properties, and these typically assume a
known, simple model of subsurface mechanical properties. In practice, there exist many
situations in which a better understanding of both the subsurface model and the seismic
sources is desirable. As each of these properties can influence our estimate of the other,
it may sometimes be necessary to simultaneously recover both a subsurface model and a
characterization of sources. In this report, we propose such a simultaneous inversion, using
a FWI approach. We show in a simple synthetic example that this approach can be effective
in recovering sources and subsurface models, though some results suggest that sequential
inversion approaches may be similarly effective in many settings.

INTRODUCTION

Seismic inversion approaches use measured seismic waves to generate estimates of the
conditions which caused those waves. Two very broad categories of seismic inversion are
those approaches which estimate the physical properties of the medium the waves travel
through, and those which estimate the seismic sources that generate the measured waves.
Both of these approaches are widely used on seismic data for a variety of applications.
Inversion approaches for seismic media include tomography (e.g. Nolet, 1987), amplitude
versus offset (AVO) analysis (e.g. Smith and Gidlow, 1987), migration (e.g. Stolt, 1978),
and full waveform inversion (Tarantola, 1984). These types of inversion are very useful
in exploration seismology and characterization of the Earth’s crust and interior. Inversion
approaches for seismic sources generally try to estimate the location, wavelets, and moment
tensors of sources. These approaches have applications in microseismic monitoring (e.g.
Maxwell et al., 2010), earthquake detection and characterization (e.g. Stich et al., 2010),
and in nuclear test monitoring (Alvizuri and Tape, 2018).

Generally, when inverting for one set of properties, the others are held fixed, and as-
sumed to be accurate. When trying to characterize the source mechanisms of earthquakes,
for instance, it is common to assume that the medium the seismic waves travel through is
well understood. While this simplifies the inversion problem considered, it also introduces
a source of uncertainty in the inversion results: the medium estimate will not, in general,
be perfectly accurate, and this will introduce errors in the estimated source properties. Be-
cause the sources and the medium interact in a nonlinear way to generate the wavefields
measured, there will always be an uncertainty associated with inverting for only one of
these properties while holding an estimate of the other fixed. In some cases, this uncer-
tainty may be relatively large, suggesting that simultaneous inversion for both medium and
sources may be necessary.

CREWES Research Report — Volume 32 (2020) 1



Keating and Innanen

One inversion approach that has the capability to recover both source and medium prop-
erties is full waveform inversion (FWI). When originally proposed, FWI was suggested
as a strategy that could determine both the acoustic properties of the subsurface and the
time-dependent source functions at known source locations (Tarantola, 1984). In practice,
FWI has developed primarily as an approach for the estimation of complex seismic media
(Virieux and Operto, 2009), but source inversion approaches have been suggested as well.
In this report, we will develop an FWI approach for simultaneous inversion of anelastic
media, point-source locations and moment tensors. This simultaneous strategy may help
to reduce uncertainty for applications where neither the source nor medium properties are
well understood in advance.

THEORY

In FWI, the inverse problem is generally framed as an attempt to minimize the data
misfit, subject to an assumed wave propagation model linking the wavefield and subsurface
together. A general version of this problem can be stated as

mmin = argmin
m

φ(u,m,d) subject to C(u,m) = 0, (1)

where m is a subsurface model, mmin is the inversion result, u is a simulated wavefield,
d is the measured data, φ is an objective function, (which is small when u is consistent
with measured data and m is consistent with prior information but larger otherwise), and
C = 0 holds only when the wave equation assumed in the inversion is satisfied. In this
report, we assume specific forms for the objective function and wave equation term, giving
the optimization problem

mmin = argmin
m

φ = argmin
m

NF∑
j=1

NS∑
k=1

1

2
||Ruj,k − dj,k||2, subject to S(m)u = f , (2)

where R is a sampling matrix representing receiver measurement, S is a finite-difference
forward modeling operator, f is a source term. In our discussion here, we will not explicitly
state the sums over sources and frequencies for simplicity.

We can calculate the gradient for this optimization problem by using the adjoint state
method. We start by considering the Lagrangian of the problem:

L =
1

2
||Ru− d||22+ < S(m)u− (fR + ifI), κ >, (3)

where κ is an as-yet unconstrained Lagrange multiplier, f has been explicitly split into
real and imaginary parts, and <,> represents an inner product, such that < a,b >=∑NS

k=1 a†kbk. When u = ū such that Sū = f (or, equivalently, we consider a wavefield
satisfying the wave equation), then L(ū) = φ. We can then calculate the derivative of the
objective function by considering the derivative of L(ū). If we wish to find the derivative
with respect to an inversion variable x, we observe that

dφ

dx
=
dL(ū)

dx
=
∂L

∂ū
∂ū
∂x

+
∂L

∂x
. (4)
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In practice, ∂ū
∂x is very difficult to calculate. This term can be eliminated by choosing κ such

that ∂L
∂ū = 0. Assessing this derivative, it is evident that the κ̄ which satisfies this condition

can be calculated from
∂L

∂ū
= RT (Rū− d) + S†κ̄ = 0. (5)

By choosing the Lagrange multiplier κ̄, the derivative of the objective function is reduced
from equation 4 to

dφ

dx
=
dL(ū, κ̄)

dx
=
∂L(ū, κ̄)

∂x
. (6)

It then follows from equation 3 that

dφ

dmi

=<
∂S
∂mi

ū, κ̄ >, (7)

where mi is the ith element of m,

dφ

dfRi

= −<(κ̄i), (8)

and
dφ

dfIi
= =(κ̄i). (9)

From these derivatives, it is simple to calculate the derivative of the objective function with
respect to any set of variables determining m and f. A set of variables more restrictive than
arbitrary fR and fI is likely necessary due to the large dimensionality of these variables:
each has a number of elements equal to the number of points in the wavefield grid used in
forward modeling multiplied by the number of sources considered. Consider an inversion
variable fx, that controls some aspect of the structure of f. The variable fx might control the
position or moment tensor of a point source, for instance. The derivative of the objective
function with respect to such a variable is a simple extension of the derivative with respect
to f:

dφ

dfx
=
∑
i

dφ

dfRi

dfRi

dfx
+
dφ

dfIi
dfIi
dfx

=
∑
i

−<(κ̄i)
dfRi

dfx
+ =(κ̄i)

dfIi
dfx

. (10)

Hessian-vector product

A key element in several numerical optimization strategies is the calculation of Hessian-
vector products. Here, we will be considering this product while employing the Gauss-
Newton approximation of the Hessian, so the residual-dependent part of the Hessian is
neglected. We refer to the TN method when using the Gauss-Newton approximation as the
truncated Gauss Newton (TGN) method.

The main term of the objective function in equation 2 is of the form φ = 1
2
γ2. The

second derivative of an objective function like this with respect to inversion variable x is

∂2φ

∂x2
=
∂2γ

∂x2

T

γ +
∂γ

∂x

T ∂γ

∂x
(11)
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Under the Gauss-Newton approximation, we neglect the first term on the right-hand side in
equation 11 due to the assumption that γ is small.

For the FWI objective we define in equation 2, the Gauss-Newton Hessian is given by
the relation

J†RTRJ, (12)

where J is the Jacobian matrix du
dx . The matrix J is too costly to directly calculate in FWI,

but we can use the adjoint state method to avoid the need for such a calculation. We can
begin by noting that the derivative of the function

h =< u(x),w >, (13)

where w is an arbitrary vector, with respect to x is

∇h = J†w. (14)

Consequently, if w is chosen to be RTRJv, then the Hessian-vector product HGNv is equal
to the derivative of h. This derivative can be calculated in exactly the same way as the
gradient was by considering the Lagrangian

L =< u(x),w > + < S(x)u− f, ξ > (15)

instead of equation 3. The same procedure follows, but instead of requiring Lagrange
multiplier κ̄ to satisfy equation 5, the removal of ∂ū

∂x requires that the Lagrange multiplier
for this problem, ξ, satisfies

S†ξ̄ = −w. (16)

As before, if the Lagrange multiplier satisfies this condition, then

dL

dmi

=<
∂S
∂mi

ū, κ̄ >, (17)

dL

dfRi

= −<(κ̄i), (18)

and
dL

dfIi
= =(κ̄i). (19)

The calculation of ξ̄ does require that w is known, however, and we cannot directly calcu-
late J . We can calculate the product of J with the vector v through consideration of the
derivative of the forward problem with respect to variables xi multiplied by vector elements
vi. Using the relation Su− f = 0, it can be shown that

∂(Su− f)vmi

∂mi

= S
(
∂u
∂mi

vmi

)
+ u

(
∂S
∂mi

vmi

)
= 0, (20)

∂(Su− f)vfRi

∂fRi

= S
(
∂u
∂fRi

vfRi

)
−<(vfRi

) = 0, (21)

∂(Su− f)vfIi
∂fIi

= S
(
∂u
∂fIi

vfIi

)
− i=(vfIi) = 0, (22)
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where vmi
is the element of v corresponding to the ith element of m, vfRi

is the element
corresponding to the ith element of fR and vfIi is the element corresponding to the ith

element of fI . A sum over i for the term S
(

∂u
∂xi
vi

)
is equal to the product S(Jv), so

equations 20-22 are equivalent to

S(Jmvm) = −u
∑(

∂S
∂mi

vmi

)
, (23)

S(JfRvfR) = <(vfRi
), (24)

and
S(JfRvfI ) = =(vfIi). (25)

These equations can be solved for the product Jv. Using this term to define w as
RTRJv, we can solve equation 16 for ξ. With this choice for ξ, the derivatives dL

dx from
equations 17-19 become the Gauss-Newton Hessian vector product HGNv.

Forward modeling

The anelastic finite-difference approach we use for modeling seismic waves here is de-
scribed in more detail in Keating (2020). The main development necessary for the treatment
of source-model simultaneous inversion is the treatment of a more general class of seismic
sources. In particular, we are concerned here with recovery of the locations and moment
tensor components of point-sources in the two dimensional problem. For a point source,
the m,n component of the moment tensor represents a derivative of the displacement in
the m direction with respect to the n direction. In the finite-difference approach we use
here, the seismic wavefield is defined in terms of vertical and horizontal displacement, so
simulating a point-source simply requires that the correct derivatives be introduced in the
source term. For accurate representation of a point source, it is essential that a source be
represented using only a very small region of the finite-difference model. Accordingly, we
will employ a first-order finite-difference approach. In one dimension, the finite difference
approximation of Mzz = 1 at location z = (n + 1

2
)∆z (a location midway between two

finite-difference grid cell centers) would be −1
∆z

at z = n∆z, and 1
∆z

at z = (n + 1)∆z.
This is illustrated in figure 1. For a source not located equidistant between finite-difference
cell centers, it will no longer be possible to accurately represent the derivative with just two
grid cells. More generally, three grid cells will be needed to approximate a derivative in the
z direction for a first order, centered finite difference approach at an arbitrary location. The
finite-difference weights used for a source location between two finite difference grid lines
will be a weighted average of the weights which would be used for a source at either of the
bounding grid lines, as shown in figure 2. Extending this concept to two dimensions, we
can see that sources will generally be represented by nine cell (three by three) finite differ-
ence terms, representing an average between the four cell finite difference approximations
at each of the four grid cell intersections bounding the source location. An example of a
2D source term is shown in figure 3. Similarly, in three dimensions, 27 cell finite differ-
ence terms (three by three by three) represent averages of the eight cell finite difference
approximations at each of the eight grid cell intersections bounding the source location.
This finite-difference approximation of 2D point-source moment tensors is well suited to
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FIG. 1. Scaled weights for approximating a derivative in one dimension, for source location z = 2.

FIG. 2. Scaled weights for approximating a derivative in one dimension, for source location z = 2.25.

local optimization, as the gradient of the objective function with respect to source location
is well defined in this case: small changes in source location simply correspond to a small
re-weighting of the source term values.

Optimization

For inversion procedures designed to recover both source properties and subsurface
structure, two broad strategies exist. Firstly, and most conventionally, sequential inversion
can be used, wherein either structure or sources are first estimated while holding the other
fixed, and then the other property is estimated while holding the first fixed. A sequential ap-
proach can often provide good estimates of both source properties and structure, but relies
heavily on the assumption that these properties relate to the data approximately indepen-
dently of one another. In reality, the quality of our estimates of each of these properties
strongly affects our ability to estimate the other, so a sequential inversion relies on the
presence of sufficiently accurate estimates of at least one of these properties. If accurate
estimates are difficult or impossible to obtain, for instance, in cases where source locations
are unknown and very complex media are present, it may be more appropriate to adopt
the second of these approaches: simultaneous inversion. In simultaneous inversion, both
properties are recovered at the same time in the inversion. This allows for the inversion
to account for how a source estimate may change when certain features are introduced in
the subsurface model, for instance. In this report, we are most interested in the case where
simultaneous inversion is appropriate.

Inversion for source terms only can often use powerful global optimization strategies
due to the relatively small number of variables needed for source description. Inversions
which recover potentially complex subsurface models are not amenable to this type of
approach, due to the very large number of variables needed in this problem. Instead, local
optimization strategies, which use derivative based approaches to minimize an objective
function, are used for this type of problem. While this can allow for a more efficient
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FIG. 3. Scaled weights for approximating an example 2D moment tensor.
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inversion, it also introduces susceptibility to inversion results representing local minima,
rather than accurate solutions to the inversion problem. A simultaneous inversion for both
sources and subsurface models must use variables to represent both, so, as in the case
of inversion for subsurface models, local optimization approaches must be used. Here,
we will use the truncated Gauss-Newton approach, which uses an approximation of the
Newton descent direction. This type of approach is described in detail by Métivier et al.
(2013).

Parameterization

The variables mi which define the subsurface model will each typically define both 1)
a physical property or set of properties affecting wave propagation which they define and
2) a space-dependent function describing the relation of the variable with the spatial values
of these properties. In this report, we consider viscoelastic inversion, and so the variables
we use will define P- and S- wave velocities vP and vS , P- and S- wave quality factors QP

and QS , and density ρ. Specifically, the physical properties defined by mi will be v−2
P , v−2

S ,
Q−1

P , Q−1
S , and ρ. These variables have the advantage of relating to the viscoelastic wave

equation in relatively simple ways (Pratt, 1990). Spatially, the most common approach in
FWI is to let each variable define a scaled version of one of the physical properties at a
single finite-difference grid cell (effectively acting as a Kronecker delta function). This
parameterization could be problematic in simultaneous source-model inversion, because
it allows for the subsurface model to change on scales smaller than the finite-difference
footprint of the source terms, effectively allowing for the model to change the moment
tensor or source location. This type of inter-parameter confusion is chiefly an artifact of
the finite difference modeling approach, but may seriously harm inversion results (as model
updates may be dominated by spurious source modifying features). To avoid this type of
issue, we instead define the subsurface model in terms of Gaussian regions centered at
each finite difference point. The different spatial parameterizations are illustrated in figure
4. In the Gaussian-type parameterization, the value of the parameter centered at one FD
grid cell has a strong influence on the model near that location and a smaller influence
on the model at locations some distance away. We define the characteristic width of these
Gaussian regions to be larger than the three by three footprint of the source terms in order to
remove the ability of model updates to change effective source terms. This should improve
the convergence of the inversion, while somewhat reducing the possible resolution of the
inversion. This type of approach is discussed in detail in Keating and Innanen (2018).

Numerical examples

In order to test our simultaneous source-model inversion, we consider a synthetic test
in this section. The subsurface model and sources to be inverted are shown in figures 5
and 6. The subsurface model is based on a section of the Marmousi model, while the
sources are randomly distributed with arbitrary moment tensors. The starting model used
for the inversion is based on the assumption that there is little prior information available;
the initial model of anelastic properties is constant in each parameter, the initial source
location estimates are randomly placed within 70 m of their true location (based on the
assumption that such a coarse estimate could be made even based on a very poor velocity
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FIG. 4. Conventional FWI spatial variable (left) and Gaussian variable (right).

FIG. 5. True physical properties of the synthetic model.

model), and the initial source moment tensor terms are random. The starting model is
shown in figure 7, and the initial sources are compared with the true sources in figure 6.
We discretize the model into 10m by 10m grid cells for our finite difference modeling.

In our inversion, we use a multiscale approach with 20 total frequency bands each of
six frequencies. Each band has data starting at 1 Hz, and includes five other frequencies,
linearly spaced to the maximum of each band, starting a 2 Hz in the first band, and linearly
increasing to 20 Hz by the last band. At each frequency band, two iterations of truncated
Gauss-Newton optimization are used, with twenty inner iterations per FWI iteration. The
source estimates after the first five frequency bands are shown in figure 8, while those
recovered at the end of the inversion process are shown in figure 9. The corresponding
subsurface models are shown in figures 10 and 11. By examining the results after five
frequency bands (maximum frequency of about 6 Hz), we can see that there is very good
recovery of moment tensors and source locations (figure 8), but only a very crude estimate
of the subsurface model (figure 10). This suggests that the early stages of the inversion are
dominated by improvements in source estimation rather than model updating. In the final
inversion result, there is little improvement in the source estimation (figure 9), as the esti-
mate was already quite good after five frequency bands, but the subsurface model improves
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FIG. 6. True sources (dots with white centers) and initial source estimates (solid dots). The colors
represent the 2D moment tensor, with the M11 value represented by red (0.5 red is 0 M11), M12
represented by green, and M22 represented by blue.

FIG. 7. Initial estimate of physical properties.
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FIG. 8. True sources (dots with white centers) and source estimates after five frequency bands
(solid dots). The colors represent the 2D moment tensor, with the M11 value represented by red
(0.5 red is 0 M11), M12 represented by green, and M22 represented by blue.

considerably (figure 11). Both sets of properties have reasonably accurate estimates at the
end of the inversion procedure.

DISCUSSION

The numerical examples we present here show that, at least in a small, synthetic ex-
ample, a source-model simultaneous inversion is feasible. Interestingly, however, the be-
haviour exhibited by the simultaneous approach almost seems to suggest a naturally se-
quential strategy. In the early iterations of the inversion, the source estimate improves
considerably, with moment tensors and locations estimated very accurately. The subsurface
model in the same early iterations establishes only very approximately the long-wavelength
structure. Conversely, at later iterations, there is little improvement in the source estimate,
while the subsurface model improves substantially. Collectively, these results suggest that
our inversion, while having the capability to update both sources and model simultane-
ously, instead begins with a heavy focus on source estimation, and primarily updates the
subsurface model afterwards. Moreover, in this case, the source estimate is quite accurate
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FIG. 9. True sources (dots with white centers) and final source estimates (solid dots). The colors
represent the 2D moment tensor, with the M11 value represented by red (0.5 red is 0 M11), M12
represented by green, and M22 represented by blue.

FIG. 10. Estimate of physical properties after five frequency bands.
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FIG. 11. Final estimate of physical properties.

even when the subsurface model is still quite poor, suggesting that the nearly sequential
approach is essentially effective, even for the relatively complex model we consider. This
raises the question of how complex a subsurface model or how poor an initial estimate of it
must be before simultaneous inversion offers substantial improvement. This is an important
question for further study.

In this report, a very simplified treatment of frequencies has been used, where the fre-
quency spectrum of each source is assumed to be constant, known, and to extend into the
bandwidth of frequencies typically used in FWI. Inversion for source frequency spectra
could add new complexities to the problem, particularly those of defining an appropriate
parameterization. A full frequency spectrum for each source requires many more degrees
of freedom than can likely be constrained in the inversion, so a compact but effective pa-
rameterization would need to be defined. Another challenge facing this approach is the
likely frequency spectrum of seismic sources: in microseismic problems, for instance, the
dominant frequencies of unknown sources may be significantly higher than the typical FWI
frequency band. In this case, a simultaneous approach may not be appropriate, given the
very high cost of high frequency FWI.

CONCLUSIONS

In this report, we have investigated the theory for a simultaneous source-model full
waveform inversion. Notably, the source and model variable derivatives make use of the
same wave propagation solutions, so the main per-iteration computational burden of the
sequential inversion approach is not significantly changed in the simultaneous approach.
The frequency domain objective function derivative expressions we derive are general, but
in a numerical example, we focus on a viscoelastic problem, with point sources in two
dimensions.
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