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ABSTRACT

Full waveform inversion (FWI) is a powerful data-fitting procedure for the seismic in-
version problem. However, it suffers the local minimum problem when the accurate initial
model is not available because of the nonlinear nonconvex structure of the objective func-
tion. Our initial idea in this work is that a better inverse result can be expected when more
a priori information of the physical model is provided. We propose a numerical scheme
which can incorporate multiple a priori information to the optimization problem. First, a
scaled gradient projection method on adaptive constraint sets is provided which is com-
patible with the inexact projection algorithm. Next, we incorporate a priori information
as convex constraint sets. Then, the FWI problem is solved as a constraint optimization
problem on the intersection of the constraint sets as the feasible set. Numerical examples
with box constraints, total variation constraints, and l1 constraints on the cross-well model
and the reflective seismic wave model are provided.

INTRODUCTION

Full waveform inversion (FWI) is a high-resolution seismic inversion technique that has
been widely studied and applied in both academia and industry. It is a data-fitting procedure
by minimizing the distance between the recorded seismic data and the forward modeling
seismic data which is generated through the simulation of the physical model. The physical
model can be chosen from the acoustic wave equation to the elastic wave equation, depends
on how accurate the physical model is expected.

FWI was introduced by (Lailly and Bednar, 1983) and (Tarantola, 1984) in the early
1980s. The development of scientific computing performance and the improvement of seis-
mic data quality make the FWI one of the most important geophysical exploration methods.
Also, new improvements have been made such as frequency domain inversion (Pratt, 1999;
Pratt and Shipp, 1999), new regularization technique (Esser et al., 2018; Yong et al., 2018;
Aghamiry et al., 2020), optimal transport distance (Engquist et al., 2016; Yang and En-
gquist, 2017; Yong et al., 2019; Métivier et al., 2018b,a), etc. We refer to (Virieux and
Operto, 2009) and (Virieux et al., 2017) for a recent general review of the FWI problem.

From the mathematic point of view, FWI is a PDE-constrained optimization problem
with a nonlinear nonconvex objective function. The nonconvex property determines that the
local minima are unavoidable with the optimization algorithm. When the initial model is far
away from the true model, especially on the large scale, the result is usually trapped in local
minima which can be explained as the cycle-skipping issue. Although the local minima are
unavoidable, there are several methods can be considered to improve the inverse result.
First, change the distance in the objective function. The optimal transport distance is one
choice since it is convex with respect to shift and dilation (Yang and Engquist, 2017; Yang
et al., 2018). Second, we can expand the optimization space, for example as wavefield
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reconstruction inversion (WRI) (van Leeuwen and Herrmann, 2015) and source extension
method (Symes, 2008). Third, to describe the special properties of the model space, the
regularization term can be added to the objective function. For example, the total variation
regularization will lead to a piecewise constant structure of the inverse result. Last, the
FWI problem can be implemented as a constraint optimization problem. The box constraint
set is one of the most popular feasible set for the PDE-constrained optimization problem.
The third and last method are equivalent based on the dual structure of the Lagrangian.
Comparing to the regularization coefficients, the size of constraint sets can describe the a
priori information directly and accurately.

Suppose for the grid point x0 in the physical model, we know the average value of the
ball B(x0, r) which centered at x0 with the radius r. And suppose for each of the grid
points in the physical domain, we know this kind of average value information a priorily.
As r → 0, we actually have the values at all grid points. In other words, we already know
the global solution to the inverse problem. This toy example suggests that, with more and
more a priori information, a more accurate inverse result can be expected. The initial idea
of this work is, the a priori information can be formulated as several convex constraint
sets. And then the optimization problem can be formulated as a constraint optimization
problem with the intersection of the above convex constraint sets as the feasible set. A
scaled gradient projection method on the adaptive constraint sets are provided to fulfill our
need. And the projection algorithm proposed in the work (Combettes, 2000, 2003) are
integrated into this work.

Formulation of the FWI problem

The numerical scheme of the main algorithm is introduced in section 2 and 3. We
review the FWI problem in a compact form first. Denote Uad ⊂ U be the feasible set
of the physical parameters such as velocity or density, and Y as the space of the seismic
wavefield. Given the recorded data yd ∈ Y , and the record operator Q : U → Y , the FWI
problem can be formulated as a PDE-constrained optimization problem as:

min
(y,u)∈Y×Uad

J(y, u) =
1

2
‖Qy − yd‖2Y ,

such that e(y, u) = L(u)y − s = 0.

(1)

Here the constraint PDE is written in a compact form, which can be acoustic wave equation,
elastic wave equation, etc. The differential operatorL : U×Y → Z is linear with respect to
y but nonlinear with respect to u. This nonlinearity is the reason for the local minima issue
discussed above, and without change the equation, the nonlinearity will not change. Since
the PDE e(y, u) = 0 is well posed, a parameter-to-state map is well defined as F (u) = y,
then the reduced form of problem (1) is

min
u∈Uad

f(u) = J(F (u), u). (2)

The gradient of f(u) can be achieved through the adjoint state method:

∇f(u) =

∫∫
v(x, t)∂tty(x, t) dxdt, (3)
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where y(x, t) is the solution of the constraint equation, and v(x, t) is the adjoint wavefield
which is the solution of the adjoint equation

L(u)v = Q′(Qy − yd). (4)

For more information of the adjoint state method in FWI problem, we refer to the paper
(Plessix, 2006).

SCALED GRADIENT PROJECTION METHOD ON ADAPTIVE CONSTRAINT
SETS

Before introducing the scaled gradient projection (SGP) method on adaptive constraint
sets, we review the scaled gradient projection method for the general case. Consider the
constraint optimization problem:

min
u∈Rn

f(u), such that u ∈ Uad. (5)

Here f is the nonlinear (possibly nonconvex) and smooth enough objective function. The
feasible Uad ∈ Rn is nonempty, convex, and closed. Since we are working with both n-
dimensional Euclidean space and the scaled Euclidean space, we denote H = Rn be the
n dimensional Euclidean space with inner product 〈x, y〉 = x′y and norm ‖x‖ =

√
x′x.

Given symmetric positive definite matrix B, let the space HB be the scaled Euclidean
space with element in Rn, the inner product 〈x, y〉B = 〈Bx, y〉 = x′By and norm ‖x‖B =√
x′Bx.

The scaled gradient projection method at k-th iteration is given by:

ūk = arg min
u∈Uad

〈
∇f(uk), u− uk

〉
+

1

2βk
〈
Bk(u− uk), u− uk

〉
, (6)

uk+1 =uk + αk(ūk − uk). (7)

Here the matrix Bk can be chosen as an approximation of Hessian matrix ∇2f(xk). When
the Hessian matrix is symmetric positive definite, and Bk = ∇2f(xk), the scaled gradient
projection method is equivalent to the constrained Newton’s method. We set the scale
parameter βk = 1 in this work. The linesearch parameter αk can be achieved through the
linesearch method like Armijo rule and Wolfe conditions.

Let ũk = uk −B−1k ∇f(uk), equation (6) is equivalent to

ūk = arg min
u∈Uad

1

2
‖u− ũk‖2Bk

− 1

2

〈
B−1k ∇f(uk),∇f(uk)

〉
. (8)

In other words, the equation (6) is equivalent to compute ũk as the global minimum of
the quadratic equation in (6) first, then project ũk to the feasible set Uad in the metric of
HBk

. This projection computation can be written as ūk = PBk,Uad(ũ
k), where PBk,Uad is

the projection operator onto set Uad in the metric of HBk
. This process is demonstrated in

Figure 1.

However, there is an issue when the projection of ũk can not be evaluated exactly. Some
of the projection method like Dykstra’s algorithm computing the projection by generating
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ũk = uk −B−1k ∇f(uk)

ūk = PBk,Uad(ũ
k)

uk+1 = uk + αk(ūk − uk)

FIG. 1. SGP method at the k-th iteration.

Uad

uk

ũk = uk −B−1k ∇f(uk)

ūk = P̄Bk,Uad(ũ
k)

FIG. 2. When an inexact projection result is generated by the projection algorithm, ūk may not in
the feasible set Uad, then uk+1 is not guaranteed in the feasible set Uad.

a converging sequence which convergent to the exact projection. However, the convergent
process has to be terminated after several iterations, and in this case, the result is different
from the exact projection. Denote the inexact projection operator as P̄Bk,Uad . Despite the
inexact projection result that might be closed enough to the exact projection, the inexact
projection might not fall in the feasible set Uad. And this inexact projection might lead
to that the update uk+1 will not stay in the feasible set. This problem is demonstrated in
Figure 2.

To overcome the above problem, we design an increasing sequence of feasible sets, and
the sets in the increasing sequence are assigned for each of the iterations of the algorithm.
Given the feasible set Uad, design the increasing sequence of the feasible set as

Uad = lim
k→∞

Uk
ad, and Uk

ad ⊂ intUk+1
ad . (9)

Then, the feasible set at k-th iteration is assigned as Uk
ad, and the feasible set at the next

iteration is assigned as Uk+1
ad . The SGP method on the increasing sequence of feasible sets

is: at k-th iteration, given symmetric positive definite matrix Bk,
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Uk
ad

Uk+1
aduk

ũk = uk −B−1k ∇f(uk)

ūk = P̄Bk,U
k
ad

(ũk)

uk+1 = uk + αk(ūk − uk)

FIG. 3. To overcome the inexact projection issue, we expand the feasible set at each iteration. Find
the inexact projection ūk ∈ Uk+1

ad first, then update uk+1 ∈ Uk+1
ad .

1. Compute ũk = uk −B−1k ∇f(uk).

2. Evaluate the inexact projection operator ūk = P̄Bk,U
k
ad

(ũk), until the following equa-
tions are satisfied

ūk ∈ Uk+1
ad , (10)〈

ũk − ūk, uk − ūk
〉
Bk
≤ 0. (11)

The equation (11) is a condition used in the convergence analysis and guarantees that
the ūk − uk is a decreasing direction.

3. Update uk+1 = uk +αk(ūk−uk), here αk is determined by the linesearch algorithm.
In this case, the update uk+1 is in the feasible set at k + 1-th iteration Uk+1

ad .

4. Set k = k + 1, the feasible set at k + 1-th iteration is Uk+1
ad .

Furthermore, an adaptive enlarge procedure can be designed for the feasible sets of each
iteration. Suppose the increasing sequence of constraint sets is designed as {Uh

ad}, and the
feasible set at k-th iteration is Uh0

ad . Then in step 3 and 4 of the above algorithm, the feasible
set of k + 1-th iteration can be determined as

Uk+1
ad =

{
Uh0+1

ad , if ūk /∈ Uh0
ad ,

Uh0
ad , if ūk ∈ Uh0

ad .
(12)

The SGP method on adaptive constraint sets is given by Algorithm 1.

L-BFGS Hessian approximation of the scaling matrix

A scaling matrixBk which approximates the Hessian matrix accurately at each iteration
is important to increase the convergence speed. On the other hand, efficient evaluations
of matrix-vector productions of both Bk and B−1k are needed in the projection algorithm
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Algorithm 1: Scaled gradient projection method on adaptive constraint sets
Given the feasible set Uad, construct the increasing sequence of constraint sets
{Uh

ad}.
while Not converge do

Step 1: Compute ũk = uk −B−1k ∇f(uk).
Step 2: Evaluate the inexact projection operator ūk = P̄Bk,U

k
ad

(ũk), until the
equation (10) and (11) are satisfied.

Step 3: Update uk+1 = uk + αk(ūk − uk) with the linesearch algorithm.
Step 4: Update the feasible set Uk+1

ad with equation (12), set k = k + 1.
end

introduced in the following section. In this case, the L-BFGS matrix is an ideal choice for
this work.

Denote Hk = B−1k , the L-BFGS matrix in a compact form is introduced in the work
(Byrd et al., 1994). Denote

sk = uk+1 − uk, yk = ∇f(uk+1)−∇f(uk). (13)

Then,

Bk = σkI −
[
σkSk Yk

] [σkSTk Sk Uk
UT
k −Dk

]−1 [
σkS

T
k

Y T
k

]
. (14)

Hk = γkI +
[
Sk γkYk

] [R−Tk (
Dk + γkY

T
k Yk

)
R−1k −R−Tk

−R−1k 0

] [
STk
γkY

T
k

]
. (15)

Here the coefficients are given by

Sk =[sk−m, · · · , sk−1], Yk = [yk−m, · · · , yk−1], (16)

(Rk)i,j =

{
(sk−m−1+i)

T (yk−m−1+j), if i ≤ j,

0, otherwise
(17)

Dk =diag[sTk−myk−m, · · · , sTk−1yk−1], (18)

(Uk)i,j =

{
(sk−m−1+i)

T (yk−m−1+j), if i > j,

0, otherwise.
(19)

A PRIORI INFORMATION AS CONVEX CONSTRAINT SETS

As we discussed in section 1 and 2, the initial idea of this work is to transform the a
priori information into convex constraint sets. Then solve the FWI problem as the constraint
optimization on the intersection of these convex constraint sets. A projection algorithm is
needed to use the SGP method we developed in the previous section. In this section, we
discuss the convex constraint sets first, and then introduce a projection algorithm developed
by (Combettes, 2000, 2003) which can project a point onto the intersection of convex sets.
The main algorithm for the FWI problem is provided at the end of this section.

6 CREWES Research Report — Volume 32 (2020)



Incorporating multiple a priori information for FWI

Before the discussion of convex constraint sets, we define a threshold function that is
useful for constructing the increase sequence. Denote ε > 0 be a threshold and η ∈ (0, 1)
is a parameter to control the sequence of sets expanding speed. We need the sequence to be
expanding as iteration goes on, but not expand to infinity large. To control the increasing
sequence of sets not expand to infinity large, define the threshold function as

θ(h) =


0, if h = 0,∑h

i=1 η
iε, if h ≥ 1,

η
1−ηε, if h→∞,

(20)

Here h ∈ N is the index controlling the sequence increasing.

Convex sets with closed form projection function

There are two kinds of convex constraint sets that are discussed in this work. We
start with the convex sets with the closed form projection function, for example as box
constraint, hyperplane constraint, etc. One of the most commonly used constraint sets in
the constraint optimization problem is the box constraint which can provide the physical
bounds of the model. Given a, b ∈ R, with a ≤ b, the box constraint set is given by:

Ubox = {u ∈ Rn | a ≤ ui ≤ b, i = 1, · · · , n} . (21)

The closed form projection function of the box constraint set is given by:

Pbox(u)i =


a, if ui < a,

ui, if a ≤ ui ≤ b,

b, if b < ui,

or Pbox(u)i = max(a,min(ui, b)). (22)

Then the increasing sequence of box constraint set is given by:

Uh
box = {u ∈ Rn | a− θ(h) ≤ ui ≤ b+ θ(h), i = 1, · · · , n} , h ∈ N, (23)

where the threshold function θ(h) is defined by equation (20).

To represent the average value of a certain area, the affine hyperplane constraint can be
used. Given p ∈ Rn and κ ∈ R, the affine hyperplane is defined by

Uplane = {u ∈ Rn | 〈u, p〉 = κ} . (24)

The closed form projection function of the hyperplane constraint set is:

Pplane(u) = u+
κ− 〈u, p〉
‖p‖2

p, (25)

and the increasing sequence of hyperplane sets can be defined by:

Uh
plane = {u ∈ Rn | ‖u− Pplane(u)‖ ≤ θ(j)} , h ∈ N. (26)
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Convex sets with subgradient projection

The subgradient projection method can be implemented for some convex sets without
a closed form projection function, for example as total variation constraints, l1 constraints,
etc. Instead of the exact projection onto the convex set, the subgradient projection project
the point onto an outer approximation of the convex set. To have the subgradient projection,
we need to represent the convex set as lower level set of a continuous convex function.

Definition 1 (lower level set) Given a continuous convex function f : Rn → R, the lower
level set function of f with a height η ∈ R is given by

lev≤ηf = {x ∈ Rn | f(x) ≤ η} . (27)

For the case when C is some lower level set of a continuous convex function f and height
η, i.e.

C = levηf = {x ∈ Rn | f(x) ≤ η} , (28)

the subgradient projection is an efficient way to approximate the projection. The following
proposition provides an outer approximation of convex set C.

Proposition 1 Given continuous convex function f : Rn → R, vector x ∈ Rn and x /∈ C,
and the subgradient x∗ ∈ ∂f(x), the lower level set C is defined by equation (28). The
half-space set

Hx = {z ∈ Rn | f(x) + 〈x∗, z − x〉 ≤ η} . (29)

is an approximation of set C. Also, we have x /∈ Hx.

Then, the subgradient projection is given by the following definition.

Definition 2 Given continuous convex function f : Rn → R, vector x ∈ Rn, and the
subgradient x∗ ∈ ∂f(x), the lower level set C is defined by equation (28). The subgradient
projection function which project x towards C is given by

P̃C(x) =

{
x+ η−f(x)

‖x∗‖2 x
∗, if f(x) > η,

x, if f(x) ≤ η.
(30)

Total variation regularization is a popular technique in imaging problems to provide
a piecewise constant result. The total variation constraint set is constructed by the above
method. Consider a two dimensional digital image u ∈ RNx×Ny with Nx rows and Ny

columns, and n = Nx × Ny. It is equivalent to consider u is a vector in Rn. Define the
discrete gradient operator D : RNx×Ny → RNx×Ny×2 with

(Du)i,j,1 =

{
ui+1,j − ui,j, if 0 ≤ i < Nx,

0, if i = Nx,
(31)

(Du)i,j,2 =

{
ui,j+1 − ui,j, if 0 ≤ j < Ny,

0, if i = Ny.
(32)

8 CREWES Research Report — Volume 32 (2020)



Incorporating multiple a priori information for FWI

Then the discrete total variation norm is given by the TV function ftv : Rn → R

ftv(u) = ‖u‖tv =
Nx∑
i=1

Ny∑
j=1

∣∣∣(Du)i,j

∣∣∣ . (33)

Given the radius τtv, the increasing sequence of the total variation constraint set can be
constructed as

Uh
tv = {u ∈ Rn | ftv(u) ≤ θ(h) + τtv} . (34)

The subgradient projection function for the sequence of total variation constraint sets Uh
tv is

P̃Uh
tv
(u) =

{
u+ θ(h)+τtv−ftv(u)

‖u∗‖2 u∗, if ftv(u) > θ(h) + τtv,

u, if ftv(u) ≤ θ(h) + τtv.
(35)

Next, we discuss how to transform the sparsity a priori information to the convex con-
straint set with l1 ball. Given a matrix Φ ∈ Rn×m, with Φ = [φ1, · · · , φm], here each φi,
i = 1, · · · ,m is a n-dimensional row vector represents some basis of Rn. Here Φ repre-
sents a linear transformation that maps the signal u to the coefficient spaces Rm. Typical
chooses of Φ can be Fourier transform, wavelet transform, or curvelet transform, etc. We
define the l1 function with linear operator Φ as

fl1(u) = ‖Φu‖1 =
m∑
j=1

|〈φj, u〉| =
m∑
j=1

∣∣∣∣∣
n∑
i=1

Φi,jui

∣∣∣∣∣ . (36)

Given initial radius τl1 , by the same method, the increasing sequence of l1 constraint sets
can be defined as

Uh
l1 = {u ∈ Rn | fl1(u) ≤ θ(h) + τl1} , (37)

The subgradient projection function for the l1 constraint set Uh
l1 is

P̃Uh
l1

(u) =

{
u+

θ(h)+τl1−fl1 (u)
‖u∗‖2 u∗, if fl1(u) > θ(h) + τl1 ,

u, if fl1(u) ≤ θ(h) + τl1 .
(38)

Projection onto intersection of convex sets

Given a symmetric positive definite matrix B, convex sets U1, · · · , UNc , and the initial
value u0 /∈ ∩Nc

i=1Ui. Let U = ∩Nc
i=1Ui, the projection problem which project the point u0

onto Ui in the metric ofHB is given by

PB,U(u0) = arg min
u∈U
‖u− u0‖2B. (39)

To solve the above projection problem, we introduce the projection algorithm developed in
(Combettes, 2000, 2003) to our main algorithm. Algorithm 2 is the projection algorithm
used in this work.

Notice that, the matrix-vector productions of both B and B−1 are needed in the Algo-
rithm 2. For computation efficiency, the L-BFGS approximation of the Hessian matrix is
the ideal choice of this numerical scheme.
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Algorithm 2: The projection algorithm
Initialization: Given a symmetric positive definite matrix B, a family of nonempty
convex closed set Ui, i = 1, · · · , Nc, initial point u0, weight parameter ωi, with∑m

i=1 ωi = 1.
At k-th iteration:
while Not converge do

Step 1: compute the projection of uk onto each of Ui with:

pi =

{
PUi

(uk), if Ui is simple,
P̃Ui

(uk), if Ui is not simple and have subgradient projection.
(40)

Step 2: set zk = uk + λkB
−1 (∑

i∈I ωipi − uk
)
, where λk is given by equation:

λk =

{ ∑
i∈I ωi‖pi−uk‖2

‖uk−
∑

i∈I ωipi‖B−1
, if uk /∈ ∩mi=1Ui,

1/‖B−1‖, otherwise.
(41)

Step 3: Set πk =
〈
u0 − uk, uk − zk

〉
B

, µk = ‖u0 − uk‖2B, νk = ‖uk − zk‖2B,
and ρk = µkνk − π2

k, update uk+1 = QB(u0, uk, zk) with equation:

QB(u0, uk, zk) =


zk, if ρk = 0, πk ≥ 0,

u0 +
(

1 + πk
νk

) (
zk − uk

)
, if ρk > 0, πkνk ≥ ρk,

uk + νk
ρk

(
πk(u

0 − uk) + µk(z
k − uk)

)
, if ρk > 0, πkνk < ρk.

(42)

Set k = k + 1.
end

Main algorithm

The main algorithm in this work is a combination of the SGP method on adaptive con-
straint sets, the L-BFGS Hessian approximation, and the projection algorithm. Given con-
vex constraint sets U1, · · · , UNc , let I = {1, · · · , Nc} be the index set, denote the feasible
set Uad as the intersection of these sets:

Uad = ∩i∈IUi. (43)

We rewrite the constraint algorithm as

min
u∈Rn

f(u), such that u ∈ Uad. (44)

First, the increasing sequence of constraint sets is need to be fixed. For each of the con-
straint set Ui, design an increasing sequence {Uh

i } satisfies

Ui = lim
h→∞

Uh
i , and Uh

i ⊂ intUh+1
i . (45)
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Then the feasible set of each iteration can be constructed with the increase sequences {Uh
i }.

For example as

Uk
ad = ∩i∈IUhi

i . (46)

The main algorithm is given by Algorithm 3.

Algorithm 3: Scaled gradient projection on sequence of multiple adaptive con-
straint sets

Given: the objective function f and initial value u0; a family of nonempty, closed,
convex constraint sets Ui, for i ∈ I ,

Construct: for each Ui construct an increasing set sequence {Uh
i }h∈N; set

U0
ad = ∩i∈IU0

i .
while Not converge do

Step 1: Compute the gradient∇f(uk).
Step 2: Update sk and yk with equation (13), Sk, Yk, Rk, Uk with equation (16).
Step 3: Compute ũk = uk −Hk∇f(uk) with equation (15).
Step 4: Compute ūk = PBk,U

k
ad

(ũk), i.e., project ũk to Uk
ad inHBk

with the
Algorithm 2, until the stopping criteria equation (10) (11) are satisfied. The
multiplication between Bk, Hk and vectors are evaluated with equation (14)
and (15).

Step 5: Update uk+1 = uk + αk(ū
k − uk), here αk is the linesearch parameter

achieved with the Wolfe conditions.
Step 6: For each i = 1, · · · , Nc, update the constraint sets:

Uk+1
i =

{
Uh
i , if uk+1 ∈ intUh

i ,

Uh+1
i , if uk+1 /∈ intUh

i .
(47)

Step 7: Construct Uk+1
ad = ∩i∈IUk+1

i , set k = k + 1.
end

NUMERICAL EXAMPLES

Three numerical examples of the FWI problem are provided in this section, with exam-
ple 1 and 2 are the cross-well model, and example 3 are the reflective wave model. The box
constraint, hyperplane constraint, total variation constraint, and l1 constraint are discussed
in this section.

Before the numerical examples, we fix the physical model in the FWI problem (1).
The wave equation is used as the constraint PDE, and the corresponding physical model is
the velocity field. To simulate the wave propagation in free space, the perfectly matched
layer technique is applied. And the finite difference method is used for the numerical
computation of the PDE.
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(c) hyperplane p1
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FIG. 4. (a): true velocity model. (b): initial velocity model used in the seismic inverse problem. (c):
the hyperplane p1. (d): the hyperplane p2.

Example 1

A cross-well model is studied in this example as shown in Figure 4 (a), denoted as utrue.
The initial velocity model is shown in Figure 4 (b). There 6 equally spaced sources in the
left boundary of the domain, and there are 51 equally spaced receivers in the right boundary
of the domain. The model is 1 km by 1 km and is discretized with model size 101× 101. A
second-order finite difference scheme is used to discrete the wave equation with spatial step
size 0.01 km and temporal step size 0.0005 s. And the perfectly matched layer technique is
used to simulate the wave propagation in a boundary-free domain. The source is a Ricker
wavelet with a peak frequency of 5 Hz.

Three constraints are considered: box constraint, total variation constraint, l1 ball con-
straint. The sequence of box constraint sets is given by

Uh
1 = {u ∈ Rn | 1− θ1(h) ≤ ui ≤ 1.2 + θ1(h), i = 1, · · · , n} , (48)

where θ1(h) =

{
0, if h = 0,∑h

i=1 0.001× 0.9i, otherwise.
(49)

The sequence of total variation constraint sets is given by

Uh
2 = {u ∈ Rn | ftv(u) ≤ 24 + θ2(h)} , (50)

where θ2(h) =

{
0, if h = 0,∑h

i=1 0.24× 0.9i, otherwise.
(51)

Here the TV function ftv is given in equation (33). The sequence of first hyperplane con-
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(a) L-BFGS result
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(b) box constraint
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(c) box and TV constraint
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(d) box, TV and hyperplane constraint
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FIG. 5. (a): unconstraint result. (b): inverse result with box constraint. (c): inverse result with box
and total variation constraint. (d): inverse result with box, total variation and hyperplane constraint.

straint sets is given by

Uh
3 = {u ∈ Rn | ‖u− P1(u)‖ ≤ θ3(h) + 0.01} , (52)

where P1(u) =u+
〈utrue, p1〉 − 〈u, p1〉

‖p1‖2
p1, (53)

θ3(h) =

{
0, if h = 0,∑h

i=1 0.01× 0.9i, otherwise.
(54)

And sequence of second hyperplane constraint sets is given by

Uh
4 = {u ∈ Rn | ‖u− P2(u)‖ ≤ θ4(h) + 0.01} , (55)

where P2(u) =u+
〈utrue, p2〉 − 〈u, p2〉

‖p2‖2
p2, (56)

θ4(h) =

{
0, if h = 0,∑h

i=1 0.01× 0.9i, otherwise.
(57)

The vector p1, p2 ∈ Rn are shown in Figure 4 (c) and (d). The hyperplane constraints used
here are to provide the average value information of the two areas near the left boundary
of the velocity perturbation. In this case, an inverse result with a sharp left boundary is
expected.

The inverse results are shown in figure 5. For the unconstraint result in figure (a), the
L-BFGS method is performed with 20 iterations. The scaled gradient projection method
with adaptive constraints is performed with 20 iterations for the results in figure (b), (c),
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(b) Initial velocity model (km/s)
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FIG. 6. (a): true velocity model. (b): initial velocity model.

and (d). Figure (b) provides the inverse result with only box constraint sequence {Uh
1 } with

the index set I = {1} and weight parameter ω1 = 1. Figure (c) provides the inverse result
with box and total variation constraint sequences, with the index set I = {1, 2} and the
weight parameter ω1 = ω2 = 1/2. The inverse result with all four constraint sequences of
sets is provided in figure (d), with the index set I = {1, 2, 3, 4} and the weight parameter
ω1 = ω2 = ω3 = ω4 = 1/4. All the constraints play a role in improving the inverse result
comparing with the unconstraint case. Although the result of hyperplane constraints is arti-
ficial, a sharp left boundary of the velocity perturbation is inverted. This provides a way to
increase local inverse results with accurate a priori information. The above examples show
that the proposed method can handle multiple constraint sets at the same time. With more
information provided for the optimization algorithm, a more accurate image can achieve.

Example 2

In this example, we incorporate the sparsity constraint with the proposed method, a
cross-well model similar to example 1 is provided. The true velocity model and initial
velocity model are shown in figure 6 (a) and (b). We use the initial velocity model as a
reference model in the l1 fidelity constraint sets, denoted as uref. The acquisition is the
same as example 1.

Next, we denote the sequences of constraint sets. The sequence of box constraint sets
is given by

Uh
1 = {u ∈ Rn | 1− θ1(h) ≤ ui ≤ 1.2 + θ1(h), i = 1, · · · , n} , (58)

where θ1(h) =

{
0, if h = 0,∑h

i=1 0.001× 0.9i, otherwise.
(59)

The sequence of total variation constraint sets is given by

Uh
2 = {u ∈ Rn | ftv(u) ≤ 39.5 + θ2(h)} , (60)

where θ2(h) =

{
0, if h = 0,∑h

i=1 0.395× 0.9i, otherwise.
(61)
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(a) L-BFGS result
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(b) box constraint
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(c) box and TV constraint
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(d) box, TV and l1 constraint
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FIG. 7. (a): unconstraint result. (b): inverse result with box constraint. (c): inverse result with box
and total variation constraint. (d): inverse result with box, total variation and l1 constraint.

The sequence of l1 constraint sets is given by

Uh
3 = {u ∈ Rn | ‖u− uref‖1 ≤ 128 + θ3(h)} , (62)

where θ3(h) =

{
0, if h = 0,∑h

i=1 1.28× 0.9i, otherwise.
(63)

Numerical results are shown in Figure 7. For the unconstraint case, the L-BFGS method
is performed 20 iterations and the result is shown in figure (a). The scaled gradient pro-
jection method with adaptive constraints is performed with 20 iterations for the results in
figure (b), (c), and (d). Figure (b) provides the inverse result with only the sequence of
box constraint Uh

1 , with the index set I = {1} and weight parameter ω1 = 1. Figure (c)
provides the inverse result with the sequence of box and total variation constraint Uh

1 , with
the index set I = {1, 2} and weight parameter ω1 = ω2 = 1/2. The inverse result with
all three sequences of constraints is shown in figure (d), with the index set I = {1, 2, 3}
and weight parameter ω1 = ω2 = ω3 = 1/3. Comparing with different inverse results,
both total variation constraint and l1 constraint play an important role in providing a better
inverse result.

Example 3

A more realistic velocity model is provided in this example as shown in Figure 8 (a).
And the initial velocity model is shown inf Figure 8 (b). With 3.8 km depth and 12.55
km width, the model is discretizde into 76 × 251 points. There are 10 equally spaced
sources and 126 equally spaced receivers on the top of the model. The second-order finite
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FIG. 8. (a): true velocity model. (b): initial velocity model.

difference method is used for the constraint equation, with spatial step size 0.05 km, and
temporal step size 0.004 s. The perfectly matched layer technique is used to simulate the
seismic wave propagating in the free domain. The 5 Hz Ricker wavelet is used for each of
the sources.

In this example, we compare the inverse results with the different thresholds of the
constraints. First, we fix the box constraint as

Uh
1 = {u ∈ Rn | 2.5588− θ1(h) ≤ ui ≤ 6 + θ1(h), i = 1, · · · , n} , (64)

where θ1(h) =

{
0, if h = 0,∑h

i=1 0.02× 0.9i, otherwise.
(65)

Then we define three total variation constraint sequences with different radius

Uh
2 = {u ∈ Rn | ftv(u) ≤ 800 + θ2(h)} , (66)

where θ2(h) =

{
0, if h = 0,∑h

i=1 40× 0.9i, otherwise.
(67)

Uh
3 = {u ∈ Rn | ftv(u) ≤ 1000 + θ3(h)} , (68)

where θ3(h) =

{
0, if h = 0,∑h

i=1 50× 0.9i, otherwise.
(69)

Uh
4 = {u ∈ Rn | ftv(u) ≤ 1200 + θ4(h)} , (70)

where θ4(h) =

{
0, if h = 0,∑h

i=1 60× 0.9i, otherwise.
(71)
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For each of the following examples, 50 iterations are performed, and the inverse results
are shown in Figure 9. The unconstraint result is shown in figure (a). In the case of figure
(b), (c), and (d), both box constraint and total variation constraint are performed. For figure
(b), the constraint sequence set index is I = {1, 2}, with weight parameter ω1 = ω2 = 1/2.
For figure (c), the constraint sequence set index is I = {1, 3}, with weight parameter
ω1 = ω3 = 1/2. For figure (d), the constraint sequence set index is I = {1, 4}, with weight
parameter ω1 = ω4 = 1/2. Comparing with the above inverse results, as the total variation
constraint radius is larger, the result is closer to the unconstraint case. The results show that
the proposed method can control the inverse result by changing the radius of the sequence
of constraint sets.

CONCLUSIONS

In this work, we use the viewpoint that a priori information can be incorporated in
the FWI problem as convex constraint sets. And then the FWI problem is solved as a
constrained optimization problem with the intersection of the convex constraint sets as
the feasible set. A numerical framework is provided to solve the above problem which
is a combination of scaled gradient projection method, L-BFGS Hessian approximation,
and the projection algorithm. Numerical examples show that the proposed algorithm is
flexible for integrating multiple constraints at the same time, and is easy to control the
constraint effects by changing the size of constraint sets. Also, enhanced inverse results
can be expected with appropriate a priori information been incorporated.
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