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ABSTRACT

In a vertical transversely isotropic (VTI) medium, quasi-P (qP) and quasi-SV (qSV)
waves are intrinsically coupled as described in elastic wave equations. Therefore, when
we perform elastic reverse time migration and imaging processes to qP-waves, qSV-wave
energy will introduce crosstalk noise to the imaging results. Many authors have proposed
to separate qP-waves from elastic waves for better imaging results. As an alternative way,
some authors have proposed to directly simulate qP-waves with modified elastic wave equa-
tions. In this study, we develop a first-order wave propagator of pseudo-pure-qP-wave in 2D
heterogeneous VTI media using staggered-grid scheme. We have performed this algorithm
to simulate P-waves propagating in an isotropic medium, VTI media with weak/strong
anisotropy and a two-layer VTI model, the synthetic results validate the feasibility of this
algorithm. Also, we adopt the first-order Hybrid-PML in the simulation, which helps the
simulation efficiency due to its better performance for anisotropic media.

INTRODUCTION

Elastic reverse time migration (ERTM) can provide more accurate underground geo-
logical structures than the acoustic RTM (Chang and McMechan, 1987). However, in VTI
media, P- and S-waves are coupled, which introduces crosstalk in the imaging results. Yan
and Sava (2008b) suggest applying imaging conditions to separated mode waves, which
helps to suppress the artifacts. In general 2D anisotropic media, P- and SV-waves are in-
trinsically coupled and their polarization directions are no longer parallel or perpendicular
to the propagation direction. Many authors have been working on separating P- and S-
waves from full elastic waves. The basic idea of wavefield separation method is to project
the displacement vector wavefield U onto the polarization vectors of P- and S-waves, which
makes the determination of the polarization vectors essential. Rommel (1994) propose to
calculate the polarization vectors of qP- and qSV-waves by solving the Christoffel equation
with local elastic parameters or Thomsen parameters. (Tsvankin, 2012) propose to calcu-
late the polarization vectors of qP-wave by the rotation of wave vector with a deviation
angle, where Thomsen parameters can also apply. Yan and Sava (2008a, 2009) propose a
nonstationary separation method for 2D VTI media, which transforms the wavenumber do-
main operators into space domain and obtain the space domain pseudo-derivative operators,
this algorithm will overcome the shortcoming of wavenumber domain method (Dellinger
and Etgen, 1990; Dellinger, 1991) and can separate qP- and qS-waves completely even in
media with velocity varing spatially. Previous authors have also proposed to directly sim-
ulate separated P- and SV-waves in elatic media. Zhang et al. (2007) propose to simulate
P- and S-waves with fully decoupled first-order P- and S-wave equations using staggered-
grid finite-difference scheme. However, in general anisotropic media, P- and S-waves are
intrinsically coupled, which limits the feasibility of this algorithm. In anisotropic media,
Cheng and Kang (2013, 2016) derive modified second-order wave equations to simulate
separated qP- and qSV-waves for forward modeling, migration and waveform inversion,
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which splits wavefield separation procedure into a two-steps scheme. Liu et al. (2018) and
Liu and Innanen (2019) propose to further derive the first-order wave equations and develop
a first-order qSV-wave propagator in general 2D VTI media using staggered-grid scheme.

In this study, we use a similar strategy to develop a first-order qP-wave propagater in
VTI media. Following the principles of (Liu et al., 2018; Liu and Innanen, 2019), we
introduce and distribute the velocity fields and stress fields on a 2D staggered grid, in this
way staggered-grid scheme can be employed in the first-order equations and corresponding
finite difference iterative format can be achieved. In addition, we also adopt the first-order
Hybrid-PML Zhang et al. (2014) in our algorithm to help suppress the artificial reflections
in the wavefield simulation in strongly anisotropic media. In this paper, we first introduce
the theory of this algorithm and derive the first-order equations of qP-waves. Then, we
apply this new algorithm to simulate qP-waves in an isotropic medium, VTI media with
weak/strong anisotropy and a two-layer VTI model, which validate the feasibility of our
algorithm.

First-Order Propagator of Pseudo-Pure-qP-Waves in 2D VTI Media

In 2D isotropic media, scalar P-wave can be separated by applying a dot operation that
essentially projects the wavefield Ũ onto the polarization vector aqP in the wavenumber
domain (Dellinger and Etgen, 1990; Dellinger, 1991):

ŨP = i aqP · Ũ , (1)

where aqP = (aqPx , aqPz )T is the polarization vector of qP-waves. Cheng and Kang (2013)
propose to split this projection separation procedure into a two-steps scheme. First, project
the original qP-wavefield onto isotropic references through the introduction of a similarity
transformation to Christoffel matrix G

G̃qP = MP G̃ M−1
P , (2)

where

G̃ =

[
C11 k

2
x + C44 k

2
z (C13 + C44) kx kz

(C13 + C44) kx kz C44 k
2
x + C33 k

2
z

]
. (3)

and

MP =

[
i kx 0
0 i kz

]
. (4)

Through the similarity transform of Christoffel matrix,

G̃qP =

[
C11 k

2
x + C44 k

2
z (C13 + C44) k

2
z

(C13 + C44) k
2
x C44 k

2
x + C33 k

2
z

]
. (5)

In this way, we can derive the equivalent Christoffel equation of qP-waves. through
inverse Fourier transform, we obtain the second-order pseudo-pure-qP-wave equations ex-
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pressed as below:

ρ
∂2 ux
∂t2

= C11
∂2 ux
∂x2

+ C44
∂2 ux
∂z2

+ (C13 + C44)
∂2 uz
∂z2

ρ
∂2 uz
∂t2

= C33
∂2 uz
∂z2

+ C44
∂2 uz
∂x2

+ (C13 + C44)
∂2 ux
∂x2

(6)

Zhang and McMechan (2010) pointed out that velocity fields can be separated as well
as displacement fields. In this study, we further reduce the order of equations and derive
the first-order equations by following procedures. First, we introduce velocity fields vx
and vz as intermediate variables and let

∂ ux
∂t

= vx

∂ uz
∂t

= vz

(7)

Then, we further introduce variables (Liu et al., 2018; Liu and Innanen, 2019): σxx, σzz
and σxz, let

ρ
∂σxx
∂t

= C11
∂ vx
∂x

− C44
∂ vz
∂z

+ (C13 + C44)
∂ vz
∂x

ρ
∂σzz
∂t

= C33
∂ vz
∂z

− C44
∂ vx
∂x

+ (C13 + C44)
∂ vx
∂z

ρ
∂σxz
∂t

= C44(
∂ vz
∂x

+
∂ vx
∂z

)

(8)

Substituting equation 8 into equation 6, we get:

ρ
∂ vx
∂t

=
∂ σxx
∂x

+
∂ σxz
∂z

ρ
∂ vz
∂t

=
∂ σxz
∂x

+
∂ σzz
∂z

(9)

In this way, we derive the first-order pseudo-pure-qP-wave equations. In addition, ap-
plying the Thomsen notation (Thomsen, 1986):

C11 = (1 + 2ε)ρ v2p0

C33 = ρ v2p0

C44 = ρ v2s0

ρ v2pn = ρ v2p0
√

(1 + 2δ)

(C33 + C44)
2 = ρ2( v2p0 − v2s0)( v

2
pn − v2s0)

(10)
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the first-order Pseudo-pure-qP-wave equations can be rewritten as below:

ρ
∂σxx
∂t

= (1 + 2ε)ρ v2p0
∂ vx
∂x

− ρ v2s0
∂ vz
∂z

+
√
ρ2( v2p0 − v2s0))( v

2
pn − v2s0)

∂ vz
∂x

ρ
∂σzz
∂t

= ρ v2p0
∂ vz
∂z

− ρ v2s0
∂ vx
∂x

+
√
ρ2( v2p0 − v2s0))( v

2
pn − v2s0)

∂ vx
∂z

ρ
∂σxz
∂t

= ρ v2s0(
∂ vz
∂x

+
∂ vx
∂z

)

ρ
∂ vx
∂t

=
∂ σxx
∂x

+
∂ σxz
∂z

ρ
∂ vz
∂t

=
∂ σzx
∂x

+
∂ σzz
∂z

(11)

What’s also worthy to note is that vx and vz grid points are half a grid away from
each other in both x- and z-axis directions in a 2D staggered grid. Therefore, vx or vz
field should be phase shifted before the filtering algorithm is performed (Liu and Innanen,
2019). There will still be some residual qSV-wave energy in the wavefields simulated by
these first-order qP-wave equations. Applying the same filtering algorithm (Cheng and
Kang, 2013), we can obtain pure scalar qP-waves.

Simulation Examples of Separated Scalar qP-Waves

In this paper, we present the synthetic examples using the same models in Liu and Inna-
nen (2019). Also, we simulate qP-wave propagation by both original elastic wave equations
and first-order pseudo-pure-qP-wave equations proposed in this study for comparison.

Homogeneous isotropic medium

We first simulate the wavefields propagating in a homogeneous isotropic medium with
size of 2 km × 2 km, whose density is 2500 kg/m3, P-wave velocity is 4000 m/s and
S-wave velocity is 2300 m/s. The Ricker wavelet source is loaded at vx grid point right
in the middle of the model. The normalized x- and z-components of wavenumber K
for a homogeneous isotropic medium are shown in Fig 1, which are also the polarization
direction components of P-wave in isotropic media.
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FIG. 1. Normalized wavenumber-domain operators in 2D isotropic medium: a) kx and b) kz.
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The synthetic wavefields are shown in Fig 2. a) and b) are x- and z-components
simulated by original elastic wave equations. c) and d) are x- and z-components sim-
ulated by first-order pseudo-pure-qP-wave equations. What’s obvious is that the x- and
z-components of SV-wave are in totally opposite phase, by summing up these two compo-
nents, we can eliminate the SV-wave energy and obtain a scalar P-wave (shown in Fig 2 e));
f) is scalar P-wave filtered with deviation operators, which is the identical with e). because
P-wave propagates parallelly to the polarization direction and aP = K in an isotropic
medium.
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FIG. 2. Synthetic wavefields in an isotropic medium: a) x- and b) z-component simulated by original
elastic wave equations; c) x- and d) z-components simulated by first-order pseudo-pure-qP-wave
equations; e) summation of qP-wave components; f) separated scalar qP-wave.

Homogeneous VTI medium with weak anisotropy

In the second case, we apply the algorithm to a homogeneous VTI medium with weak
anisotropy. The Thomsen parameters are as follows: vp0 = 3000 m/s, vs0 = 1500 m/s,
ε = 0.1 and δ = 0.05. Using Rommel’s (Rommel, 1994) method, we calculate the nor-
malized x- and z-components of wavenumber domain and corresponding spatial domain
deviation operators, which are shown in Fig 3 and Fig 4, respectively.
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FIG. 3. Normalized wavenumber-domain operator in 2D VTI medium with weak anisotropy: a) x-
and b) z-component of deviation operator.
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FIG. 4. Spatial domain deviation operator in 2D VTI medium with weak anisotropy: a) x-component;
b) z-component.

The synthetic wavefields in VTI medium are shown in Fig ??: a) and b), c) and d) are
respectively the x- and z-components of the velocity wavefields simulated by original
elastic wave equations and first-order qP-wave equations. The x- and z-components of
qSV-wavefields in c) and d) are in different phases, the summation e) enhances qP-waves
in VTI media, while leaving some resigual qSV-wave energy in the physical domain. Since
this is also a homogeneous model, we can perform the filtering algorithm with either the
wavenumber domain or the spatial domain deviation operators to the synthetic wavefields,
as shown in f) is the separated scalar qP-wave, where qSV-wave energy is completely
removed with the projection deviation correction.
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FIG. 5. Synthetic wavefields in a VTI medium with weak anisotropy: a) x- and b) z-component
simulated by original elastic wave equations; c) x- and d) z-component simulated by first-order
pseudo-pure-qP-wave equations; e) summation of qP-wave components; f) separated scalar qP-
wave.

Homogeneous VTI medium with strong anisotropy

In the third case, we apply the new algorithm to a VTI medium with strong anisotropy,
whose elastic parameters: C11 is 23.87 GPa, C33 is 15.33 GPa, C13 is 9.79 GPa, C44

is 2.77 GPa and density is 2500kg/m3. The synthetic wavefields are shown in Fig 6.
From the comparison between Fig 6 e) and f), we can see the qSV-wave energy can also
be completely eliminated and scalar pseudo-qP-wave can be obtained after the filtering
algorithm.
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FIG. 6. Synthetic wavefields in a VTI medium with strong anisotropy: a) x- and b) z-component
simulated by original elastic wave equations; c) x- and d) z-component simulated by first-order
pseudo-pure-qP-wave equations; e) summation of qP-wave components; f) separated scalar qP-
wave.

Here we present the snapshots of synthetic qP-wavefields simulated by first-order Pseudo-
pure-qP-wave equations to validate the applicability of the first-order Hybrid-PML (Zhang
et al., 2014). As shown in Fig 7 a), b) and c) are the snapshots of x-component of qP-
wavefields propagating at 320 ms, 400 ms and 480 ms, respectively. We can notice that the
Hybrid-PML implemented in our algorithm provides satisfactory performance.
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FIG. 7. Snapshots of x-component simulated by first-order qP-wave equations in a VTI medium
with strong anisotropy: a) 320 ms, b) 400 ms and c) 480 ms, respectively.

Heterogeneous layered VTI media

In the last case, we simulate the qP-wavefields in a heterogeneous two-layer VTI model,
in which the first and the second layer are the same VTI medium with strong and weak
anisotropy, respectively. The force source is also located right in the middle of the model
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with the interface at depth of 1.2 km. Synthetic qP-wavefields are shown in Fig 8. We can
notice the converted S-wavefields emerge at the interface. By the summation of x- and
z-components of synthetic qSV-wavefields shown in Fig 8 e), some of S-wavefields are
already seriously suppressed. In this heterogeneous model, we have to perform the filtering
algorithm using the spacial domain deviation operators, after which all residual qSV-wave
energy is eliminated and pure scalar qP-wave is obtained as shown in Fig 8 f).
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FIG. 8. Synthetic wavefields in a layered VTI model: a) x- and b) z-component simulated by original
elastic wave equations; c) x- and d) z-component simulated by first-order pseudo-pure-qP-wave
equations; e) summation of qP-wave components; f) separated scalar qP-wave.

CONCLUSIONS

In this study, through introducing intermediate variables, we propose an alternative al-
gorithm based on staggered-grid scheme to simulate qP-wave in general 2D VTI media.
Since the first-order qP-wave equations keep very similar form of those of the first-order
elastic wave equations, we can achieve the new algorithm with very simple modification to
existing first-order elastic wave simulation program. Similar to our first-order qSV-wave
propagator, we also need to phase shift the velocity fields before performing the filtering
algorithm. We have applied the proposed algorithm to a homogeneous isotropic medium,
homogeneous anisotropic VTI media with weak/strong anisotropy and a heterogeneous
layered VTI model, the synthetic wavefields of which need to be further corrected to re-
move residual qSV-wave energy. Through the synthetic examples, it’s demonstrated that
the algorithm is capable of simulating qP-wave propagation in general VTI media.
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