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ABSTRACT

Viscoelastic full-waveform inversion (FWI) is promising to build high-resolution sub-
surface velocity and quality factor Q models. Based on the generalized standard linear
solid model, the attenuation effects on propagating waves can be simulated with the su-
perposition of parallel relaxation mechanisms. However, discrepancies exist between the
frameworks for constructing the sensitivity kernels in viscoelastic FWI: (I) Charara derived
the sensitivity kernels for unrelaxed moduli and attenuation parameters with a perturbation
approach based on Born approximation; (II) Tromp proposed to construct the Q sensitiv-
ity kernels by introducing additional adjoint source based on the Kolsky-Futterman model
and frequency domain Born scattering integral; (III) Fichtner derived the sensitivity kernels
for relaxation functions and Q following the adjoint-state method. The Q sensitivity ker-
nels were constructed with the strain memory variables. This study revisits the theories of
these frameworks for constructing the viscoelastic FWI sensitivity kernels. In the numeri-
cal modeling section, we calculate the sensitivity kernels within these different frameworks
for comparison. Synthetic experiments are carried out to evaluate their inversion perfor-
mances. We have found that the Q sensitivity kernels constructed with memory variables
can resolve theQ anomalies better suffering from fewer trade-off artifacts and uncertainties
in the presence of velocity errors.

INTRODUCTION

In recent decades, full-waveform inversion (FWI) methods have been intensively inves-
tigated to reconstruct high-resolution subsurface elastic properties (Tarantola, 1984; Pratt
et al., 1998; Tromp et al., 2005; Virieux and Operto, 2009). However, the real Earth medium
is not purely elastic. As the seismic waves propagate in subsurface, the waveforms undergo
dissipation and dispersion due to attenuation (Liu et al., 1976). In viscoelastic media, the
attenuation effects are commonly quantified with quality factor Q. Thus, it is attractive
to build high-resolution subsurface Q profiles for describing anelastic properties of the
medium using elastic FWI. The estimated Q models can be subsequently used to charac-
terize subsurface attenuative reservoirs (Innanen, 2011) and improve seismic imaging.

Anelasticity of the Earth medium can be modelled using a phenomenological model
represented mechanically by a combination of springs and dash spots. The system con-
structed by the parallel connection of several standard linear elements is referred to as the
generalized standard linear solid (GSLS) rheology (Liu et al., 1976). In a linear viscoelastic
model, the stress tensor is determined by the convolution between relaxation function and
time derivative of the strain tensor (Robertsson et al., 1994). Based on the GSLS model,
this convolutional constitutive relationship can be eliminated by solving a set of differential
equations with the superposition of parallel relaxation mechanisms (Blanch et al., 1995).
Thus, the damping effects of attenuation on propagating waves in real Earth medium can
be simulated. In this study, we use the time domain spectral-element method to simulate
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the wave propagation in isotropic and viscoelastic media (Komatitsch and Tromp, 2005).
The sensitivity kernels (or gradients) of different physical parameters in FWI can be con-
structed efficiently by cross-correlating the forward and adjoint wavefields based on the
adjoint-state method (Liu and Tromp, 2006). However, in time domain, the quality fac-
tor Q is not described explicitly in the rheological bodies of viscoelastic wave equation
(Bohlen, 2002). Thus, it becomes problematic and complex to construct the Q sensitiv-
ity kernels. Discrepancies exist between the frameworks for constructing the sensitivity
kernels in time domain viscoelastic FWI based on the GSLS model:

(I) Charara et al. (2000) derived the sensitivity kernels for the unrelaxed moduli and
attenuation parameters with a perturbation approach based on Born approximation. Ex-
pressions of the sensitivity kernels for the unrelaxed moduli are the same with those in
purely isotropic-elastic media. The attenuation parameters are defined as the differences
between unrelaxed and relaxed modulus. The attenuation sensitivity kernels are formu-
lated as the cross-correlation between forward strain memory variables and adjoint strain
fields.

(II) Assuming that Q is constant within the seismic frequency band, (Tromp et al.,
2005) derived the Q sensitivity kernels based on the Kolsky-Futterman model (Kolsky,
1952; Futterman, 1962) and frequency domain Born scattering integral. Expressions of
the Q sensitivity kernels are the same with those of the corresponding moduli but with
a different adjoint source. One limitation of this framework is that when simultaneously
estimating velocity and Q models, different adjoint sources are needed to calculate the ad-
joint wavefields at each iteration, which doubles the computational cost. Furthermore, the
Kolsky-Futterman model used to derive the Q sensitivity kernels is not consistent with the
GSLS model in forward modelling, which may increase the inversion uncertainty. Follow-
ing this approach, Pan and Innanen (2019) applied viscoelastic FWI to practical walk-away
vertical seismic profile data with alternative amplitude-based misfit functions.

(III) Fichtner and van Driel (2014) derived the sensitivity kernels for relaxation func-
tions and Q following the adjoint-state approach. The moduli sensitivity kernels can be
constructed by cross-correlating the forward strain fields with the adjoint stress fields (Liu
and Tromp, 2008). Whereas, the Q sensitivity kernels are calculated by cross-correlating
the forward strain fields with the adjoint strain memory variables. Compared to the ap-
proach given by Tromp et al. (2005), this framework allows to calculate the velocity and Q
sensitivity kernels simultaneously without introducing additional adjoint source, which re-
duces the computational cost a lot. Furthermore, this approach is expected to provide more
accurate Q sensitivity kernels as the same physical model is used in forward modelling and
sensitivity kernel derivation.

If the sensitivity kernels in viscoelastic FWI are not calculated properly, the inverted
models may suffer from unexpected uncertainties more seriously. Thus, it is necessary and
important to analyze the limitations and advantages of these frameworks and find the ap-
propriate approach to construct the viscoelastic FWI sensitivity kernels. In this paper, the
three frameworks described above are referred to as framework-I, -II and -III, respectively.
This research revisits the theories of these frameworks for constructing the viscoelastic
FWI sensitivity kernels and evaluates their performances for velocity and Q inversion. In
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multiparameter FWI, the problem of interparameter trade-off complicates the inverse prob-
lem significantly (Operto et al., 2013; Innanen, 2014). In viscoelastic FWI, when using
inaccurate Q models, the inverted velocity models will be distorted or damaged. Velocity
errors can also produce significant trade-off artifacts in the inverted Q models (Brossier,
2011; Keating and Innanen, 2019; Pan and Innanen, 2019). Compared to the traditional
waveform-difference misfit function, the envelope-difference (ED) misfit function can re-
solve the attenuation anomalies more effectively and naturally balance the velocity and Q
updates. Thus, in this study, the sensitivity kernels are calculated within these frameworks
using the ED misfit function.

In the numerical experiments, we give synthetic example with significant topographic
variations and complex velocity structures. The unstructured quadrilateral mesh is created
to discretize the models accounting for the topographic effects. Surface waves (SWs) are
isolated from the short profiles to calculate the sensitivity kernels of S-wave velocity β
and S-wave quality factor Qβ . Early arrivals of body waves (BWs) are used to calculate
the sensitivity kernels of P-wave velocity α and P-wave quality factor Qα. The influences
of velocity errors on Q sensitivity kernels are evaluated for the three frameworks. The
inverted velocity and Q models by inversion of SWs and BWs are also presented for com-
parison. In these numerical experiments, we have observed that in the presence of velocity
errors, the Q sensitivity kernels calculated using the memory variables within framework-I
and -III suffer from fewer trade-offs artifacts. When simultaneously inverting for velocity
and Q models, these three frameworks can provide comparable quality inversion results.
However, framework-II appears to converge more slowly and is almost two times more
expensive than framework-I and -II.

This paper is organized as follows. The principle of forward modelling based on the
GSLS model in viscoelastic media is first reviewed. We then introduce the basic theory
of FWI and revisit the three different frameworks for constructing the sensitivity kernels
in viscoelastic FWI. In the numerical modelling section, synthetic examples are given to
analyze the sensitivity kernels within these frameworks and evaluate their performances for
velocity and Q inversion.

Review of forward modelling in viscoelastic media based on the GSLS model

Wave propagation in a linear viscoelastic solid is governed by the following momentum
conservation law:

ρ∂2
t ui − ∂jσij = fi, (1)

where ρ indicates mass density, fi is the source term in the ith direction, ui is the ith
component displacement field, σij is the stress tensor, determined by the entire history of
the strain fields with the following convolutional relationship:

σij = cijkl ∗ ∂tεkl = ∂tcijkl ∗ εkl, (2)

where εkl is the strain tensor, the symbol “∗" means time convolution, and cijkl (i, j, k, l
take on the values of x, y, z) is the forth-order tensorial relaxation function:

cijkl = cRijkl

[
1 +

1

P

P∑
p=1

τijklexp
(
− t

τσp

)]
H, (3)
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where cRijkl is the relaxed stiffness with t = +∞ corresponding to low-frequency limit, P
is the maximum number of relaxation mechanisms, H is the Heaviside function, and τijkl
describes the strength of the viscoelastic attenuation:

τijkl =
τ εpijkl
τσp
− 1, (4)

where τ εpijkl and τσp are the strain and stress relaxation times of the pth relaxation mecha-
nism. In isotropic and viscoelastic medium, the relaxation function is reduced to

cijkl = κδijδkl + µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
, (5)

where κ and µ are the relaxation functions of bulk and shear moduli:

κ = κR

[
1 +

1

P

P∑
p=1

τκexp
(
− t

τσp

)]
H, (6a)

µ = µR

[
1 +

1

P

P∑
p=1

τµexp
(
− t

τσp

)]
H, (6b)

where κR and µR are the corresponding unrelaxed bulk and shear moduli, τκ and τµ control
the strengths of the bulk modulus and shear modulus attenuation, respectively. Inserting
equations (6) into equation (5) and then equation (2) gives

σij = κRδijδkl

[
1 +

1

P

P∑
p=1

τκexp
(
− t

τσp

)]
H ∗ ∂tεkl

+ µR
(
δikδjl + δilδjk −

2

3
δijδkl

)[
1 +

1

P

P∑
p=1

τµexp
(
− t

τσp

)]
H ∗ ∂tεkl.

(7)

The above expression is not suitable for solving initial value problem as it is required to
know the whole history of the strain fields. The convolutional integral can be eliminated
by taking time derivative of the stress tensor (equation (7)), yielding

σ̇ij = κRδijδkl

[
(τκ + 1) ∂tεkl −

P∑
p=1

τκε
p
kl

]

+ µR
(
δikδjl + δilδjk −

2

3
δijδkl

)[
(τµ + 1) ∂tεkl −

P∑
p=1

τµε
p
kl

]
,

(8)

where εpkl are the strain memory variables describing the anelastic characteristics of the
wavefields:

εpkl =
1

Pτσp
exp

(
− t

τσp

)
H ∗ ∂tεkl, (9)

and time derivative of the memory variables satisfies the following first-order differential
equation

∂tε
p
kl = − 1

τσp

(
εpkl −

1

P
∂tεkl

)
. (10)
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Thus, the convolution operation within the constitutive relation is replaced with a set of
differential equations based on the superposition of parallel relaxation mechanisms. Com-
bining the equations of (1), (8) and (9), wave propagation in viscoelastic medium can be
simulated. The attenuation effects in viscoelastic media are always quantified with quality
factor Q, which is defined in frequency domain as (Blanch et al., 1995; Bohlen, 2002)

Q̃−1 (ω) =
I [c̃ijkl (ω)]

R [c̃ijkl (ω)]
=

[
τijkl

P∑
p=1

ωτσp

1 + (ωτσp)2

][
P + τijkl

P∑
p=1

(ωτσp)2

1 + (ωτσp)2

]−1

,

(11)
where c̃ijkl indicates Fourier transform of the time derivative of the relaxation function, ω
denotes angular frequency, R and I mean real and imaginary parts, respectively. To ap-
proximate a nearly constant value ofQ−1

ref within the seismic frequency band, the parameters
of relaxation times τijkl and τσp can be obtained by minimizing the distance between Q−1

ref
and equation (11) through a least-squares nonlinear optimization process (Bohlen, 2002).
In this study, I use a number of 3 relaxation mechanisms to approximate constant Q in the
forward modelling experiments.

Sensitivity kernels for viscoelastic FWI

Sensitivity kernels in FWI measure the sensitivities of misfit function with respect to
the model parameters and thus are essentially important to update the model parameters
effectively. With the adjoint-state approach, the sensitivity kernels can be constructed ef-
ficiently by cross-correlating the forward and ajdoint wavefields without calculating the
Fréchet derivative wavefield explicitly. Quality factor Q is commonly used to quantify the
attenuation effects in linear viscoelastic solid. It is attractive to build high-resolution sub-
surface Q models using viscoelastic FWI. However, Q is not explicitly described in the
rheological bodies, as introduced in the forward modelling section. Thus, it is problematic
to construct the Q sensitivity kernels.

Researchers have developed different frameworks to construct the viscoelastic FWI
sensitivity kernels based on the GSLS model in time domain. However, the sensitivity ker-
nels within these frameworks are given with different formulas. If the sensitivity kernels
are not calculated properly, the inverted models may suffer from unexpected uncertainties.
Currently, few researchers investigate their mechanisms and evaluate the inversion perfor-
mances. In the following sections, we revisit the theories of the main three frameworks
for calculating the sensitivity kernels in time domain viscoelastic FWI based on the GSLS
model.

Framework-I

Charara et al. (2000) derived the sensitivity kernels for moduli and attenuation param-
eters with a perturbation approach based on Born approximation. At time t = 0+, the
relaxation function in equation (3) reduces to the unrelaxed stiffness tensor corresponding
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to high-frequency limit:

cUijkl = cRijkl

[
1 +

1

P

P∑
p=1

τijkl

]
= cRijkl (1 + τijkl) . (12)

The difference between the relaxed and unrelaxed stiffness tensor is given by

δcijkl = cRijkl − cUijkl = −τijklcRijkl = − τijkl
(1 + τijkl)

cUijkl. (13)

The stiffness difference δcijkl is proportional to τijkl and thus measures the attenuation
magnitude. The relaxation function can be expressed in terms of cUijkl and δcijkl:

cijkl =
(
cUijkl + δcijkl

) [
1 +

1

P

P∑
p=1

τijklexp
(
− t

τσp

)]
H, (14)

Within the seismic frequency band, the ratio of cUijkl to cRijkl can be assumed to be constant
(Charara et al., 2000):

cUijkl
cRijkl

=
τ εpijkl
τσp

= constant. (15)

Thus, time derivative of the relaxation function can be derived as

∂tcijkl = cUijkl + δcijkl

[
1

P

P∑
p=1

1

τσp
exp

(
− t

τσp

)]
H, (16)

Inserting equation (16) into equation (2) yields

σij = cUijklεkl + δcijkl

P∑
p=1

ε̂pkl, (17)

where ε̂pkl are the strain memory variables

ε̂pkl =
1

Pτσp
exp

(
− t

τσp

)
H ∗ εkl. (18)

Note that the strain memory variables ε̂pkl in equation (18) are slightly different from the
strain memory variables εpkl in equation (9). Considering that a viscoelastic anomaly is
embedded in an infinite homogeneous background with the properties of ρ, cUijkl and δcijkl,
the differences between the perturbed and unperturbed model properties are defined as

∆ρ = ρ̌− ρ,∆cUijkl = čUijkl − cUijkl,∆δcijkl = δčijkl − δcijkl, (19)

where ρ̌, čUijkl and δčijkl indicate the model parameters of the perturbed inclusion, ∆ρ,
∆cUijkl and ∆δcijkl indicate the corresponding model perturbations. Assuming that the size
of the inclusion is much smaller than the wavelength of the incident wave, the perturbed
wavefield due to these model perturbations can be written as

∆u = ǔ− u, (20)

6 CREWES Research Report — Volume 32 (2020)



Q sensitivity kernels

where ǔ indicate the perturbed displacement wavefiled. Inserting equations (19) and (20)
into the equation of motion gives:

(ρ+ ∆ρ) ∂2
t (ui + ∆ui)− ∂j (σij + ∆σij) = fi,

σij + ∆σij =
(
cUijkl + ∆cUijkl

)
(εkl + ∆εkl) + (∆cijkl + ∆δcijkl)

P∑
p=1

(ε̂pkl + ∆ε̂pkl) .
(21)

Neglecting the high-order terms in equation (21) based on Born approximation, the equa-
tion of motion splits into the following two equations:

ρ∂2
t ui − ∂jσij = fi, (22a)

ρ∂2
t ∆ui − ∂j

(
cRijkl∆εkl + δcijkl

P∑
p=1

∆ε̂pkl

)
= ∂j∆Mij −∆ρ∂2

t ui, (22b)

where ∆Mij indicates the equivalent moment tensor source:

∆Mij = ∆cRijklεkl + ∆δcijkl

P∑
p=1

ε̂pkl. (23)

Equation (22)a describes the propagation of incident wave in the homogeneous background
medium, whereas equation (22)b describes the propagation of scattered wave. The inter-
action of incident wave with the model perturbations on the right side of equation (22)b
servers as the virtual scattering source. Solving equation (22)b and applying integration by
parts with far-field approximation, the wavefield perturbation can be expressed in terms of
Green’s functions with representation theorem:

∆un = −
∫

Ω

∫ t′

0

(
∆ρGni∂

2
t ui + ∆cUijkl∂jGniεkl + ∆δcijkl∂jGni

P∑
p=1

ε̂pkl

)
dt′dx (24)

In isotropic and viscoelastic media, the wavefield perturbation due to the perturbations ∆ρ,
∆κU , ∆µU , ∆δκ and ∆δµ for the model parameters of ρ, unrelaxed bulk modulus κU ,
unrelaxed shear modulus µU , moduli differences of δκ = κR − κU and δµ = µR − µU is
obtained as

∆un =−
∫

Ω

∫ t′

0

∆ρGni∂
2
t uidtdx

−
∫

Ω

∫ t′

0

∆κUδijδkl∂jGniεkldtdx

−
∫

Ω

∫ t′

0

∆µU
(
δikδjl + δjkδil −

2

3
δijδkl

)
∂jGniεkldtdx

−
∫

Ω

∫ t′

0

∆δκδijδkl∂jGni

P∑
p=1

ε̂pkldtdx

−
∫

Ω

∫ t′

0

∆δµ

(
δikδjl + δjkδil −

2

3
δijδkl

)
∂jGni

P∑
p=1

ε̂pkldtdx.

(25)

CREWES Research Report — Volume 32 (2020) 7



Pan

The sensitivity kernels for ρ, κU , µU , δκ and δµ within framework-I are given by:

KI
ρ = −

∫ t′

0

ρu†i∂
2
t uidt, (26a)

KI
κU = −

∫ t′

0

κUδijδklε
†
ijεkldt, (26b)

KI
µU = −

∫ t′

0

µU
(
δikδjl + δjkδil −

2

3
δijδkl

)
ε†ijεkldt, (26c)

KI
δκ = −

∫ t′

0

δκδijδklε
†
ij

P∑
p=1

ε̂pkldt, (26d)

KI
δµ = −

∫ t′

0

δµ

(
δikδjl + δjkδil −

2

3
δijδkl

)
ε†ij

P∑
p=1

ε̂pkldt, (26e)

where u†i is the adjoint displacement field:

u†i = Gin ∗ f †n, (27)

where f †n is the adjoint source of the WD misfit function:

f †n = un − dn. (28)

The expressions of the unrelaxed moduli sensitivity kernelsKI
κU andKI

µU are the same with
the moduli sensitivity kernels in purely isotropic-elastic media. The attenuation sensitivity
kernels KI

δκ and KI
δµ can be constructed by cross-correlating the forward strain memory

variables and adjoint strain fields.

Framework-II

In this section, we follow the approach given by Tromp et al. (2005) to derive the Q
sensitivity kernels. With the assumption of that Q is constant over a wide range of seis-
mic frequencies, the moduli can be expressed in terms of the quality factors in frequency
domain by

κ̃ (ω) = κ̃ (ω0)

[
1 +

2

πQ̃κ

ln
|ω|
ω0

− isgn (ω)
1

Q̃κ

]
, (29a)

µ̃ (ω) = µ̃ (ω0)

[
1 +

2

πQ̃µ

ln
|ω|
ω0

− isgn (ω)
1

Q̃µ

]
, (29b)

where κ̃ and µ̃ are the bulk and shear moduli in frequency domain, Q̃κ and Q̃µ are the
corresponding frequency domain quality factors, “ln" means natural logarithm, ω0 is the
reference angular frequency, i denotes imaginary unit, and sgn (ω) indicates the sign of ω.
Variations of κ̃ and µ̃ due to the perturbations of Q̃κ and Q̃µ are given by

∆κ̃ (ω) =
κ̃ (ω0)

Q̃2
κ

[
− 2

π
ln
|ω|
ω0

+ isgn (ω)

]
∆Q̃κ, (30a)

∆µ̃ (ω) =
µ̃ (ω0)

Q̃2
µ

[
− 2

π
ln
|ω|
ω0

+ isgn (ω)

]
∆Q̃µ. (30b)
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Thus, following the chain rule and using the frequency domain version of Born approxima-
tion, the Q sensitivity kernels can be expressed with the corresponding moduli sensitivity
kernels in time domain:

KII
Qκ = −K

Qκ
κ

Qκ

, KII
Qµ = −K

Qµ
µ

Qµ

, (31)

where the expressions of KQκ
κ and K

Qµ
µ are the same with those of KI

κU and KI
µU in

framework-I (see equation (26)) but with a different adjoint source f †i,Q (Tromp et al., 2005):

f †i,Q (t) =
1

2π

∫ +∞

−∞

[
2

π
ln
|ω|
ω0

− isgn (ω)

]
f̃ †i (ω) exp (iωt) dω, (32)

where f̃ †i is the regular adjoint source of the WD misfit function (equation (28)) in fre-
quency domain. The first term in the adjoint source f †i,Q involving ln (|ω|/ω0) controls
physical dispersion of the seismic signals, whereas the second term is simply the Hilbert
transform of the regular adjoint source f †i measuring the amplitude variations of the seismic
data (Tromp et al., 2005). Within this framework, the moduli sensitivity kernels KII

κ and
KII
µ are the same with those in purely isotropic-elastic media. Herein, we use the moduli

sensitivity kernels KI
κU and KI

µU in framework-I instead.

Framework-III

Following Fichtner and van Driel (2014), the quality factors Qκ and Qµ can be incor-
porated into the constitutive relation with the enforcements of τκ = Q−1

κ and τµ = Q−1
µ ,

yielding

σij = κRδijδkl

[
1 +

1

P

P∑
p=1

1

Qκ

exp
(
− t

τσp

)]
H ∗ ∂tεkl

+ µR
(
δikδjl + δilδjk −

2

3
δijδkl

)[
1 +

1

P

P∑
p=1

1

Qµ

exp
(
− t

τσp

)]
H ∗ ∂tεkl.

(33)

Thus, the Q sensitivity kernels in viscoelastic FWI can be directly derived following the
standard adjoint-state approach by inserting the above constitutive relation into the equation
of motion. The Lagrangian formulation of the WD misfit function is given by (Liu and
Tromp, 2006, 2008; Fichtner and van Driel, 2014)

χ̂ (m) =
1

2

∑
xr

∫ t′

0

[ui (m)− di]2 dt

−
∫ t′

0

∫
Ω

λi
[
ρ∂2

t ui − fi − ∂j (κδijδkl ∗ ∂tεkl)
]
dxdt

+

∫ t′

0

∫
Ω

λi∂j

[
µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
∗ ∂tεkl

]
dxdt.

(34)
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Following the adjoint-state method, variation of the Lagrangian misfit function due to the
perturbations of the model parameters ρ, κ, µ, Qκ and Qµ can be derived as

∆χ̂ =

∫ t′

0

∫
Ω

∑
xr

[ui − di] ∆uidxdt

−
∫ t′

0

∫
Ω

[
ρ∂2

t λi − ∂j (κδijδkl ∗ ∂tε̃kl)
]

∆uidxdt

+

∫ t′

0

∫
Ω

∂j

[
µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
∗ ∂tε̃kl

]
∆uidxdt

−
∫ t′

0

∫
Ω

∆ρλi∂
2
t uidxdt

−
∫ t′

0

∫
Ω

(∆κ ∗ ∂tε̃ii) εkkdxdt

−
∫ t′

0

∫
Ω

[
∆µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
∗ ∂tε̃ij

]
εkldxdt

+

∫ t′

0

∫
Ω

(
∆Qκ

κR

Q2
κ

P∑
p=1

τσpε̃pii

)
εkkdxdt

+

∫ t′

0

∫
Ω

[
∆Qµ

µR

Q2
µ

(
δikδjl + δilδjk −

2

3
δijδkl

) P∑
p=1

τσpε̃pij

]
εkldxdt,

(35)

where ε̃ij = ∂jλi is the Lagrangian strain field, and ε̃pij are the Lagrangian strain memory
variables:

ε̃pij =
1

Pτσp
exp

(
− t

τσp

)
H ∗ ∂tε̃ij. (36)

The Lagrangian is stationary with respect to ∆ui in the absence of the perturbations ∆ρ,
∆κ, ∆µ, ∆Qκ and ∆Qµ (Liu and Tromp, 2006). Thus, the adjoint-state equation can be
obtained by setting the coefficient of ∆ui as zero:

ρ∂2
t λi − ∂j

[
κδijδkl ∗ ∂tε̃kl + µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
∗ ∂tε̃kl

]
= − (di − ui) , (37)

Thus, gradient of Lagrangian misfit function can be obtained as

∇mχ̂ = −

(
KIII
ρ

ρ
+
KIII
κ

κ
+
KIII
µ

µ
+
KIII
Qκ

Qκ

+
KIII
Qµ

Qµ

)
, (38)

where KIII
ρ , KIII

κ , KIII
µ , KIII

Qκ
and KIII

Qµ
are the corresponding sensitivity kernels for ρ, κ,

µ, Qκ and Qµ models in framework-III. Their explicit expressions are listed in the follow-
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ing:

KIII
ρ = −

∫ t′

0

ρu†i∂
2
t uidt, (39a)

KIII
κ = −

∫ t′

0

(
κ ∗ ∂tε†ii

)
εkkdt, (39b)

KIII
µ = −

∫ t′

0

[
µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
∗ ∂tε†ij

]
εkldt, (39c)

KIII
Qκ =

∫ t′

0

(
κR

Qκ

P∑
p=1

τσpεp,†ii

)
εkkdt, (39d)

KIII
Qµ =

∫ t′

0

[
µR

Qµ

(
δikδjl + δilδjk −

2

3
δijδkl

) P∑
p=1

τσpεp,†ij

]
εkldt, (39e)

where u†i is the adjoint displacement field defined as the time-reversed Lagrangian field,
ε†ij and εp,†ij are the adjoint strain fields and adjoint strain memory variables.

Velocity-Q model parameterization

In the above section, the sensitivity kernels of moduli and attenuation parameters are
given in different frameworks. However, in practical FWI experiments, the viscoelastic
media is commonly parameterized with density ρ′, P-wave velocity α, S-wave velocity β,
P-wave quality factorQα and S-wave quality factorQβ , which is referred to as the velocity-
Q model parameterization. In this section, we derive the sensitivity kernels in velocity-Q
model parameterization for viscoelastic FWI.

In framework-I, Charara et al. (2000) derived the sensitivity kernels for ρ, κU , µU , δκ
and δµ. Herein, with the enforcement of τκ = Q−1

κ and τµ = Q−1
µ given by Fichtner and

van Driel (2014), the attenuation parameters δκ and δµ are related to the moduli quality
factors Qκ and Qµ by

δκ = − τκ
1 + τκ

κU = − 1

1 +Qκ

κU ,

δµ = − τµ
1 + τµ

µU = − 1

1 +Qµ

µU ,
(40)

Thus, following the chain rule, the sensitivity kernels for Qκ and Qµ within framework-I
can be obtained as

KI
Qκ = − Qκ

1 +Qκ

KI
δκ, K

I
Qµ = − Qµ

1 +Qµ

KI
δµ. (41)

According to Dahlen & Tromp (1998), the velocity quality factors Qα and Qβ can be
expressed with the modulus quality factors Qκ and Qµ by

Qκ =
α2 − β2

α2Q−1
α − β2Q−1

β

, Qµ = Qβ. (42)
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Thus, following the chain rule, the sensitivity kernels for ρ′, α, β, Qα and Qβ models in
velocity-Q model parameterization can be expressed in terms of the sensitivity kernels in
modulus-Q parameterizaion by (Pan and Innanen, 2019)

Kρ′ = Kρ +Kκ +Kµ, (43a)

Kα =
6α2

3α2 − 4β2
Kκ +

(
2α2

α2 − β2
− 2α2Qβ

α2Qβ − β2Qα

)
KQκ , (43b)

Kβ = 2

(
Kµ −

4β2

3α2 − 4β2
Kκ

)
+

(
2β2Qα

α2Qβ − β2Qα

− 2β2

α2 − β2

)
KQκ , (43c)

KQα =
α2Qβ

Qβα2 − β2Qα

KQκ , (43d)

KQβ = KQµ −
β2Qα

α2Qβ − β2Qα

KQκ . (43e)

The relationships in equation (43) work for all of the three frameworks. Thus, in the
inversion process, the velocity and Q models can be updated and estimated.

Envelope-difference misfit function

The envelope misfit function is commonly used to reduce the cycle-skipping difficulty
in FWI. Compared to the traditional WD misfit function, the envelope-difference (ED) mis-
fit function shows stronger sensitivity to Q anomaly and can naturally balance the velocity
and Q updates. In this study, the ED misfit function is used to calculate the velocity and Q
sensitivity kernels in viscoelastic FWI:

χED (m) =
1

2

∑
xr

∫ t′

0

[
Ei (m)− Eobs

i

]2
dt, (44)

where Eobs
i and Ei represent the envelope of observed and synthetic data, respectively.

Variation of the ED misfit function due to the perturbations of the model parameters is
obtained as

∆χED =
∑

xr

∫ t′

0

Ei − Eobs
i

Ei
ui∆ui −H

[
Ei − Eobs

i

Ei
H (ui)

]
∆uidt, (45)

whereH means Hilbert transform. The adjoint source of the ED misfit function is obtained
as

f †i,ED =
Ei − Eobs

i

Ei
ui −H

[
Ei − Eobs

i

Ei
H (ui)

]
. (46)

When using the ED misfit function, the sensitivity kernels in viscoelastic FWI can be con-
structed with the adjoint source f †i,ED without changing their expressions.

NUMERICAL EXPERIMENTS

Canadian Foothill model example with irregular topography

In Figures 1a-1d, we present the true α, β,Qα andQβ models with irregular topography.
The topography surface is indicated by the black lines. The white area indicates the air
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FIG. 1. (a-d) are the true α, β, Qα and Qβ models (mt
α, mt

β , mt
Qα

and mt
Qβ

); (f-j) are the corre-
sponding initial models (m0

α, m0
β , m0

Qα
and m0

Qβ
). The blue star in (a) indicates the source located

at (0 m, 2 m). This figure is adapted from Figure 10 in Pan et al. (2020).

layer. We create the true β model from the true α model with α/β = 3. Because the
unconsolidated formations at near-surface always show strong attenuation and low velocity,
the true Qα and Qβ models are created by embedding two strong Q anomalies (Qα =
Qβ = 20) in the homogeneous background (Qα = Qβ = 150) overlapped with the low
velocity zones, as shown in Figures 1c-1d. The initial α and β models are created by
smoothing the corresponding true models, as presented in Figures 1e-1f. Figures 1g-1h are
the initial Qα and Qβ models with a constant value of 150. In the numerical experiments,
we ignore the influence of density. The true and initial density models are homogeneous
with a constant value of 1800 kg/m3. The model is 450 m wide in horizontal direction.
The maximum depth from the topography surface to the bottom is 150 m. To account
for the topographic effects, unstructured quadrilateral mesh grid with 30 and 90 elements
in vertical and horizontal directions are generated to discretize the models. Free-surface
boundary condition is applied on the topographic surface and absorbing boundary condition
is applied on the other sides of the model. A number of 33 sources and 151 receivers
are distributed regularly along the irregular surface. The source and receiver spacings in
horizontal direction are 12 m and 3 m, respectively. The source and receiver depth is 2
m. A Ricker wavelet with dominant frequency of 30 Hz is used as the source function to
generate the observed data.

We first present the observed data and synthetic data calculated from the initial models
with the source located at (0 m, 2 m) for comparison, as shown in Figure 2. SWs in the
short profiles are much stronger than the BWs. Because the initial Qα and Qβ models
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are homogeneous without containing the strong attenuation anomalies at the near-surface,
magnitudes of the synthetic data are stronger than those of the observed data, as indicated
by the arrows in Figures 2a-2b and 2d-2e and the lines in Figures 2g-2h. In the numerical
experiments, we design time windows to isolate the SWs and BWs, as indicated by the
yellow and blue areas in Figures 2a-2b. SWs are used to invert for β and Qβ models and
BWs are used to invert for α and Qα models, respectively.

The sensitivity kernels are first calculated using different frameworks for comparison
and analysis within the frequency band of [3 Hz, 25 Hz]. Figure 3 presents the Qβ and
Qα sensitivity kernels calculated using SWs and BWs with the true velocity models. The
Q sensitivity kernels constructed in different frameworks are very similar and the attenu-
ation anomalies at near-surface can be observed clearly. Figure 4 presents the β and Qβ

sensitivity kernels calculated using SWs with the initial models. Figure 5 presents the α
and Qα sensitivity kernels calculated using BWs with the initial models. The velocity sen-
sitivity kernels constructed by different frameworks are close, as shown in Figures 4a-4c
and Figures 5a-5c. The Qβ sensitivity kernels calculated in framework-I and -III (Figures
4d and 4f) are close to the Qβ sensitivity kernels calculated using true velocity models
(Figures 3a and 3c). However, some trade-off artifacts appear in the Qβ sensitivity kernel
calculated in framework-II, as indicated by the arrows in Figure 4e. Structures of the Qβ

anomalies at near-surface are not resolved clearly. In the Qα sensitivity kernels calculated
in framework-I and -III (Figures 5d and 5f), structures of the Qα anomalies at near-surface
appear to be more clear than those in the Qα sensitivity kernels calculated using the true
velocity models. This is caused by that the errors of low velocity zones are mapped into the
Qα sensitivity kernels, which enhanced the updates for Qα anomalies. However, the Qα

sensitivity kernel calculated in framework-II appear to be distorted by stronger trade-off
artifacts, as indicated by the arrow in Figure 5e.

Synthetic inversion experiments are next carried out for comparison. We first invert for
the Q models using SWs and BWs with the true velocity models. The inverted Q models
are presented in Figure 6. The well logs extracted from the inverted models at horizontal
distance of 325 m are illustrated in Figures 8a and 8b. Figures 9a and 9b show the re-
ductions of the normalized data misfits when using SWs and BWs, respectively. As can
be seen that in the inverted Q models, the Q anomalies at near-surface can be reliably re-
volved, even though some artifacts appear in the deeper parts of the inverted Qα models.
The three different frameworks can provide comparable quality Q models with the true ve-
locity models. I then invert for the Q models using SWs and BWs with the initial velocity
models. The inversion results are given in Figure 7. The well logs of the inverted models
are illustrated in Figures 8c and 8d. Figures 9c and 9d show the reductions of the normal-
ized data misfits when using SWs and BWs. The attenuation anomalies at near-surface in
the inverted Qβ models by framework-I and -III are clearly discernable, as indicated by
the arrows in Figures 7a and 7c. However, the attenuation anomalies in the inverted Qβ

model by framework-II are weaker and suffer from stronger trade-offs artifacts, as indi-
cated by the arrow in Figure 7b. The inverted Qα models with the initial velocity models
are significantly damaged by the trade-off artifacts in the deeper parts. Structures of the Qα

anomalies at near-surface by framework-I and -III are better resolved than those obtained
by framework-II, as indicated by the arrows in Figures 7d-7f. These observations suggest
that in the presence of velocity errors, the Q sensitivity kernels calculated with memory
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FIG. 2. (a-b) are the observed z component data (dzobs) and synthetic z component data (dz0) calcu-
lated from the initial models; (c) is the z component data residual (∆dz0); (d-e) are the corresponding
observed and synthetic x component data (dxobs and dx0 ); (f) is the x component data residual (∆dx0 );
(g) shows the comparison of the traces extracted in the observed (black) and synthetic (red) z com-
ponent data; (h) shows the comparison of the traces extracted in the observed (black) and synthetic
(red) x component data; (i) shows the z (gray) and x (blue) component data residual traces. This
figure is adapted from Figure 11 in Pan et al. (2020).

FIG. 3. (a-c) are the Qβ sensitivity kernels (KI
Qβ

, KII
Qβ

and KIII
Qβ

) calculated using SWs with true
velocity models in framework-I, -II and -III; (d-e) are the Qα sensitivity kernels (KI

Qα
, KII

Qα
and KIII

Qα
)

calculated using BWs with true velocity models in different frameworks.
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FIG. 4. (a-c) are the β sensitivity kernels (KI
β , KII

β and KIII
β ) calculated using SWs in framework-I,

-II and -III, respectively; (d-f) are the corresponding Qβ sensitivity kernels (KI
Qβ

, KII
Qβ

and KIII
Qβ

)
calculated using SWs by different frameworks.

FIG. 5. (a-c) are the α sensitivity kernels (KI
α, KII

α and KIII
α ) calculated using BWs in framework-I,

-II and -III, respectively; (d-f) are the corresponding Qα sensitivity kernels (KI
Qα

, KII
Qα

and KIII
Qα

)
calculated using BWs by different frameworks.
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FIG. 6. (a-c) are the inverted Qβ models with the true velocity models using SWs in framework-I,
-II and -III, respectively; (d-f) are the inverted Qα models with the true velocity models using BWs
in different frameworks.

FIG. 7. (a-c) are the inverted Qβ models with the initial velocity models using SWs in framework-I,
-II and -III, respectively; (d-f) are the inverted Qα models with the initial velocity models using BWs
in different frameworks.

variables in framework-I and -III are more accurate suffering from fewer trade-off artifacts.

We then carry out inversion experiments for simultaneously estimating the velocity and
Q models. In stage-I, SWs are used to invert for β and Qβ models. The inverted models
are presented in Figure 10. In stage-II, BWs are used to invert for α and Qα models. The
inverted models are presented in Figure 11. Well logs are extracted from the inversion re-
sults for comparison, as shown in Figure 12. Figures 13a and 13b show the reductions of
the normalized data misfits by inversion of SWs and BWs in stage-I and -II, respectively.
Framework-II suffers from slower convergence rate because of the trade-off artifacts in the
Q sensitivity kernels. As iteration proceeds, the velocity models are gradually improved
and the trade-off artifacts in the inverted Q models are suppressed. The final inversion re-
sults of framework-II are comparable to those obtained by framework-I and -III. However,
because different adjoint sources are needed to calculate the velocity and Q sensitivity ker-
nels, framework-II is almost two times more expensive than framework-I and -III. Finally,
the synthetic data calculated from the inverted velocity and Q models in framework-III are
illustrated in comparison with the observed data, as shown in Figure 14. The synthetic
data match with the observed data closely and the corresponding data residuals also reduce
significantly.
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FIG. 8. (a) and (b) show the comparisons of well logs extracted from the inverted Qβ and Qα
models with the true velocity models at horizontal distance of 325 m in different frameworks; (c)
and (d) show the comparisons of well logs extracted from the inverted Qβ and Qα models with the
initial velocity models in different frameworks. The black and gray lines indicate the true and initial
models. The red, blue and green lines indicate the inverted models obtained by framework-I, -II
and -III, respectively.

FIG. 9. (a) and (b) show the normalized data misfits reductions for Qβ and Qα inversion using SWs
and BWs with the true velocity models; (c) and (d) show the normalized data misfits reductions for
Qβ and Qα inversion using SWs and BWs with the initial velocity models.
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FIG. 10. (a-c) are the inverted β models (mI
β , mII

β and mIII
β ) using SWs in stage-I by framework-I, -

II and -III, respectively; (d-f) are the inverted Qβ models (mI
Qβ

, mII
Qβ

and mIII
Qβ

) using SWs in stage-I
by different frameworks.

FIG. 11. (a-c) are the inverted α models (mI
α, mII

α and mIII
α ) using SWs in stage-II by framework-

I, -II and -III, respectively; (d-f) are the inverted Qα models (mI
Qα

, mII
Qα

and mIII
Qα

) using SWs in
stage-II by different frameworks.

FIG. 12. (a-b) show comparisons of well logs of the inverted β and Qβ models by inversion of
SWs in different frameworks; (c-d) show comparisons of well logs of the inverted α and Qα models
by inversion of BWs in different frameworks. The black and gray lines indicate the true and initial
models. The red, blue and green lines indicate the inverted models obtained by framework-I, -II
and -III.
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FIG. 13. (a) shows the normalized data misfits reductions by inversion of SWs in stage-I; (b) shows
the normalized data misfits reductions by inversion of BWs in stage-II. The solid, dashed, and
dash-dotted lines indicate framework-I, -II and -III, respectively.

FIG. 14. (a-b) show the observed z component data (dzobs) and synthetic z component data (dzinv)
calculated from the inverted models; (c) shows the z component data residuals (∆dzinv); (d-e) show
the corresponding observed and synthetic x component data (dxobs and dx0 ); (f) shows the x com-
ponent data residuals (∆dxinv); (g) shows the comparison of the traces extracted in the observed
(black) and synthetic (red) z component data; (h) shows the comparison of the traces extracted
in the observed (black) and synthetic (red) x component data; (i) shows the z (gray) and x (blue)
component data residual traces.
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DISCUSSIONS

This study investigates the theories of three different frameworks for time domain
viscoelastic FWI based on the GSLS model. Inaccuracy of the Q sensitivity kernels in
framework-II arises from the inconsistence between the physical models in forward mod-
elling and sensitivity kernel derivation.

Because envelope measures the instantaneous amplitude of the seismic signals, the ED
misfit function helps reduce the trade-off artifacts caused by velocity errors forQ inversion.
However, this advantage of the ED misfit function replies significantly on high quality of
the seismic data. In practical seismic data, many other factors including source mechanism,
geometrical spreading, etc, can produce influences on seismic amplitudes. Thus, the field
seismic data should be pre-processed carefully to preserve the amplitudes. Furthermore, it
is necessary to examine theQ sensitivity kernels calculated other misfit functions including
central frequency, spectral-ratio, etc.

CONCLUSIONS

In this research, we revisit the theories of three different frameworks for construct-
ing the sensitivity kernels for time domain viscoelastic FWI based on the GSLS model.
In framework-I and -III, the Q sensitivity kernels are constructed with memory variables,
whereas in framework-II, the Q sensitivity kernels are constructed by introducing addi-
tional adjoint source. In the numerical experiments, synthetic examples are given to exam-
ine the velocity andQ sensitivity kernels in different frameworks. The observations suggest
that the Q sensitivity kernels constructed with memory variables in framework-I and -III
are more accurate suffering from fewer trade-off artifacts in the presence of velocity errors.
When simultaneously estimating the velocity and Q models, these different frameworks
can provide comparable quality inversion results. However, framework-II converges more
slowly and is two times more expensive than framework-I and -III.
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