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ABSTRACT

The determination of subsurface elastic property models is crucial in quantitative seis-
mic data processing and interpretation. This problem is commonly solved by deterministic
physical methods, such as tomography or full waveform inversion (FWI). However, these
methods are entirely local, and require accurate initial models. Deep learning represents
a plausible class of methods for seismic inversion, which may avoid some of the issues of
purely descent-based approaches. However, any generic deep learning network capable of
relating each elastic property cell value to each sample in a seismic dataset would require
a very large number of degrees of freedom. Two approaches might be taken to train such a
network. First, by invoking a massive and exhaustive training dataset; second, by working
to reduce the degrees of freedom by enforcing physical constraints on model-data relation-
ship. The second approach is referred to as “physics-guiding”. Based on recent progress of
wave theory-designed (i.e., physics-based) network, we propose a hybrid network design,
involving both deterministic, physics-based modelling and data-driven deep learning com-
ponents. From an optimization standpoint, both a data-driven model misfit (i.e., standard
deep learning), and now a physics-guided data residual (i.e., a wave propagation network),
are simultaneously minimized during the training of the network. An experiment is carried
out to analyze the trade-off between two types of losses. Synthetic velocity building is
employed to examine the capacity of hybrid training. Comparisons demonstrate that, given
the same training dataset, the hybrid-trained network outperforms the traditional fully data-
driven network. Additionally, a comprehensive error analysis is performed to quantitatively
compare the fully data-driven and hybrid physics-guided approaches. The network is ap-
plied to SEG salt model data and the uncertainty is analyzed, in order to further examine
the benefits of hybrid training.

INTRODUCTION

Estimation of subsurface structures and physical parameters using seismic data can be
carried out based on fully deterministic models of wave propagation. This category of ap-
proach includes, for instance, traditional tomography (Woodward et al., 2008) for velocity
model building by migrating seismograms with traveltime information, and full waveform
inversion (FWI) for the high resolution reconstruction of subsurface velocity, or elastic
property models (Tarantola, 1984; Virieux and Operto, 2009). These approaches are pow-
erful, and in particular in the case of the latter, represent the state of the art in seismic
inversion. However, they tend to be computationally complex, with results and compu-
tational requirements that are both very sensitive to parameterization, data completeness,
initial model, and numerical optimization approach.
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Deep learning, a recent extension of machine learning technology, has drawn significant
recent attention across various fields, including seismology. Deep learning applications to
problems of image processing include classification (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014), segmentation(Long et al., 2015; Ronneberger et al., 2015; Häg-
gström et al., 2019), denoising (Zhang et al., 2017), and superresolution (Kim et al., 2016).
They are often carried out with convolutional neural networks (CNNs), a popular class of
network which can be formulated with a relatively small number of trainable parameters.
For example, Simonyan and Zisserman (2014) observed unusually high performance in a
CNN called VGG16, which included a convolutional encoder and a classifier, for image
recognition; Ronneberger et al. (2015) designed a CNN with an encoder and decoder ar-
chitecture in an U-shape (Unet), and reported high accuracy in its application to biomedical
image segmentation tasks.

Approaches of this general type have been applied successfully in geophysical disci-
plines also. However, here we encounter challenges of the kind discussed by Karpatne et al.
(2018), because we tend to have (1) large and rich, but not exhaustive, datasets, and (2) de-
terministic physical models, in the form of partial differential equations, which accurately
relate data to subsurface properties under certain assumptions. In the relatively rare circum-
stance in which exhaustive data are available for a given geophysical problem, successes
are striking. For instance, Araya-Polo et al. (2017) and Wu et al. (2019) demonstrated
that a CNN can be trained to predict the presence of faults; Ovcharenko et al. (2019) ap-
plied low-frequency extrapolation from multi-offset seismic data using a CNN; Kaur et al.
(2019) formulated elastic wave mode-separation in heterogeneous anisotropic media using
a generative adversarial network (GAN); Das et al. (2019) and Das and Mukerji (2020) suc-
cessfully performed seismic impedance inversion and petrophysical properties prediction
using a CNN; Yang and Ma (2019) set up a velocity building procedure for subsurface salt
bodies using an Unet, and discussed the influence of low-frequencies and noise; Fabien-
Ouellet and Sarkar (2020) developed a deep recurrent neural network (RNN) for velocity
estimation using common-midpoint (CMP) gathers; fine results of tomography using deep
learning can also be found (Araya-Polo et al., 2018; Adler et al., 2019; Araya-Polo et al.,
2020). These approaches are fully data driven, and thus rely entirely on the completeness
of training data. Supplying such data could be difficult or impossible for the solution of a
range of important geophysical problems, to the point where they would seem to be essen-
tially inaccessible by a deep learning approach. For instance, if a FWI-like problem was
broached, in which each sample of a large seismic data set must be mapped to each element
of a multidimensional elastic property model, the number of degrees of freedom within the
deep learning network would be exceedingly large. Training data of the extent needed to
constrain such a network are unlikely to be available.

However, these issues, which derive from item (1) above, i.e., the requirement of large
and rich training dataset, can be addressed to a great degree by making use of item (2),
i.e., deterministic physical models. That is, the degrees of freedom of an otherwise vast
and complex network can be reduced by constraining the network with physical rules. For
instance, Wu and McMechan (2019) showed that an FWI procedure can be set up within
a CNN framework with a multi-grid parameterization of the subsurface model, using a
multi-layer neural network. Meanwhile, Sun et al. (2020) and Richardson (2018) discussed
a theory-guided waveform inversion using a RNN designed to emulate wave propagation;
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the former authors further confirmed that the training stage within such a waveform RNN
is equivalent to the optimization of standard, gradient-based FWI. Zhang et al. (2020) ex-
tended this to incorporate more complete, multidimensional elastic and viscoelastic, mod-
els and parameter estimations. These networks, as initially realized, were sufficiently well-
constrained by the rules of acoustic or elastic wave propagation, that they were success-
fully trained with a single training data set (hence their resemblance to standard FWI).
Ideally, such networks would allow for a greater role for training when additional data ex-
ist. For instance, Biswas et al. (2019) successfully set up a physics-guided CNN for seismic
impedance inversion without labeled data by incorporating a convolutional operation to the
retrieved reflectivity. However, difficulties will be encountered with such a physics-guided
scheme applied in waveform inversion problem, which will be discussed in this paper. Sim-
ilar to the schematic flow shown in Alfarraj and AlRegib (2019) for impedance inversion,
we examine the opportunity deep learning networks offer for hybridizing data-driven train-
ing with waveform inversion, by constructing a convolutional neural network in which both
data-driven model misfits and physics-based data residuals are simultaneously minimized,
which has not been broached in the literature.

This paper is organized as follows. First, we review the deep learning formulation and
solution of seismic inverse problems, and then discuss the possible scheme of hybridiz-
ing the traditional deep learning network and physics-guiding framework. Second, we
introduce the architecture of our proposed network and discuss the influence of trade-off
between the model misfit and data residual in a 2D synthetic salt velocity model build-
ing environment. After that, we compare the performance of networks trained in a fully
data-driven and a hybrid physics-guided modes, respectively. Finally, the quantitative er-
ror analysis, generalization ability of the network, and predictive uncertainty analysis are
implemented to further comprehensively examine the network’s ability.

METHODOLOGY

Physics-based deterministic solution

Sun et al. (2020) demonstrated that in the mapping between velocity and wave data,
the physics of wave propagation can be explicitly enforced within a wave theory-designed
(i.e., physics-based) RNN. Such a network is optimized by a crosscorrelation, in time, of
the backpropagated data residuals and the second-order partial derivative of the forward-
modeled states, in a manner equivalent to a gradient-based FWI. During the training, the
physics-based RNN optimizes the input by minimizing the data discrepancy in the context
of the physical rules.

Given an estimated set of subsurface model parameters m̃, the physics-based data resid-
ual can be obtained by forward-propagating information through a physics-based waveform
RNN operator F(·). The normalized data residual in an `2-norm is in this case

Lk
d(m̃,d) =

1

Tkns

k∑
i=1

ns∑
s=1

T∑
t=0

∥∥∥∥ds,t
i −F s,t(m̃i)

max(di) + ε

∥∥∥∥2

, (1)

where k denotes the number of velocity models, t is the time step in the RNN, i.e., seis-
mic sample interval, ns is the number of sources per subsurface model, d represents the
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observed seismic data, and d̃
s,t

i = F s,t(m̃i) represents the waveform RNN forward propa-
gation. ε is a small value to prevent dividing by zeros. Optimal inputs are those subsurface
physics parameters which minimize equation 1, written as

m̃ = arg min
m̃

L̃k
d(m̃,d) = arg min

m̃

1

Tkns

k∑
i=1

ns∑
s=1

T∑
t=0

∥∥∥∥ds,t
i −F s,t(m̃i)

max(di) + ε

∥∥∥∥2

(2)

In gradient-descent training, the model update is based on the gradient of Ld(m̃,d) with
respect to the model parameters m̃:

δm̃ = −∂L̃
k
d

∂m̃
= −

[
∂L̃k

d

∂d̃
s,t

i

]
∂d̃

s,t

i

∂m̃
, (3)

where
[
∂L̃k

d/∂d̃
s,t

i

]
is determined by the detailed structure of the forward operator F(·),

and contains all partial derivatives via the chain rule. For instance, with the temporal
second-order finite difference operator in Figure 1,

[
∂L̃k

d/∂d̃
s,t

i

]
contains three contribu-

tions at time steps t, t+ ∆t, t+ 2∆t, respectively:[
∂L̃k

d

∂d̃
s,t

i

]
=

[
∂L̃k

d

∂d̃
s,t+2∆t

i

]
∂d̃

s,t+2∆t

∂d̃
s,t

i

+

[
∂L̃k

d

∂d̃
s,t+∆t

i

]
∂d̃

s,t+∆t

∂d̃
s,t

i

+
∂L̃k

d

∂d̃
s,t

i

, (4)

where 0 ≤ t ≤ T , T being the maximum time of wave propagation, and where the initial
conditions for the RNN backpropagation are assumed to be zeros, i.e.,

[
∂L̃k

d/∂d̃
s,t

i

]
t=T+∆T,T+2∆T

=

0. A detailed derivation of the gradient for a full time sequence (i.e., time steps from 0 to
T ) using the chain rule appears elsewhere (Sun et al., 2020).

......
FIG. 1. Truncated structure of waveform RNN,where the green (red) arrows delineate the forward
(backward) propagation direction.

The auto-differential backpropagation method for neural networks requires storage of
all related internal states, which is computationally expensive, especially for RNN back-
propagation. Therefore, a truncated backpropagation, instead of the full time sequence
backpropagation, is commonly applied in minimizing the RNN loss function shown in
equation 2.

For a full time sequence RNN (0 → T ), initial conditions are applied at time steps
T + 1, and T + 2 which are initialized as zeros. The truncated approach instead divides
the RNN cells into several time segments, such as 0→ (l− 1)∆t, l∆t→ (2l− 1)∆t, · · · ,
t− l∆t→ t, · · · , nl∆t→ T , and zero initial conditions are applied at each time breaking
steps l∆t, (l + 1)∆t, 2l∆t, (2l + 1)∆t, · · · , t + ∆t, t + 2∆t, · · · , T + ∆t, T + 2∆t. For
example, considering a time segment t − l∆t to t (see Figure 1). The backpropagation is
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performed from t to t − l∆t. According to equation 4, the partial derivatives of the data
residual at time step t comprise three partitions. However, we lack information at time
step t + ∆t and t + 2∆t in a truncated RNN, so these two partial derivative contributions
are initialized to zero, i.e.,

[
∂L̃k

d/∂d̃
s,t

i

]
t=t+∆t,t+2∆t

= 0. The truncated approach is in

this sense only approximately equivalent to the full time sequence RNN backpropagation;
it does, however, permit a trade-off to be made between the speed of convergence and
memory requirements.

The physics-based RNN has been demonstrated in Sun et al. (2020) and its schematic
workflow is shown in Figure 2a. However, two major disadvantages remain in such a
framework: 1) a good initial model is required to avoid converging to an undesired local
minimum; 2) the training process has to be repeated to solve for different models. In this
paper we extend these ideas, specifically adding a data-driven deep learning component to
the physics-based network, to address these issues. Next, we will briefly review the deep
learning solution of seismic inverse problems and discuss its formulation.

Physics-based RNN

Deep Neural Network

Deep Neural Network

Physics-based RNN

Deep Neural Network

Physics-based RNN

+

FIG. 2. The schematic workflows: a) a physics-based RNN, b) a data-driven deep neural network,
c) a physics-guided neural network, d) a hybrid physics-guided neural network, where the green
(red) arrows delineate the forward (backward) propagation and dashed green lines indicate labeled
data. d and d̃ represent observed and estimated seismic data, respectively; m and m̃ are the
ground-truth and estimated velocity models, respectively.

Data-driven deep learning solution

Let the seismic inverse problem as solved within a neural network be the determination
of the medium property model vector m from the observed seismic data d:

m̃ = Ω (d; Θ) , (5)
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where the operator Ω (·) contains the full nonlinear relationship between the input data and
the estimated subsurface property m̃, and involves a sequence of nonlinear transforms with
trainable weights Θ. In a neural network, the nonlinearity is commonly included using
activation mapping, such as a rectified linear unit, or ReLU (Nair and Hinton, 2010). Ω (·)
is the inverse of a forward operator F (·) which contains all wave propagation rules as
well as source and acquisition information, i.e., d = F(m). For a seismic velocity model
building problem, the inputs are seismic shot gathers and the outputs are velocity models.
The best-fit mapping from input to output is determined in a training stage, during which
all trainable parameters Θ are estimated using a training dataset. This is carried out in
a numerical optimization procedure, in which an objective function measuring the model
misfit (i.e., the discrepancy between the estimated velocity m̃ and the ground-truth velocity
model m) is minimized. In the case of an `2-norm, for instance, this objective function is

Ln
m(m,d) =

1

n

n∑
i=0

‖mi − m̃i‖2 =
1

n

n∑
i=0

‖mi − Ω(di; Θ)‖2 , (6)

where the subscript m is a reminder that the function pertains to model rather than data
misfit; n is the number of paired samples in the training data distribution.

To manage the large number of training samples normally involved, and also the mem-
ory limitations of either graphic processing units (GPU) or tensor processing units (TPU),
a mini-batch strategy is applied in both training and validation stages. Rather than mini-
mizing Ln

m with n covering the entire training dataset in a single optimization, the training
samples are randomly divided into batches, each containing k samples (k is referred to as
the batch size). The weights are calculated by minimizing the objective function over each
batch, via:

Θ̂ = arg min
Θ

Lk
m(m,d) = arg min

Θ

1

k

k∑
i=1

‖mi − Ω(di; Θ)‖2. (7)

A single epoch of training is defined as a single passing of all training batches forward
and backward through the neural network. In velocity model building problems, model
parameters have a large range of possible values which can be plausibly taken on, and
velocity models may be of high and low variance. Elements within the random batches
in these situations can make unequal contributions to the objective function, with high-
variance velocity models tending to dominate in the convergence process. To balance the
contributions of the samples in a single batch, in our general network we adopt a normalized
objective function:

Θ̂ = arg min
Θ

L̃k
m(m,d) = arg min

Θ

1

k

k∑
i=1

∥∥∥∥mi − Ω(di; Θ)

max(mi) + ε

∥∥∥∥2

. (8)

The flowchart describing the training of a neural network in a traditional and fully data-
driven way is shown in Figure 2b, where the green arrows describe the forward propagation
of information through the neural network and the red arrows represent the backpropaga-
tion for parameter updating. Unlike the physics-based network that updates the subsurface
parameters directly, the training of a deep neural network searches for the best-fit mapping
between input and output by adjusting internally weighted connections.
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Physics-guided neural network solution

Though the deep neural network can be a powerful tool to solve seismic inversion prob-
lems, its training process requires vast quantities of shot-and-model pairs illuminating di-
verse subsurface structures. Building such a training dataset is impractical. Therefore,
incorporating the known physics knowledge into the training process of a neural network
will preserve advantages of both deep learning and physics-based deterministic methods.
Successful implementation of such a scheme can be found in Biswas et al. (2019), where
a CNN is trained for seismic impedance inversion by incorporating a simple convolutional
operation between wavelet and retrieved reflectivity. We can adopt a similar strategy to
solve the waveform inversion problem by combining a deep neural network with a physics-
based RNN, which allows parameter updating is performed by the backpropagation of both
using automatic differential technique. In this physics-guided framework, raw shot gathers
are input into the deep neural network; the estimated subsurface model parameters by the
deep neural network are then used as inputs for the physics-based RNN, from which we
obtain simulated seismic records. The physics-guided optimization procedure of a neural
network contains five steps:

1) Feeding shot gathers d into the neural network to estimate subsurface models m̃ =
Ω (d; Θ)

2) Feeding estimated subsurface models m̃ into a physics-based RNN to calculate pre-
dicted shot gathers d̃ = F(m̃) = F(Ω (d; Θ))

3) Calculating the data misfit between the input shot gathers (i.e., observation) d and
prediction d̃ using equation 2

4) Backpropagating the data misfit to update parameters Θ

5) Repeating above steps until convergence

The process of training a physics-guided neural network (PGNN) is illustrated in Fig-
ure 2c. In contrast, a network simultaneously trained by both model misfit and data residual
which we will refer to as hybrid physics-guided neural network (H-PGNN), is illustrated
in Figure 2d. The model misfit is calculated between the network estimated results and
the ground-truth velocity models, and the data residual is computed between the simulated
seismic records and raw shot gathers. This permits an objective function to be formed from
a weighted sum of model misfit (equation 8) and data residual (equation 2):

Lk = λmL̃k
m + λdL̃k

d, (9)

where λm and λd moderates trade-off between model and data misfits, respectively. Both
fully data-driven and purely physics-guided training as end-members can be produced by
assigning different combinations of two trade-off parameters, i.e., (λm = 1, λd = 0) for
data-driven and (λm = 0, λd = 1) for physics-guided, which are two special cases of the
hybrid objectives.

For the hybrid training scheme, λm and λd must be selected to balance the contributions
from model misfit and physics-based data residual. In previous work (Sun et al., 2020)
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on the seismic velocity inversion problem, to achieve the fast and stable convergence, a
suitable range of learning rate for the Adaptive Momentum, or Adam, algorithm (Kingma
and Ba, 2014) is α ∈ [10, 100], in contrast to the more common range [0, 1] used in deep
learning optimizations. It means that, λd/λm needs to be in range of [10, 100] to balance the
gradients obtained using model misfit and data residual, respectively. In the experiments
to follow, with trial and error, we choose λd = 40 which will remain to be constant during
training, and let λm to be adjustable.

Network architecture

We select an encoder-decoder CNN design as the primary architecture. In it, we ex-
pect the encoder accepts seismic shot gathers or their weighted summations as input and
generates low-dimensional feature maps through a sequence of convolution blocks and
maxpooling layers. Then, the decoder transforms these feature maps into the estimated
velocity model using a sequence of convolution blocks and transposed convolution layers
(this latter process is more commonly known as “deconvolution” in the deep learning com-
munity, but to avoid confusion with the geophysical term we will continue to refer to it as
“transposed convolution”). The architecture of the CNN is plotted in Figure 3. There are
four partitions in the proposed network, including an initial convolution, an encoder net-
work, a decoder network, and a sequence of re-scaling and clamping processes. The initial
convolution (plotted as the pink column in Figure 3) contains a single convolutional layer
with 16 convolutional filters of size 1× 1× 10. Thus the proposed network accepts 10 shot
gathers per model in the velocity model building. The purpose of this initial convolution
layer is to generate feature maps with an appropriate number of channels for the encoder
network. In other words, the encoder network will be trained to accept 16 feature maps
as inputs which are weighted combinations of 10 shot gathers in our experiment. One can
easily replace the initial convolution layer with other feature generators and then only fine-
tune the feature generator using transfer learning strategy when the number of shot gathers
is not 10.

conv_block max_pool conv_trans

conv_init conv_last

latent space
representation

Encoder Decoder
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FIG. 3. The architecture of our proposed encoder-decoder convolution neural network (CNN),
where k represents the batch size, ns represents number of shot gathers, nt represents the number
of samples in time, nz and nx represents the number of pixels in vertical and horizontal, respectively.
The structures of conv_block and conv_last are illustrated in Figure 4 and detailed parameters are
contained in Table 1.

After the initial convolution, the generated feature maps are fed into the encoder par-
tition, which is comprised of five convolutional blocks (plotted as the brown columns in
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FIG. 4. Left: the detailed structure of convolutional block (conv_block) shown as the brown columns
in Figure 3, where (k, c/nc, h, w) denotes (batch size, input/output channel, height, width), respec-
tively. For encoder nc=2 ∗ c and for decoder nc=c//2. Right: the structure of the last convolutional
combination (conv_last) in decoder plotted as the blue column in Figure 3.

Figure 3) and four maxpooling layers (plotted as the dark-blue columns in Figure 3). These
convolutional blocks share the same structure, including two convolution layers, two batch
normalization layers, two activation layers using a leaky rectifier unit (LeakyReLU) with
a constant negative leaking slope 0.1, and two spatial dropout layers with a constant prob-
ability of retention (p = 0.8), as illustrated in the left panel of Figure 4. In the encoder,
the number of output channels (nc) generated by a convolutional block is twice that of its
input channels (c), i.e., nc = 2c, while the feature map size remains. The sequence of
convolutional blocks and maxpooling layers implies that, by passing through the encoder,
the dimension of the input is significantly reduced, but the output is richer because of the
increased number of channels. The encoder thus transforms the high-dimensional input
feature maps into low-dimensional, detailed latent space representations.

Next, these low-dimensional feature maps in latent space are used as input for the de-
coder, which is a sequential list of four transposed convolution layers (plotted as the dark-
green columns in Figure 3) with four cross-interacting convolution blocks, following by a
final convolution combination (plotted as the light-blue column in Figure 3). In the decoder,
the output channel from a convolution block is half of the input channel (i.e., nc = c//2),
but the same size remains in its other dimensions. The last convolution combination con-
tains a single convolution layer with one filter of size 1×1×32, followed by a ReLU layer,
as illustrated in the right panel of Figure 4.

It is found that scaling labeled data and the output of the network into a small range
may accelerate the convergence process, especially with the Adam optimizer which pro-
vides ‘normalized’ (i.e., the ratio of the first and the second momentum) parameter updates,
since all trainable parameters are randomly initialized in range of [0, 1]. Therefore, in exper-
iments of this paper, the ground-truth velocity models are scaled using the global minimum
and maximum of velocity values mmin and mmax, i.e., (m−mmin)/(mmax −mmin). The
model misfit is calculated between the scaled ground-truth and the network output using
equation 8. To obtain the estimated velocity model, a reverse scaling procedure is required
to assign each pixel of output into to a velocity value, i.e., m̃ = m̃ ∗(mmax−mmin)+mmin.
Finally, a clamping step (shown in bottom of Table 1) is performed to reduce the uncer-
tainty of the estimated velocity models and to stabilized the following physics-based wave
propagation. Detailed descriptions of layer parameters are contained in Table 1.
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Operation Layer Number
of Filters

Size of
Each Filter Stride Padding Output Size

(nc x h x w)
Input Data shot gathers - - - - 10x400x100

Initial Convolution conv_init 16 1x1x10 1x1 0 16x400x100

Encoder

conv_block 32
32

3x3x16
3x3x32

1x1
1x1

1x1
1x1

32x400x100
32x400x100

max_pool 1 4x2 4x2 2x0 32x101x50

conv_block 64
64

3x3x32
3x3x64

1x1
1x1

1x1
1x1

64x101x50
64x101x50

max_pool 1 3x2 2x2 1x0 64x51x25

conv_block 128
128

3x3x64
3x3x64

1x1
1x1

1x1
1x1

128x51x25
128x51x25

max_pool 1 4x2 4x2 0x0 128x12x12

conv_block 256
256

3x3x128
3x3x128

1x1
1x1

1x1
1x1

256x12x12
256x12x12

max_pool 1 2x2 2x2 0x0 256x6x6

conv_block 512
512

3x3x256
3x3x512

1x1
1x1

1x1
1x1

512x6x6
512x6x6

Decoder

conv_trans 512 2x2x512 2x2 0x0 512x12x12

conv_block 256
256

3x3x512
3x3x256

1x1
1x1

1x1
1x1

256x12x12
256x12x12

conv_trans 256 3x3x256 2x2 0x0 256x25x25

conv_block 128
128

3x3x256
3x3x128

1x1
1x1

1x1
1x1

128x25x25
128x25x25

conv_trans 128 2x2x128 2x2 0x0 128x50x50

conv_block 64
64

3x3x128
3x3x64

1x1
1x1

1x1
1x1

64x50x50
64x50x50

conv_trans 64 2x2x64 2x2 0x0 64x100x100

conv_block 32
32

3x3x64
3x3x32

1x1
1x1

1x1
1x1

32x100x100
32x100x100

conv_last 1 1x1x32 1x1 0x0 1x100x100

re-scale & clamp re-scale m̃ = m̃ * (mmax - mmin) + mmin

clamp m̃ =


mmin if m̃ ≤ mmin

m̃ otherwise
mmax if m̃ ≥ mmax

Table 1. Detailed parameters of our proposed CNN with architecture shown in Figure 3.
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NUMERICAL EXAMPLES

In this section, we carry out a simulated velocity building exercise for a subsurface salt
body using the basic network architecture set out in the previous section. The implemen-
tation of the physics-based RNN inversion are not performed independently in this paper
since we aim to build an end-to-end velocity reconstruction framework. Instead, it is treated
as a partition of the PGNN or the H-PGNN to provide gradient contribution from data dis-
crepancies and details of implementing the physics-based RNN inversion are elaborated in
the previous work of Sun et al. (2020). In the following contexts, we will investigate the
possible strategy of training the proposed encoder-decoder CNN in both physics-guided
(λm = 0 and λd = 1) and hybrid-guided (λm 6= 0 and λd = 40) modes, and discuss the
influence of two trade-off parameters. Additionally, the fully data-driven (λm = 1 and
λd = 0) training will also be implemented. The goal of training a network in a fully data-
driven mode is to create a benchmark deep learning solution. This will both highlight the
potential strengths of a deep learning technique, but also to highlight some practical chal-
lenges. To be consistent with traditional deep learning, a fully data-driven trained network
will be simply referred to as CNN in later contexts.

Data preparation

Optimizing the network illustrated in Figure 3 in a fully data-driven mode requires a
very large number of training samples. Here, 16, 000 synthetic velocity models with a grid
size of 101 × 101 and 10m cells are created. Each model contains a single salt body with
an arbitrary shape and location. The salt velocity is fixed at 4500m/s. The backgrounds
are random realizations of 5-to-12 laterally-distorted layers with velocity values ranging
from 1500-4000m/s. These synthetic velocity models are divided into the training (10,000
samples), validation (3,000 samples), and test (3,000 samples) datasets. Ten representative
examples of synthetic velocity models are illustrated in Figure 5 .
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FIG. 5. Ten representative examples of synthetic velocity models.

To generate the corresponding shot gathers as inputs of the proposed CNN, we adopt a
second-order, both in spatial and time dimensions, finite difference (Smith, 1985) operator
for the forward wave propagation simulation using physics-based RNN. For each velocity
model, ten shot gathers are collected with shot interval 100m. All ten sources are located
at the surface starting from 50m and ending at 950m (from left to right). A minimum phase
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wavelet with 12Hz dominant frequency (shown in Figure 6) and a simple sponge absorbing
boundary condition are used for the synthetic seismic record collection. The time sample
interval during wave propagation is 1.5ms and 800 time samples are recorded. However, to
reduce memory use and to fit the input size of our designed CNN, we further downsample
all shot gathers into 400 time samples with 3ms interval. In Figure 7, one representative
input example containing ten shot gathers using the upper-left velocity model in Figure 5
are plotted. The ten raw shot gathers for each velocity model are treated as distinct input
channels in the proposed CNN; no preprocessing is applied.
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FIG. 6. A minimum phase wavelet adopted for synthetic data generation.
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FIG. 7. One representative input example containing ten shot gathers using the velocity model
shown in the upper-left corner in Figure 5.

As discussed in previous section, to accelerate the convergence process during training,
all velocity models are scaled into the range [0, 1] using the global minimum and maximum
values: m = (m−mmin)/(mmax −mmin) where mmin = 1500m/s and mmin = 4500m/s.
The model misfit is calculated between the scaled velocity profiles and the output of the
decoder network using equation 8; the data residual is calculated between the ground-truth
and estimated shot gathers using equation 2.
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Mode

Parameters Number of samples
in Train (Val)

Batch-size in
Train (Val)

Trade-off
(λm, λd)

(LT
m, LV

m )
(×10−1)

(LT
d , LV

d )
(×10−4)

CNN 320 (120) 16 (64) (1, 0) (0.42, 0.37) (1.48, 1.28)
PGNN 320 (120) 16 (32) (0, 1) (1.97, 1.98) (1.76, 0.84)

H-PGNN
0.1
40 320 (120) 16 (32) (0.1, 40) (1.96, 1.98) (1.71, 0.84)

H-PGNN
1
40 320 (120) 16 (32) (1, 40) (2.03, 2.80) (0.89, 0.76)

H-PGNN
10
40 320 (120) 16 (32) (10, 40) (2.04, 3.29) (1.12, 1.13)

Table 2. Parameter settings in different training modes for hyperparameter selection, where LT
m,

LV
m, LT

d , and LV
d columns represent the smallest model misfit and data residual on training and

validation sets within 30 epochs training.

Hyperparameter selection

All training processes are carried out on 10 NVIDIA Telsa P100-PCIe GPU acceler-
ators with 12GB memory using the Adam optimizer with the learning rate 0.01. Due to
the computational burden of implementing PGNN and H-PGNN, only a small portion of
training (320 samples) and validation (120 samples) sets are extracted from the intact train-
ing (10, 000 samples) and validation (3, 000 samples) datasets, respectively, and utilized
to analyze the hyperparameter selection. Though training the proposed CNN with such a
small quantity of samples may not be able to achieve its best performance and be readily
overfitted, it provides us an insight of the training behavior under the selected combination
of hyperparameters.

To investigate the influences of both model misfit and data residual to training, we se-
lect three different combinations for trade-off parameters (λm, λd), including (0.1, 40), (1,
40), and (10, 40). The proposed network is trained in H-PGNN mode with three selected
combinations of trade-off parameters, respectively. In addition, the CNN and PGNN train-
ing modes are also employed to train the network as two benchmarks. Both model misfit
and data residual on training and validation sets are monitored for all training modes at
every epoch. The training processes are either stopped by reaching the maximum epoch
30 or early manually terminated when the overfitting phenomenon occurs. The parameter
settings for each training mode and their best achieved model misfits and data residuals on
training and validation datasets are illustrated in Table 2. Besides that, a truncated time
length of 50, which is the maximum length the computational memory of our equipment
allows for, is chosen for the truncated RNN backpropagation in the PGNN and H-PGNN
modes.

All loss variations of both model misfits and data residuals are plotted in Figure 8,
where the solid lines represent losses’ behaviors on training dataset and the dashed lines
delineate losses’ variations on validation dataset. The blue lines represent the variations
of model misfits and data residuals using a network trained in the CNN mode. With a
small amount of training examples, we observe that the behavior of the model misfit on
the validation dataset is not inconsistent with the decreasing trend of the training model
misfit. This implies that, the convergence direction in a fully data-driven training may
easily manipulated by the diversity of the training dataset. In addition, the inconsistent
trends between model misfits and data residuals are also detected in the CNN mode, which
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FIG. 8. Statistical comparisons of model misfits and data residuals in different training modes with
varying trade-off parameters, where the solid lines represent losses’ behaviors on training dataset
and the dashed lines delineate losses’ variations on validation dataset.

indicate the convergence process in a fully data-driven mode does not obeys physics rules.

In both PGNN and H-PGNN
0.1
40 (i.e., λm = 0.1, λd = 40) modes (shown in green and

orange in Figure 8), due to a lack of accurate initial models, the network failed to escape
from a local minimum of data residual. To meet the requirement of good starting points by
PGNN/H-PGNN, we need to increase the contribution from model misfit by increasing λm,
while λd remains to be consistent to 40. The red lines in Figure 8 demonstrate the losses’
variations in the H-PGNN1/40 (i.e., λm = 1, λd = 40) mode. The result shows that both
model misfit and data residual are smoothly reduced, and the variation tendency on training
and validation datasets are also well matched. However, a slight overfitting phenomenon is
observed around 15 epochs in the model misfit recording. As increasing λm to 10 (purple
lines in Figure 8), both model misfit and data residual are still able to be reduced but with
more fluctuations. Besides, the overfitting issue also occurs around 15 epoch in the model
misfit variation with the setting of λm = 10.

Therefore, from what we have examined, the combination of (λm = 1, λd = 40) seems
to be a suitable choice as the initial setting for H-PGNN training in later experiments. To
mitigate the overfitting issue, instead of a fixed setting, λm will be reset from 1 to 0.1 once
the model misfit have been reduced by 80%. Here, the 80% is found by trial and error to
ensure accurate initial models for H-PGNN while not quickly overfitting the model misfit.
Beyond that, we reset λm to be 0.1 instead of zero is to prevent the convergence falling into
a local minimum mislead by data residual. With a varying λm, the H-PGNN allows the
model misfit leading the training process during the first few epochs and expects the data
residual (i.e., physics rules) dominating the rest convergences.
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Mode

Parameters Number of samples
in Train (Val, Test)

Batch-size in
Train (Val, Test)

Trade-off
(λm, λd)

Training time-cost
(per epoch 10GPUs)

CNN-10k 10000 (3000, 3000) 32 (64, 64) (1, 0) 2.58mins
CNN-2k 2000 (600, 3000) 32 (64, 64) (1, 0) 0.75mins

H-PGNN-2k 2000 (600, 3000) 16 (32, 64) (1→0.1, 40) 20.3mins

Table 3. Parameter settings for different training modes, where the training time-cost is the compu-
tational time of computing a single epoch includes one training and one validation processes.

Training and validation

Since the PGNN does not converge without accurate initial models, in the following
experiences, only CNN and H-PGNN (λm : 1→ 0.1, λd = 40) will be performed. To fully
explore the benefits of the H-PGNN, we select a portion set including 2, 000 examples from
the intact training dataset (10, 000 examples) to train the network in the H-PGNN mode,
namely H-PGNN-2k in Table 3. Similarly, 600 validation examples are randomly selected
from the intact validation dataset (3, 000 examples) to monitor the overfitting phenomenon
during training. The same selected training and validation portions are also used to train the
network in a fully data-driven mode, namely CNN-2k in Table 3. Furthermore, the CNN
is also trained using the intact training and validation datasets as a comparison, namely
CNN-10k in Table 3. Number of samples in training and validation datasets and batch sizes
for CNN-2k, CNN-10k, H-PGNN-2k are summarized in Table 3. The validation process
is performed after every training epoch. In each epoch, the model misfits are computed
for training and validation datasets in CNN-2k, CNN-2k, and H-PGNN-2k, respectively.
However, the data residuals are only calculated and monitored in CNN-2k and H-PGNN-
2k because of the computational burden. The computational time cost for a single epoch
in each mode is shown in Table 3. Note that, for CNN-2k, the time cost of computing data
residuals is not taken into account. Finally, the same truncated time length of 50 is used for
H-PGNN-2k training.

Both CNN-2k and CNN-10k trainings are stopped after 100 epochs. In Figure 9, we
plot the monitored model misfits and the data residuals using CNN-2k, CNN-10k, and H-
PGNN-2k, respectively, where the solid lines represent the training losses and the dashed
lines delineate the validation losses. As mentioned previously, no data residual is monitored
for CNN-10k due to the computational burden. The model misfits using CNN-2k are shown
in blue lines in the top panel of Figure 9. We observe that training and validation model
misfits using CNN-2k are comparably decreased and tend to be flatten after 100 epochs
given 2, 000 training examples. However, the decreasing trend of model misfit using CNN-
2k does not reflect on the data residual. In the bottom panel of Figure 9, the training
and validation data residuals by CNN-2k reaches its minimum at the second epoch, and
fall into a local minimum after that. This further confirms that the model misfit objective
function only provides a pixel-wise optimization, and physics constraints are not being
invoked. The results also indicate that our current training dataset (2, 000 examples) are
not enough to achieve the best performance of the proposed architecture. Namely, the
fully data-driven training requires a large amount of labeled examples. This deduction is
confirmed by the model misfit variation using CNN-10k. As plotted in green lines in the
top panel of Figure 9, by simply increasing the number of training examples, the CNN-10k
is able to smoothly converge to a much smaller error.
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Finally, the proposed network is also trained in the H-PGNN-2k mode using the same
training and validation dataset as used in the CNN-2k, and the training is stopped after 67
epochs. Following the discussion of trade-off parameters selection, a constant value (40)
is chosen for λd, while the λm is initially set to 1 and then reset to 0.1 after the model
misfit is reduced by 80% (referred to the third epoch in this case). In other words, after the
third epoch, we expect the starting of an approximate physics-driven optimization stage.
We point out that, although the model misfit dominates starting point acts something like
an initial velocity model building stage, and the data-misfit ending point in isolation acts
something like an FWI regimen, the mid-range iterations, in which both act simultaneously,
is unique to this hybrid approach.

The recorded model misfits and data residuals using H-PGNN-2k on both training and
validation datasets at each epoch are plotted in orange lines in Figure 9. Given the same
training dataset, the model misfit using H-PGNN-2k converges much faster than CNN-2k,
and a much smaller error is achieved. In addition, the convergence of data residual us-
ing H-PGNN-2k are much smoother than the one by CNN-2k. Comparing to CNN-10k,
a comparable level of model misfit is obtained by H-PGNN-2k with slightly faster con-
vergence. The results demonstrate that incorporating physical knowledge may reduce the
strict requirement of big data by the traditional deep learning and gain a stable convergence
process, which is essential in geophysical inversion problem.
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FIG. 9. Statistical comparisons of model misfits and data residuals in CNN-2k, CNN-10k, and H-
PGNN-2k modes, where the solid (dashed) lines represent losses’ variations on training (validation)
dataset.

To intuitively examine the performance of networks trained in different modes, five
velocity models are extracted from the test dataset as representative examples of veloc-
ity building using the CNN-2k, CNN-10k, and H-PGNN-2k, respectively, given raw shot
gathers as input. In Figure 10, five ground-truth velocity models are plotted in the first
row, and the associated velocity predictions using CNN-2k, CNN-10k, and H-PGNN-2k
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are plotted from the second row to the bottom. Generally, approximate locations of the
salt bodies and the inside velocity values are predicted correctly by the CNN-2k. However,
CNN-2k failed to predict the shape of the salt body and the background information. With
increased training samples, the salt body boundaries have been reasonably approximated
by CNN-10k, with the background trends and model character largely intact. We conclude
that the CNN-10k, trained by the pure model misfit objective function with 10, 000 training
examples, has the capacity to capture some of the property and positioning information
contained in the raw shot gathers. The estimated velocity models using H-PGNN-2k are il-
lustrated in the bottom row of Figure 9. Compared to the results derived from CNN-2k and
CNN-10k, the salt bodies predicted by H-PGNN-2k have more highly resolved shapes, and
clearly defined boundaries, reduced smoothing. The results also exhibit better definition
within background irregular layers, and in facts resolves some of interfaces, which was not
achieved with CNNs. In Figure 11 the estimated model misfits using CNN-2K, CNN-10k,
and H-PGNN-2k respectively are plotted in different rows. We observe that, given the same
training dataset, involving the physics-based objective function significantly improves the
accuracy of estimated velocity models.
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FIG. 10. Comparison of the ground-truth (the first row) and the estimated velocity models using
CNN-2k, CNN-10k, and H-PGNN-2k (from the second row to the bottom), respectively.

Furthermore, to investigate the physical characteristics of the estimated velocities, the
forward wave propagation is implemented using all velocity models shown in Figure 10
with shot locations placed on the surface at the middle of the model. The corresponding
shot gathers are plotted in Figure 12, from top to bottom, associated with the ground-truth,
CNN-2k, CNN-10k, and H-PGNN-2k, respectively. It is noticeable that the simulated shot
gathers using estimated velocities by CNN-10k and H-PGNN-2k are better matched with
the ground truth shot gathers than these shot profiles related to CNN-2k, which only capture
the direct waves and partial primary events reflected by the top boundaries of the salt body.
The data residuals of the middle shot gathers are also plotted in Figure 13, alongside the
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FIG. 11. The model prediction errors using CNN-2k, CNN-10k, and H-PGNN-2k (from top to bot-
tom), respectively.

final estimated velocity models by CNN-2k, CNN-10k, and H-PGNN-2k. The significantly
reduced discrepancies of data residuals are observed in profiles using H-PGNN-2k.

DISCUSSION

It appears from our analysis that the data-driven training requires a vast quantity of
labeled examples to accurately extract the main subsurface parameter information influ-
encing the waveforms observed in surface seismic data. Physics-guided network with
hybrid training appears to be able to supply a significant jump in accuracy and resolu-
tion under the same training distribution, which our experiments indicate would only be
possible in a data-driven scheme through a large inflation of the training data. Further
quantitative comparisons between the data-driven and the physics-guiding are required to
completely flesh out the trade-offs between the two elements of the hybrid approach, and
how a physics-based objective function operates within the optimization of an otherwise
“traditional” neural network. In this section, we discuss the difference between data-driven
and hybrid training in three different aspects, including the quantitative error analysis on
the entire test dataset, the investigation of network’s generalization ability using SEG salt
models, and the uncertainty analysis of network’s estimations.

Quantitative error analysis

We can begin this process relatively simply. We carry out the velocity building process
on the entire test dataset, which comprises 3000 velocity models, using CNN-2k, CNN-
10k, and H-PGNN-2k, respectively. After acquiring the estimated velocity models, the
absolute value of model misfits are computed and forward wave propagation is performed
to calculate the absolute data residuals. In addition, two other metrics, structural similarity
index measure (i.e., SSIM, Wang et al., 2004) and coefficient of determination (R2-score)
are adopted to provide a general idea of the prediction accuracy. The absolute model misfit,
the absolute data residual, the SSIM, and the R2-score are referred to as four metrics, and
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FIG. 12. Comparison of the middle-located shot gathers using velocity models shown in Figure 10.
From top to bottom, they are related to ground-truth, CNN-2k, CNN-10k, and H-PGNN-2k, respec-
tively.

prediction errors of model and data are computed in percentage.

We extract 1, 000 velocity models from the test dataset and their associated four metrics
using CNN-2k, CNN-10k, and H-PGNN-2k, respectively, are plotted in the top row of
Figure 14. We observe that the absolute model misfits using CNN-2k are significantly large
spreading from 15% to 35%, while the pixel-wise accuracy of velocity models estimated
by CNN-10k and H-PGNN-2k maintain in a high standard, i.e., for most of cases, their
model misfits are less than 10%. From the perspective of the data residual, noticeable
advantages are observed in the network trained by the H-PGNN-2k comparing to CNNs.
Similar patterns are also found in SSIM-R2-score plots.

Finally, the mean and standard deviation of four metrics are calculated on the entire test
dataset. The results are plotted in the bottom row of Figure 14. Four metrics associated
with CNN-2k, CNN-10k, and H-PGNN-2k are plotted in blue, orange, and green ellipses,
respectively, where the centers of the ellipses are associated with the averages of four met-
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FIG. 13. The data prediction errors of the middle-located shot gathers using the estimated velocity
model by CNN-2k, CNN-10k, and H-PGNN-2k (from top to bottom), respectively.

rics over the entire validation dataset. The heights (width) of the ellipses represent twice
the standard deviations of four metrics. The network’s performances of using CNN-2k,
CNN-10k, and H-PGNN-2k are distinguishable. The comparison of the blue (CNN-2k)
and the orange (CNN-10k) ellipses furthermore affirms that enlarging the diversity and dis-
tribution of the training dataset may gain a better performance. In the bottom-left panel
of Figure 14, comparing to the blue ellipse associated with CNN-2k, a smaller standard
deviation of model misfits using CNN-10k (i.e., the height of the orange ellipse) indicates
a large and diverse training ensembles may enhance the network’s robustness with an in-
creased stability for handling daedal examples. However, it is worth mentioning that the
standard deviation of the data residuals using CNN-10k is comparable to that of using
CNN-2k (∼ 7%), though the mean of the data residuals are highly reduced. This implies,
in a fully data-driven mode, enlarging the diversity and the number of training examples
does not ensures the network’s prediction obeys the physical rules.

However, by involving a physics constraint in the objective function as H-PGNN-2k,
prominent advantages are detected in Figure 14. Comparable level of model misfits using
CNN-10k and H-PGNN-2k shows that the training requirement of big data may be consid-
erably reduced by incorporating known physics knowledge, which may also improves the
data residuals to some extent. In addition, smaller standard deviations of both model misfits
and data residuals demonstrate the H-PGNN-2k has a better generalization ability of han-
dling distinguishable cases. In the bottom-right panel, a higher SSIM using H-PGNN-2k
indicates the H-PGNN-2k are able to estimate the subsurface structure with preciser reso-

20 CREWES Research Report — Volume 32 (2020)



Seismic inversion using PGNN

10 20 30 40 50 60
Data-residual [%]

0

10

20

30

40
M

od
el

-m
isf

it 
[%

] CNN-2k
CNN-10k
H-PGNN-2k

20 30 40
Data-residual [%]

0

10

20

30

M
od

el
-m

isf
it 

[%
] CNN-2k

CNN-10k
H-PGNN-2k

1.0 0.5 0.0 0.5 1.0
R2-Score

0.5

0.6

0.7

0.8

0.9

SS
IM

CNN-2k
CNN-10k
H-PGNN-2k

-3.0 -2.0 -1.0 0.0 1.0
R2-Score

0.6

0.7

0.8

SS
IM

CNN-2k
CNN-10k
H-PGNN-2k

FIG. 14. The comparison of the absolute model misfits, the absolute data residuals, SSIM, and
R2-score on the entire test dataset using CNN-2k, CNN-10k, and H-PGNN-2k, respectively. Top:
four metrics’ distributions of 1, 000 representative velocity models extracted from the test dataset;
Bottom: the mean and standard deviations of four metrics on the entire test dataset, where the cen-
ters of the ellipses associate with the mean values of four metrics, and the height (width) delineates
twice the standard deviations of four metrics, respectively.

lution than the results by CNN-2k and CNN-10k. A smaller standard deviation of R2-score
by H-PGNN-2k demonstrates the higher correlation between the estimated velocity profiles
and the ground-truth models, which implies the stability of the H-PGNN-2k.

Generalization ability

In order to examine the ability of a trained network to be applied in more general in-
stances, we employ the 3D SEG salt model which has never been seen in the intact training
dataset. Ten 2D velocity models are extracted from the 3D SEG salt volume, and plot-
ted in the first row of Figure 15. Next, ten shot gathers placed on the surface with the
same geometry setting shown in previous section are generated using each velocity profile.
By feeding these raw shot gathers into the trained networks, the velocity building for ten
extracted SEG salt models are implemented using CNN-2k, CNN-10k, and H-PGNN-2k,
respectively, in which their corresponding estimated velocities are plotted from the second
row to the bottom of Figure 15. The estimated velocity models in the second row of Fig-
ure 15 demonstrate that the CNN-2k has the ability of predicting approximate locations of
the salt body with imprecise boundaries and background information. Besides that, strong
anomalies are also exposed in CNN-2k’s predictions. On the other hand, CNN-10k and
H-PGNN-2k made a step forward in casting the shape of the salt body and in providing
more information of background layers. Additionally, anomalies are significantly reduced
in estimated models associating with CNN-10k and H-PGNN-2k. Comparing to CNN-10k,
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velocity model estimated by H-PGNN-2k have less smoothing effects on the boundaries of
the salt body.
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FIG. 15. Comparison of the ground-truth (the first row) and the estimated SEG salt models using
CNN-2k, CNN-10k, and H-PGNN-2k (from the second row to the bottom) respectively.
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FIG. 16. The model misfits between ground-truth SEG salt models and estimated velocities using,
from top to bottom, CNN-2k, CNN-10k, and H-PGNN-2k, respectively.

The model misfits between the ground-truth SEG salt models and estimated profiles
are plotted in Figure 16, from top to bottom, associated with CNN-2k, CNN-10k, and
H-PGNN-2k, respectively. The middle-located shot gathers using velocity models shown
in Figure 15 are calculated and plotted in Figure 17 to examine the physical meaning of
these estimations. The corresponding data residuals are illustrated in Figure 18 in the same
layout.

Predictive uncertainty analysis

Unlike Bayesian statistics, which gives the distribution of parameters to delineate the
underlying phenomenon between the desired target and our prior knowledge, the super-
vised deep neural network establishes a deterministic projection from the input to output
determined by given training dataset, and therefore does not capture the prediction un-
certainty. In order to measure the uncertainty of predicted results, we need to build the
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FIG. 17. Comparison of the middle-located shot gathers associated with velocity models shown in
Figure 15. From top to bottom, they are related to ground-truth, CNN-2k, CNN-10k, and H-PGNN-
2k, respectively.
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FIG. 18. The data prediction errors of the middle-located shot gathers using the estimated SEG-salt
models by CNN-2k, CNN-10k, and H-PGNN-2k (from top to bottom) respectively.

distribution of the network’s trainable parameters, instead of deterministic weights. Deep
ensembling is a powerful technique where a large ensemble of networks are trained inde-
pendently using respective datasets. Thus, a collective predictions can be obtained using
trained network ensembles to measure the predictive uncertainty. However, training a large
number of networks usually comes with a prohibitive computational cost.

Gal and Ghahramani (2016) introduced an approximate Bayesian interference by in-
cluding dropout training and validating in deep neural networks. Intuitively, by randomly
zeroes some elements of hidden feature maps with probability (p = 0.2 in our experiments)
using samples from a Bernoulli distribution, those elements that are not dropped out define
a new network. In other words, the training with dropout layer can be considered as training
a large ensemble of different networks simultaneously. In addition, the mini-batch strategy
ensures different training examples are utilized for training different networks. The key of
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measuring predictive uncertainty using such a technique is activating dropout in both train-
ing and validation stages. During training, it ensures training a large ensemble of networks
which Gal and Ghahramani (2016) demonstrated is an approximation of deep ensembling
Bayesian model. In validation, by implementing the trained network with dropout multiple
times, we can obtain a set of predictive realizations.

To evaluate the uncertainty of predicted results, we first run 100 realizations with
dropout on the synthetic velocity model using CNN-2k, CNN-10k, and H-PGNN-2k, re-
spectively. The mean and standard deviation of 100 generated realizations are calculated.
The results are plotted in Figure 19, where, from left to right, they are associated with CNN-
2k, CNN-10k, and H-PGNN-2k, respectively; from top to bottom, they are corresponding
to the ground-truth, the mean of 100 predictive realizations, the model misfit between the
ground-truth and the averaged realization, and the standard deviation of 100 predictive
realizations. In the second and the third rows, the averaged predictions’ precision using
different networks are consistent with our previous observation, where the H-PGNN-2k
outperforms CNN-2k and CNN-10k. In the last row of Figure 19, the standard deviations
of 100 predictive realizations using CNN-10k and H-PGNN-2k are smaller than 300m/s at
most of areas, except at the salt body boundary, which reveals the network’s robustness and
stability. Similarly, we compute the mean and standard deviation of the middle-located shot
gathers using 100 predictive velocity models for different modes, and results are plotted in
Figure 20 with the same layout of Figure 19.
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FIG. 19. The uncertainty and average of 100 realizations using, from left to right, CNN-2k, CNN-
10k, and H-PGNN-2k, respectively. From top to bottom, plots are listed as: the ground-truth model,
the mean of 100 realizations predicted using different trained networks, the model misfits between
the ground-truth and averaged realization, and the standard derivation of 100 realizations.

Moreover, the uncertainty analysis using dropout on ten SEG salt models are also per-
formed using H-PGNN-2k and 100 realizations for each velocity profile are generated,
respectively. In Figure 21, the ground-truth and the mean of 100predictive realizations are
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FIG. 20. The uncertainty and average of the middle-located shot gathers using 100 estimated
realizations in different modes: from left to right, CNN-2k, CNN-10k, and H-PGNN-2k, respectively.
From top to bottom, plots are listed as: the ground-truth, the mean of the middle-located shot
gathers using 100 estimated realizations, the data residuals between the ground-truth and the
average shot gathers, and the standard derivation of the middle-located shot gathers using 100
realizations.

plotted in the first and second rows, respectively; the model misfits between the ground-
truth and the averaged realization are illustrated in the third row; the standard deviations of
100 predictive realizations on SEG salt models are shown in the bottom row. Recall that the
entire 3D SEG salt volume has never been utilized in any training processes. The standard
deviations of 100 realizations for ten SEG salt models are smaller than 500m/s at most of
areas, which confirm the stability and the generalization ability of the H-PGNN-2k.

We surmise that involving the physics-based objective function in the training of a neu-
ral network, we gain more information from the same training dataset. However, weak-
nesses of the physics-based approach, familiar to FWI practitioners, such as illumina-
tion issues, and susceptibility to missing or incomplete data, are incorporated at the same
time. For example, the high uncertainty of predictive realizations shown in the last row
of Figure21 shows the H-PGNN-2k struggles to delineate beneath salt bodies; this is a fa-
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FIG. 21. The uncertainty and average of 100 realizations for ten SEG salt models using H-PGNN-
2k. From top to bottom, plots are listed as: the ground-truth model, the mean of 100 predictive
realizations, the model misfits between the ground-truth and averaged realization, and the standard
derivation of 100 realizations.

miliar feature in imaging based on wave methods (Liu et al., 2011; Malcolm et al., 2009).
Whether increasing the training aspect of a network like the one we discuss could mitigate
these shortcomings, and if so how to select for them, are questions of ongoing research.

CONCLUSIONS

Deep learning, as a class of artificial intelligence methods, has produced a wide and
growing range of solutions for imaging processing problems. However, the accuracy and
stability of the underlying supervised neural networks is highly dependent on the scope of
the training data, and more practically on the availability of the computational resources
required to carry out sufficient training. In large seismic imaging and inversion problems,
exhaustive training data sets are largely unavailable. Furthermore, seismic data being the
projection of a field, which satisfies to some degree a known partial differential equation, is
strongly suggestive that a full data-driven network, trained “from scratch”, is not necessary
to explain much of the data variance. Therefore, to better employ deep learning techniques
in solving geoscience problems, including physics-guiding, and keeping the training data
volumes manageably small, is a sensible strategy.

In this paper, we use waveform-based velocity building of salt bodies as a way to enu-
merate the positive and negative features of a fully data-driven CNN. Our experimentation
indicates that, with a small amount of training examples, a fully data-driven CNN is ca-
pable of capturing the locations of subsurface salt bodies, but failing on casting the salt
body boundaries and background information. The natural route is to explore a significant
increase in the training of this CNN and results shows that sufficiently improves the CNN’s
capacity of extracting the main features of subsurface salt body models. However, recent
work in theory-guided machine learning in seismic inversion is suggestive of a second pos-
sibility.

To improve the network while keeping the training dataset size and extent unchange,
we introduce “physics-guiding”, analyzed in isolation in a separate communication, which
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involves data residuals, and a wave propagation model to explain them, in the training stage.
The aim is to ensure that, while “learning”, the neural network penalizes updates which
are inconsistent with wave propagation within the current iterate of velocity model. One
serious obstacle faced by physics-guided network designers is the requirement for accurate
initialization. Whereas, the data-driven approach is seen in these early examples to proceed
without the explicit definition of a nearby starting model. By taking advantages of both, we
propose the hybrid training strategy to ensure the physical meaning of estimated profiles
which further stabilizes the wave propagation. Beyond that, the selection of the trade-
off parameters between model misfit and data residual is discussed. Comparing results
of this constrained network to those of the data-driven CNN, we observe a strong up-tick
in accuracy, and resolution. Furthermore, a comprehensive error analysis, generalization
ability evaluation using SEG salt models, and predictive uncertainty analysis using dropout
are performed to quantitatively analyze the physics-guided network’s performance.
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