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ABSTRACT

We present a novel physics-guided neural network to estimate shear-tensile focal mech-
anisms for microearthquakes using displacement amplitudes of direct P-wave. Compared
with conventional data-driven fully connected (FC) neural networks, our physics-guided
neural network is implemented in an unsupervised fashion and avoids the use of train-
ing data, which may be incomplete or unavailable. We incorporate three FC layers and
a scaling & shifting layer to estimate shear-tensile focal mechanisms for multiple events.
Then, a forward modeling layer is added, which generates synthetic amplitude data based
on the source mechanisms emerging from the previous layer. The neural network weights
are iteratively updated to minimize the mean squared error between observed and mod-
eled normalized P-wave amplitudes. We apply this machine-learning approach to a set
of 530 induced events recorded during hydraulic fracture simulation of Duvernay Shale
west of Fox Creek, Alberta, yielding results that are consistent with previously reported
source mechanisms for the same dataset. A distinct cluster characterized by more com-
plex mechanisms exhibits relatively large Kagan angles (10◦ – 25◦) compared with the
previously reported best double-couple solutions, mainly due to model simplification of
the shear-tensile focal mechanism. Uncertainty tests demonstrate the robustness of the
inversion results and high tolerance of our neural network to errors in event locations, ve-
locity model and P-wave amplitudes. Compared with a single-event grid-search algorithm
to estimate shear-tensile focal mechanisms, the proposed neural network approach exhibits
significantly higher computational efficiency.

INTRODUCTION

Moment tensors are widely used to describe earthquake source mechanisms. They not
only characterize the shear slip of the fault through the double-couple (DC) component,
but also can reveal more complex faulting process (e.g., shear slip on the non-planar fault,
tensile faulting, co-slipping of multiple shear events) via their non-DC components (Ju-
lian et al., 1998). The range of inversion approaches for moment tensors can be classified
into three major categories: amplitude-based approaches (Ebel and Bonjer, 1990; Rögn-
valdsson and Slunga, 1993; Šílenỳ et al., 2009; Pesicek et al., 2016), amplitude ratio-based
approaches (Kisslinger, 1980; Hardebeck and Shearer, 2003; Jechumtálová and Šílenỳ,
2005) and waveform-based methods (Spikin, 1986; Zhu and Helmberger, 1996; Dreger
et al., 2000; Zhang et al., 2016). Waveform-based algorithms are often used for the source-
mechanism inversion of earthquakes that are recorded by regional and global-scale net-
works. Low-magnitude earthquakes or microearthquakes (e.g., associated with microseis-
mic events or induced seismicity), recorded by local arrays, are sometimes challenging
to accurately invert for moment-tensor parameters through waveform fitting, due to typ-
ically low signal-to-noise ratios (Eaton and Forouhideh, 2011; Li et al., 2011). Instead,
amplitude- or amplitude-ratio based inversion approaches have typically been applied for
these events (e.g., Staněk et al., 2014; Shang and Tkalčić, 2020).
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In addition to the theory-based inversion approaches mentioned above, recent studies
have also documented applications of machine-learning algorithms to source-mechanism
inversion. For example, Käufl et al. (2015) developed a pattern-recognition-based proba-
bilistic method to estimate earthquake source parameters using near-field and regional seis-
mic waveforms, in which a neural network was calibrated using a synthetic dataset. In ad-
dition, Ovcharenko et al. (2018) successfully applied a FC neural network with five hidden
layers to moment-tensor inversion of microseismic events recorded by a single well. Like
most supervised learning techniques, these machine-learning approaches are data-driven
and require labeled data to train the neural network weights, after which the trained net-
works are then applied to the validation/test dataset. In cases of limited or unavailable train-
ing data, these machine-learning algorithms may fail to yield reliable source-mechanism
solutions. To overcome this issue, a number of physics-guided neural networks, in which
theoretical, or model-based, constraints on the relationship between geophysical data and
subsurface unknowns are incorporated into neural networks, have been formulated (e.g.,
Biswas et al., 2019; Downton et al., 2019; Ren et al., 2020; Sun et al., 2020; Zhang et al.,
2020. To date, theory-guided neural network design has not been applied to the problem of
source-mechanism inversion.

Instead of implementing the inversion for full moment tensors that describe seismic
sources, here we use a physically based shear-tensile model (Vavryčuk, 2001) to directly
characterize the slip along the fault with an off-plane component. Compared with the mo-
ment tensor, the use of shear-tensile model can yield more robust result for low-magnitude
events due to less model parameters and can ease the requirement for azimuthal coverage
of stations (Šílenỳ et al., 2014; Šílenỳ, 2018; Petružálek et al., 2018). The shear-tensile
mechanism has four independent parameters, strike, dip, rake and slope. The slope rep-
resents the angle between the slip direction and the fault plane and has a value ranging
between -90◦ and 90◦. A value of 0◦ for slope denotes the pure shear source, and values of
-90◦ and 90◦ represent tensile closure and tensile opening, respectively (Vavryčuk, 2001).
We choose to use the shear-tensile model for two main reasons: (1) notable and spurious
non-double-couple (non-DC) components may be caused within the moment tensors of mi-
croseismic events or low-magnitude earthquakes due to the low quality of input data (Ou,
2008; Godano et al., 2011; Zhang et al., 2016), and constraining the source mechanism
for these events to a simpler shear-tensile model has been proven convenient and effective
(e.g., Vavryčuk, 2011; Stierle et al., 2014; (2) compared with the six independent elements
of the full moment tensor, all the four parameters of the shear-tensile model have definite
and relatively small value ranges, which is thus straightforward for the neural network to
scale values into these ranges.

In this study, we present and validate a novel physics-guided neural network for simulta-
neous estimation of shear-tensile focal mechanisms for a set of microearthquakes recorded
on a dense network of stations. Our proposed neural network design combines FC lay-
ers and seismic source theory to simultaneously estimate shear-tensile focal mechanisms
for multiple microearthquakes. In contrast to previous data-driven machine learning tech-
niques for source-mechanism determination, here training data is no longer required in our
neural network since a forward modeling layer is incorporated into the FC neural network
to guide the learning process. In this paper, we first introduce the architecture and imple-
mentation details of the proposed physics-guided neural network. Then, we apply it to the
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source-mechanism inversion of 530 events induced during a four-well hydraulic-fracturing
completion program in Duvernay Shale. To test the robustness of the source-mechanism
inversion results, we investigate the sensitivity of retrieved focal mechanisms to the ve-
locity model perturbation, event location errors and different levels of noise. The method
proposed here is tailored for dense surface/shallow-borehole monitoring arrays (e.g., Eaton
et al., 2018), but is easily generalizable to other types of sensor networks. Due to the in-
clusion of physics-based forward modeling layer to guide the learning, labeled data is not
required and the training process also inverts for multiple source mechanisms.

METHOD

Figure 1 shows the architecture of the proposed physics-guided neural network, in
which the network uses three FC layers and a Scaling & Shifting layer to map the nor-
malized P-wave displacement amplitudes (i.e., the observations) into the four parameters
for the shear-tensile model. Unlike the conventional data-driven neural networks that re-
quire input-label pairs, we implement the neural network in an unsupervised way by in-
corporating a forwarding modeling layer, i.e., the Radiation Pattern & Normalization layer,
to calculate the theoretical normalized P-wave amplitudes for any given focal mechanism.
Then, a loss function is used to evaluate the data residual between observed and mod-
eled amplitudes, and a proper optimization algorithm is used to iteratively update network
weights. The followings show the implementation details of the proposed neural network.

FIG. 1. Architecture of the physics-guided neural network. Inputs and outputs of the network are
represented by elliptic blocks. Data preparation works prior to network training are indicated by
dotted-line blocks, and the physics-based forward modeling is denoted by the bold-line block.

Data pre-processing

Prior to the network training, some pre-processing steps (the square block in Figure 1)
should be applied to the picked P-wave amplitudes, including data masking, geometrical-
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spreading compensation and normalization. The purpose of applying a mask to the am-
plitude data is to avoid effects caused by individual stations with unavailable or unreliable
picks, and to ensure that all the events considered in the inversion have the same input size.
The masking operation can be represented as

Â = A�M, (1)

where A and Â denote P-wave amplitude matrices before and after masking, respectively,
and M is the mask. Matrices A, Â and M have same the dimension N1 × N2, in which N1

and N2 represent total numbers of events and stations, respectively. Each element in M has
a value of either 0 or 1, representing whether the corresponding station has available (the
value 1) or unavailable (the value 0) amplitude pick. The symbol represents the Hadamard
product operator. The pre-processing also compensates for amplitude attenuation due to
geometrical spreading in the layered isotropic medium (Ursin and Hokstad, 2003). Next,
for each event, P-wave amplitudes are normalized by dividing amplitude values by the max-
imum amplitude (in the absolute sense) for that event. Then the pre-processed amplitudes
are used as inputs for the subsequent FC layer.

Fully connected layers and Scaling & Shifting layer

There are three FC layers in our model. The numbers of neurons for first and third
layers are equal to total numbers of stations (N2) and shear-tensile-model parameters (four),
respectively. For the neuron number in the second layer, a series of representative values
(32, 48, 64, 80, 96, 112 and 128) within a rule-of-thumb range, < 2N2 (according to Heaton,
2008), are examined. Base on the test result, we choose to use 128 neurons which yields the
lowest loss value. In order to introduce nonlinearity into the network, activation functions
are applied to the three FC layers. The mathematical operation at the FC layer can be
represented as

y(k) = f(w(k)x(k) + b(k)), (k = 1, 2, 3), (2)

where x(k), y(k) and b(k) are the input, output and bias vectors, respectively, at FC layer
k; w(k) is the weight matrix, and f represents the activation function for that layer. In
this study, the rectified linear unit (ReLU) is used as the activation function at both FC
layers 1 and 2, which is linear for positive values and zero otherwise (i.e., y(k) = max(0,
w(k)x(k) + b(k)), k = 1, 2). To output values within the range of 0–1, a sigmoid function is
applied at the third FC layer, expressed as

y(3) =
1

1− e−(w(3)x(3)+b(3))
. (3)

To generate values within ranges of 0◦ – 360◦, 0◦–90◦, -180◦ – 180◦ and -90◦ – 90◦ for
strike, dip, rake and slope, a Scaling & Shifting layer is connected to the third FC layer,
represented as
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y = s0 + s1 � x. (4)

In this layer, s0 = [0◦, 0◦, -180◦, -90◦]T and s1 = [360◦, 90◦, 360◦, 180◦]T are the shifting
and scaling vectors, which correspond to the lower limits and distances between upper and
lower limits of the four parameters of the shear-tensile model, respectively.

Forward modeling layer

In contrast to conventional data-driven machine learning approaches, we incorporate
a forward modeling layer, called Radiation Pattern & Normalization, into the proposed
network to generate theoretical normalized P-wave amplitudes for any given shear-tensile
focal mechanism. Then, the network uses the physics implied by the radiation patterns to
guide the training for model parameters, by minimizing the residual between observed and
modeled data.

In homogenous media, the far-field P-wave displacement caused by a shear-tensile fault
can be expressed as (Ou, 2008)

uP =
µA∆u̇(t− r/α)

4πρα3

r̂TSr̂

r
r̂, (5)

where µ, A, ρ and α represent shear modulus, rupture area, density and P-wave velocity,
respectively; r is the distance between source and receiver; r̂ is a unit vector pointing from
source to receiver; S is the source dislocation tensor; and ∆u̇(t) is the time derivative of
the magnitude of dislocation. The six independent elements of S are

S11 = [2σ/(1− 2σ) + 2 sin2 δ sin2 φ] sin γ − (sin δ cosλ sin 2φ+ sin 2δ sinλ sin2 φ) cos γ

S22 = [2σ/(1− 2σ) + 2 sin2 δ cos2 φ] sin γ + (sin δ cosλ sin 2φ− sin 2δ sinλ cos2 φ) cos γ

S33 = [2σ/(1− 2σ) + 2 cos2 δ] sin γ + sin 2δ sinλ cos γ

S12 = − sin2 δ sin 2φ sin γ + (sin δ cosλ cos 2φ+ sin 2δ sinλ sin 2φ/2) cos γ

S13 = sin 2δ sinφ sin γ − (cos δ cosλ cosφ+ cos 2δ sinλ sinφ) cos γ

S23 = − sin 2δ cosφ sin γ − (cos δ cosλ sinφ− cos 2δ sinλ cosφ) cos γ

(6)

where φ, δ, λ and γ are the strike, dip, rake and slope, respectively, and σ is the Poisson’s
ratio, which is fixed and assumed to be 0.25 in the inversion. As elaborated below, the
take-off angles used in the inversion are based on ray tracing.

As mentioned previously, the observed P-wave amplitudes are scaled over the maxi-
mum amplitude. In terms of the modeling data, when the same normalization is applied,
the first term in equation (5) for different stations are approximately the same, and thus can
be canceled out. Considering that geometrical spreading correction for the layered medium
is already applied to the observed data, the geometrical spreading term, 1/r, in equation (5)
for isotropic media can be neglected, and the normalization of the modeled data only needs
to be applied to the radiation pattern, r̂TSr̂.
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In this study, an isotropic, 1-D layered velocity model is used for ray tracing in order
to estimate the take-off angles. The vector r̂ is calculated based on the azimuth measured
from source to receiver and the take-off angle at the source obtained from ray tracing. To
be consistent with the observed data, the same mask is also applied to the theoretical nor-
malized P-wave amplitudes. As shown in the elliptical block above the forward modeling
layer in Figure 1, these data can be prepared independently outside of the designed neural
network.

Loss function and optimization algorithm

In our neural network, the mean squared error (MSE) between observed and theoretical
P-wave amplitudes is adopted as the loss function and represented as

Loss =
1

N2

N2∑
k=1

‖aobs
k − amod

k ‖22, (7)

where aobs
k and amod

k represent the observed and theoretical normalized P-wave-amplitude
vectors for event k, N2 is the total number of events, and the operator ‖‖22 denotes squared
L2-norm. In the training phase, the physics-guided network utilizes the adaptive momen-
tum (Adam) algorithm (Kingma and Ba, 2014) to update network weights and biases, and
to output optimal shear-tensile focal mechanisms for a set of events. In the Adam algo-
rithm, the learning rates is updated adaptively for each individual model parameter from
estimates of first and second moments of the gradients.

APPLICATION TO A TEST DATASET

Dataset

In this section, we present an application of our proposed neural network to passive
seismic data from the Tony Creek Dual Microseismic Experiment (ToC2ME) (Eaton et al.,
2018; Rodríguez-Pradilla and Eaton, 2019), in which a diverse suite of sensors were utilized
to monitor a four-well hydraulic-fracturing program within the Duvernay Shale formation
west of Fox Creek, Alberta. The acquisition system consists of one strong-motion ac-
celerometer, six broadband seismometers and a 68-station shallow-borehole local network.
As presented by Eaton et al. (2018), over 25,000 putative events were detected with a max-
imum magnitude of MW 3.2, of which 4,083 events with relatively high signal-to-noise
ratio were located.

Using a least-squares inversion based on 3C amplitudes from the dense array observa-
tions of the direct P-wave, Zhang et al. (2019) obtained moment-tensor solutions for 530
high-quality events with moment magnitudes greater than 0.2. According to Zhang et al.
(2019), four groups of mechanisms are evident. Events within groups one and two ex-
hibit predominantly strike-slip mechanisms along subvertical N-S/E-W or NE-SW/NW-SE
trending nodal planes; events within group three exhibit either oblique dip-slip on subverti-
cal NW-SE trending nodal plane or shallow-dipping slip on NE-SW trending nodal plane.
Group four contains events with diverse set of source mechanisms that do not fit into any
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of the previous three major groups. Figure 2 shows the distributions of 530 events, best DC
mechanisms for the three major groups and outliers in group four.

FIG. 2. (a) Spatial distributions for the four groups of events used in this study, and best double-
couple components of the moment tensors obtained by Zhang et al. (2019) for (a) group one,
(b) group two, (c) group three and (d) group four. In figure (a), the circle, diamond, square and
pentagram represent events within group one, group two, group three and group four, respectively,
and these events symbols are scaled based on moment magnitude. In the beachball diagrams,
black circles and crosses denote P and T axes, respectively (modified from Zhang et al., 2019).

In this study, we only focus on the data from the dense shallow-borehole array and
estimate shear-tensile focal mechanisms using the proposed neural network for the 530
high-quality events shown in Figure 2. The adopted 1-D layered velocity model and work-
flow for P-wave-amplitude picking were described by Zhang et al. (2019). It is worth
noting that the proposed neural network can be easily extended to include S-waves in the
inversion. In the case of the ToC2ME dataset, however, P-wave coda signals (mainly re-
verberations within the sedimentary layers) interfere with precise picking of direct S-wave,
especially for low-magnitude events. This interference leads to unstable amplitude picks
for the S-wave. In addition, a test implemented by Zhang et al. (2019) showed that, com-
pared with the source-mechanism solutions obtained with both P- and S-waves, the use
of only P-wave amplitudes yielded more consistent nodal-plane solutions with the linear
alignments of microseismic events and lower misfits. Thus, S-wave amplitudes are not
included in the source-mechanism inversion in this study.

Results

Since a total of 530 events recorded by 68 shallow-borehole stations are used to train the
physics-guided neural network, the input dimension for the first FC layer is 530 × 68 (i.e.,
N1 ×N2). The network is trained with Adam algorithm and a fixed learning rate of 0.0001.
With the batch size of 530 events, the training process takes approximately 220 seconds on
Intel Core i7-8700 CPU (3.20 GHz) for 10,000 epochs. Then, the source mechanisms

CREWES Research Report — Volume 32 (2020) 7



Zhang et al.

generated at the 10,000th iteration are the optimized shear-tensile focal mechanisms for
the 530 events. Figure 3 (a) shows the loss curve during training, in which at the first
1,000 epochs the loss decreases rapidly and significantly with a reduction of ∼ 97% of the
initial loss value. Then the loss decreases slowly, and the training converges to an optimal
solution after 6,000 epochs. To evaluate the retrieved focal mechanisms, the percentage
misfit between the modeled and observed displacement amplitudes is calculated for each
individual event, which is defined as

∆ak =
(aobs

k − amod
k )T (aobs

k − amod
k )

(aobs
k )Taobs

k

, (k = 1, 2, 3, , 530). (8)

FIG. 3. (a) Loss curve using the physics-guided neural network during training and (b) histogram of
misfits between the observed and modeled normalized P-wave displacement amplitudes.

As shown in Figure 3 (b), the misfits for most events within the four groups are rel-
atively small, and 494 out of 530 events have misfits less than 30%. The overall misfit
yielded here is comparable to that by Zhang et al. (2019) for the same dataset. This is
significant, since the previous study used a full moment-tensor model which provided ad-
ditional degrees of freedom. Figures 4 (a)-(d) show the DC focal mechanisms for the four
groups of events, which exhibit similar features to the those in Figures 2 (b)-(e). Namely,
events within both groups one and two have strike-slip dominated mechanisms along sub-
vertical nodal planes but with different strike directions, and that events within group three
exhibit either oblique dip-slip on subvertical plane or shallow-dipping slip. To evaluate the
difference between the two sets of results in Figures 2 (b)-(e) and Figures 4 (a)-(d), the
Kagan angle (Kagan, 1991) is adopted here, which represents the minimum 3D rotation
angle between two DC focal mechanisms. The value of Kagan angle ranges between 0◦

and 120◦, and a value of 120◦ indicates significant difference between two sets of focal
mechanisms. Figure 4 (e) shows the histogram of Kagan angles between results in Figures
2 (b)-(e) and Figures 4 (a)-(d). It can be observed that most events within both group one
and group two have Kagan angles less than 10◦, and most events within group three have
relatively large Kagan angles between 10◦ and 25◦. According to previous studies (e.g., Lee
et al., 2014; Nakamura et al., 2016), a Kagan angle of less than 30◦ indicates that two focal
mechanisms are similar. Based on our calculation, all the retrieved Kagan angles are less
than 30◦, indicating a significant similarity between the two sets of results and confirming
the effectiveness of our proposed physics-guided neural network.
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FIG. 4. DC components of the shear-tensile focal mechanisms for events within (a) group one, (b)
group two, (c) group three, (d) group four and (e) histogram of the Kagan angles between the DC
components estimated using physics-guided neural network and those obtained in Figures 2 (b)-(e)
by Zhang et al. (2019). Black circles and crosses in the beachball diagrams denote P and T axes,
respectively.

In addition to the DC components, our neural network also estimates the slope for each
individual event. Figure 5 displays the histogram of slopes for the 530 events. In general,
most events exhibit positive slope values, indicating a preference for tensile opening rather
than closing. In addition, most events within groups one and two have small slope values,
ranging between -2◦ and 10◦, indicative of almost pure double couple. In comparison,
relatively large slopes are evident for events within group three; nevertheless, the slope
range between 10◦ and 20◦ for this group still reveals DC-dominated source mechanisms.

FIG. 5. Histogram of slopes for the four groups of events.

To illustrate the training process for individual events, we select one representative
event from each of the three major groups. Figure 6 shows misfit versus epoch plots for
these three events; the results for only the first 2,000 epochs are shown for the purpose
of demonstration. Starting from the 100th epoch, the beachball diagrams for the three
events are shown after every 200 epochs, and Kagan angles between the DC components at
the selected epoch and final epoch (i.e., epoch 10,000) are also presented below beachball
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diagrams. For all three events, the misfit decreases rapidly initially, followed by a relatively
slow decline in the misfit curve. Although the three events share similar features in the
misfit curves, different convergence speed can be observed for the three events in Figure 6.
For the two events within group one and group two, no noticeable changes in the beachball
diagrams can be observed after ∼500 epochs, and Kagan angles between the DC source
mechanisms at 1,900th epoch and 10,000th epoch are 1.9◦ and 0.7◦, respectively. Whereas,
the beachball diagram for the event in group three still keeps updated after 500 epochs, and
the difference between focal mechanisms at 1,900th epoch and 10,000 epoch is relatively
large (with a Kagan angle of 4.1◦), which indicates relatively slow convergence speed than
the other two events, and requires more epochs of training to get the optimized solution.
Figure 7 shows beachball diagrams of the retrieved shear-tensile focal mechanisms for
the three events in Figure 6, in which observed normalized P-wave amplitudes are also
projected and represented by the circles with different size. It is evident that the focal-
mechanism solutions are well constrained by the P-wave-amplitude data due to the good
azimuthal coverage of stations and generally high signal-to-noise ratio for these events.

FIG. 6. Misfit curves for the first 2,000 epochs for three representative events from (a) group one, (b)
group two and (c) group three. Beachball diagrams and Kagan angles between focal mechanisms
at selected epochs and the final epoch are also indicated. Beachball diagrams at the last epoch
are shown on the right side of the three subplots.

DISCUSSION

As presented in Figure 4 (e), compared with the other two major groups, the DC com-
ponents for events in group three have relatively large Kagan angles. This group of events
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FIG. 7. Beachball diagrams of the retrieved shear-tensile focal mechanisms for three representative
events from (a) group one, (b) group two and (c) group three. Solid and open circles represent
observed positive and negative P-wave polarities, respectively. The size of the circle is scaled by
observed normalized P-wave amplitude in the absolute sense.

is characterized by complex source mechanisms. The NE-SW trending nodal planes for
this group of events are consistent with the orientation of linear alignment for this group
of events (shown in Figure 2). In addition to the induced-microseismicity revealed NE-
SW trending fault, an NNW-SSE trending basement-rooted fault has also been interpreted
based on the 3D seismic data (Eaton et al., 2018; Igonin et al., 2018; Weir et al., 2018). The
presence of near-synchronous, multi-slip events on two distinct fault planes within the pre-
existing fault system was found to be one of the possible causes of the significant non-DC
components observed for events within group three (Zhang et al., 2019). Compared with
full moment-tensor inversion, a simpler model consisting of four parameters is used to
characterize the source mechanism in this study. In the presence of complex source mecha-
nisms (e.g., the co-slipping along pre-existing faults), the results using the proposed neural
network may yield relatively large difference from the best DC components of conventional
moment-tensor solutions due to its incapability to fit the complex observed amplitude data
generated by multiple fault strands.

A number of sources of uncertainty warrant discussion. For example, a simplified 1-D
layered isotropic velocity model is used to calculate the take-off angles at sources, and the
vertical or lateral deviations from the true velocities may cause errors within the estimated
focal-mechanism solutions. In addition, the event-location error and noise within the ob-
served data may also distort the solutions (Vavryčuk and Kühn, 2012; Tan et al., 2018).
To examine the robustness of our proposed neural network, similar to the study by Zhang
et al. (2019), we conduct a series of uncertainty tests for the retrieved source mechanisms
by implementing the inversion using perturbed event locations, velocities and P-wave am-
plitudes due to noise, respectively. Since the 530 events considered here were located with
uncertainties of less than 30 m for epicenters and less than 70 m for focal depths (Eaton
et al., 2018), event locations in the uncertainty analysis are perturbed within ranges of± 30
m and ± 70 m for epicenters and focal depths, respectively. For the 1-D layered velocity
model, the velocity value of each layer is randomly perturbed with a maximum value of
up to 10%. This range of perturbation is reasonable for the well-log-data derived veloci-
ties in the microseismic data processing, especially in the case where the velocity model
is calibrated with perforation shots (Li et al., 2011; Kuang et al., 2017). In addition, we
also examine the effects on the inversion results from noise by adding different levels of
noise to the P-wave amplitude picked at each individual station. Six noise levels are in-
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vestigated here ranging from 5%, 10% until 30% of the picked P-wave amplitudes (in the
absolute sense) at individual stations. For each the uncertainty test presented here, the in-
version is performed 50 times, and the results are then compared with those obtained with
unperturbed parameters. Table 1 shows the mean Kagan angles and slope deviations be-
tween the results with perturbed and unperturbed parameters. It can be observed that the
results for slopes are robust for all the perturbation cases, and the mean deviations from
slopes obtained with unperturbed parameters are less than 1◦. Compared with slopes, the
DC mechanisms exhibit relatively large deviations with mean Kagan angles less than 8◦ for
all the cases, nevertheless, this Kagan angle range still indicates similar focal mechanisms
according to previous studies (e.g., Lee et al., 2014; Nakamura et al., 2016. In addition,
we can also observe from Table 1 that with the increase of noise level, both the mean slope
deviation and Kagan angle exhibit only a slight increase, e.g., for noise levels of 5% and
30%, the mean slope deviation and Kagan angle increase from 0.67◦, 6.28◦ to 0.94◦, 7.28◦,
indicating the high tolerance of the neural network to noise. Table 2 shows the DC mecha-
nisms obtained with perturbed parameters for three representative events from three major
groups, in which the beachball diagrams for 50 realizations of the source-mechanism in-
version are presented. For each of the three events, the beachball diagrams exhibit highly
similar features, and only minor variations in the nodal-plane solutions could be observed.
In addition, with the increase of noise level, the distribution of nodal planes for the same
event becomes relatively sparse, indicating the increased uncertainty.
Table 1. Mean Kagan angles and slope deviations between inversion results using perturbed and
unperturbed parameters with standard deviations indicated.

Our proposed neural network is implemented with PyTorch, and the training for 530
events with 68 shallow-borehole stations takes approximately 220 seconds on an Intel Core
i7-8700 CPU (3.20 GHz). To examine the computation time for different input sizes under
the same acquisition geometry, we perform source-mechanism inversions separately with
different numbers of events ranging from 100, 200 until 1,000 events. As a comparison,
we also time the forwarding modeling block for 10,000-time runs with different numbers
of events. As shown in Figure 8, the computation time used for the forward modeling
block exhibits an approximate linear increase, and it takes ∼ 75 seconds for 10,000 times
of forward modeling for 1,000 events, which takes up ∼ 20% of the total time used for
neural network training. Similarly, the total training time also increases with the increase
of input data size, and the training with 1,000 events for 10,000 epochs takes ∼ 6 minutes.
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Table 2. Beachball diagrams of the DC solutions using perturbed parameters for three representa-
tive events.

Compared with the conventional full moment-tensor inversion, the use of shear-tensile
model improves the inversion robustness by decreasing the number of model parameters
(i.e., from six to four in this study) and reduction in linearity (Jechumtálová et al., 2014).
For the sake of comparison, here we also estimate the shear-tensile focal mechanisms
for the 530 events with a two-step grid-search algorithm similar to the one proposed by
(Jechumtálová et al., 2014), in which a coarse grid (5◦) is first applied across the whole
model space, then a fine grid (0.2◦) is used in the vicinity of the best solution obtained
from the previous step. Figure 9 shows histograms of slope deviations as well as Kagan
angles between the two sets of results obtained with the proposed neural network and two-
step grid-search method. As shown in Figure 9 (a), the Kagan angles for most events are
less than 10◦, indicating highly similar double-couple components. In addition, relatively
small slope deviations (mainly within the range of -5◦ – 5◦) are also presented in Figure
9 (b). The comparison conducted here further validates the reliability of our solutions. In
terms of the two-step grid search, this inversion procedure is repeated for each individual
event, which takes∼ 90 seconds on average for each event. In contrast, our proposed neural
network simultaneously estimates source mechanisms for multiple events, and only takes
∼ 220 seconds in total.
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FIG. 8. Computation times for the network training and the forward modeling block with various
numbers of input events.

FIG. 9. Histograms of (a) Kagan angles and (b) slope deviations between the two sets of results
retrieved with the proposed network and the two-step grid-search algorithm.

CONCLUSIONS

We have developed a physics-guided neural network to simultaneously estimate shear-
tensile focal mechanisms for multiple microearthquakes recorded by the dense shallow-
borehole array, in which the displacement amplitudes of direct P-wave are used as input.
Compared with conventional data-driven neural networks, the proposed neural network
doesn’t require the training data due to the incorporation of a forward modeling layer (i.e.,
the Radiation Pattern & Normalization layer). The incorporated physics of the forward
problem is used to calculate theoretical normalized P-wave amplitudes for any given source
mechanisms from its previous layer, and the mean squared error between the modeled and
observed amplitude data is used as the loss function. The network weights and source-
mechanism solutions are then optimized by the backpropagation process of the proposed
neural network.

14 CREWES Research Report — Volume 32 (2020)



Source-mechanism inversion via neural network

We have applied the proposed neural network to 530 induced events recorded by dense
shallow-borehole array stations during hydraulic-fracturing operations in the Duvernay
Shale. In general, similar source mechanisms to a previous study have been retrieved for
these events with relatively low misfits, and three major groups have been identified based
on source-mechanism solutions. Compared with the other two major groups, the source
mechanisms for group three have exhibited relatively large Kagan angles (10◦–25◦) with
solutions obtained in previous study in which the source mechanisms for this group were
interpreted by the possible co-slipping of pre-existing faults. This relatively large source-
mechanism deviation is mainly due to the insufficiency of the incorporated shear-tensile
model to characterize complex source mechanisms.

In addition, a series of uncertainty tests presented here indicate that the proposed physics-
guided neural network is tolerant to errors in event locations, velocity model and P-wave
amplitudes, and only relatively small slope deviations (< 1◦) and Kagan angles (< 8◦) have
been observed between the results using perturbed and unperturbed data. The compari-
son with the results using a two-step grid search validates the reliability of our results and
demonstrates significant improvement in computational efficiency.
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