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ABSTRACT

In this study, we use the recurrent neural network (RNN) to achieve viscoelastic VTI
full waveform inversion. Eight parameters are simultaneously inverted, which are elastic
parameters C11, C13, C33, C44 and their corresponding attenuation parameters Qc11, Qc13,
Qc33, Qc44. The recurrent neural network is built according to the stress velocity VTI vis-
coelastic wave equation. We also study the acquisition influence on the inversion results.
Numerical inversion results show that the combination of cross well data and the surface
data can help to better recover the elastic parameters compared with only surface acquisi-
tion in which the receivers and shots are all on the surface of the model. To mitigate the
cross-talk between the parameters, we also use the high order total variation (TV) to miti-
gate the cross-talk. The simple structure model and complex part of the overthrust model
proves the validation of this method.

INTRODUCTION

Elasticity is usually considered as a good model for seismic forward and inversion
problem. However, in real seismic data, the energy of the wave can be converted into dif-
ferent kinds of energy, for instance, heat, due to attenuation (Robertsson et al. (1994)).
This means that pure elastic media may not be enough to demonstrate the real underground
world in some cases. The quality factor Q is usually used to describe the attenuation level
of the subsurface earth. The physical meaning of Q is the number of wavelengths a wave
must propagate through the material before its amplitude drops by a factor e−π. By us-
ing Pade approximation, Day and Minster (1984) combined the viscoelastic theory into
2D time-domain modeling methods. Emmerich and Korn (1987) introduced a generalized
standard linear solid (GSLS) model to approximate the viscoelastic earth model. Roberts-
son et al. (1994) developed the staggered grid finite difference method for viscoelastic
modeling (Bohlen (2002)). The modeling method we use in this study is the extension of
Robertson’s method.

Full waveform inversion (FWI) can be considered as a powerful method based on data
fitting to invert velocity models. Based on perturbation theory and Born approximation the
conventional FWI uses the adjoint state method, which is the zero-lag correlation between
forward propagation wavefields and backpropagation wavefields, to calculate the gradients
for each parameter. The Hessian matrix which is the second-order derivative of the objec-
tive function with respect to the parameters is considered as a way to mitigate cross-talk
between the parameters. The attenuation effect can have an important effect in full wave-
form inversion. Groos et al. (2012) studied the effect of attenuation in shallow seismic
surface waves for full waveform inversion. Belahi et al. (2015), by comparing the elas-
tic full waveform inversion and viscoelastic full waveform inversion, stressed the need to
add a proper amount of attenuation when inversion long offset seismic data. Belahi et al.
(2016) found that inverting for all parameters together is necessary to get access to the
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short-wavelength features of the subsurface model because the short-wavelength attenua-
tion model is required to properly treat reflections and converted waves close to the critical
angle. Fabien-Ouellet et al. (2016) reformulated the wave equations for the viscoelastic
wave equation and derive the adjoint state equations for viscoelastic media and then per-
form the viscoelastic full waveform inversion is actual field data. Fabien-Ouellet et al.
(2017) uses parallel High-Performance Computers to calculate viscoelastic full waveform
inversion in the time domain. Yang et al. (2016) studied 3-D viscoelastic full waveform in-
version in viscoelastic media using generalized Maxwell/Zener body including an arbitrary
number of attenuation mechanisms.

In this study, we formulate VTI viscoelastic recurrent neural network for full waveform
inversion, which forms the theory-guided neural network. The network is built with several
RNN cells and each RNN cell is designed according to the VTI viscoelastic stress velocity
wave equation. In this article, we first introduce the based theory about the viscoelastic VTI
wave equation. Second, we introduce how the RNN network is formulated based on this
equation. Third, we introduced the regulation terms for the misfits to mitigate the cross-talk
noise. Fourth, we use two numerical tests to prove the validation of our method.

THEORY

The constitutive relationship for a vicoelastic media can be expressed as:

σij = Cijkl ∗ ε̇kl = Ċijkl ∗ εkl, (1)

where the Ċijkl is a tensor called the relaxation stiffness matrix parameters. ∗ means the
time convolution. The dot means the time differential. σij means the stress and εkl demon-
strate the strain. In a GSLS framework, the relaxation function could be described as :

C(t) = C

(
1−

L∑
l=1

(
1− τCεl

τCσl

)
e−t/τ

C
σl

)
θ(t), (2)

where C is the elastic modulus, L is the number of layers for viscoelastic model. τCσl and
τCεl are the relaxation time for stress and strain. The time differential of C is :

Ċ = C

(
1

τCσl

L∑
`=1

(
1− τCe`

τCσ`

)
e−t/τ

C
σl

)
θ(t) + C

(
1−

L∑
`=1

(
1− τCe`

τCσ`

)
e−t/τ

C
σl

)
δ(t), (3)

Thus for each stiffness parameters we have:

Ċ11 = C11

(
1

τC11
σl

L∑
`=1

(
1− τC11

e`

τC11
σ`

)
e−t/τ

C11
σl

)
θ(t) + C11

(
1−

L∑
`=1

(
1− τC11

e`

τC11
σ`

)
e−t/τ

C11
σl

)
δ(t),

(4)

Ċ13 = C13

(
1

τC13
σl

L∑
`=1

(
1− τC13

e`

τC13
σ`

)
e−t/τ

C13
σl

)
θ(t) + C13

(
1−

L∑
`=1

(
1− τC13

e`

τC13
σ`

)
e−t/τ

C13
σl

)
δ(t),

(5)
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Ċ33 = C33

(
1

τC33
σl

L∑
`=1

(
1− τC33

e`

τC33
σ`

)
e−t/τ

C33
σl

)
θ(t) + C33

(
1−

L∑
`=1

(
1− τC33

e`

τC33
σ`

)
e−t/τ

C33
σl

)
δ(t),

(6)

Ċ44 = C44

(
1

τC44
σl

L∑
`=1

(
1− τC44

e`

τC44
σ`

)
e−t/τ

C44
σl

)
θ(t) + C44

(
1−

L∑
`=1

(
1− τC44

e`

τC44
σ`

)
e−t/τ

C44
σl

)
δ(t),

(7)

For viscoelastic VTI media the stiffness matrix is:

CANVTI =

Ċ11 Ċ13 0

Ċ13 Ċ33 0

0 0 Ċ44

 , (8)

Thus the stress velocity relationship between the stress and strain in the viscoelastic
media can be expressed as:∂tσxx∂tσzz

∂tσxz

 =

Ċ11 Ċ13 0

Ċ13 Ċ33 0

0 0 Ċ44

 ∗
 ∂xvx

∂zvz
∂xvz + ∂zvx

 , (9)

where * represents the time convolution. Now, we substitute equation (3) to (7) into equa-
tion (9). Thus we have the following formula:

∂tσxx =Ċ11∂xvx + Ċ13∂zvz

=

[
C11

(
1

τC11
σl

L∑
`=1

(
1− τC11

e`

τC11
σ`

)
e−t/τ

C11
σl

)
θ(t)

]
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C11

(
1−

L∑
`=1

(
1− τC11

e`

τC11
σ`

)
e−t/τ

C11
σl

)
δ(t)

]
∗ ∂xvx+[

C13

(
1

τC13
σl

L∑
`=1

(
1− τC13

e`

τC13
σ`

)
e−t/τ

C13
σl

)
θ(t)

]
∗ ∂zvz+[

C13

(
1−

L∑
`=1

(
1− τC13

e`

τC13
σ`

)
e−t/τ

C13
σl

)
δ(t)

]
∗ ∂zvz,

(10)
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∂tσxx =Ċ11∂xvx + Ċ13∂zvz

=

[
C11

(
1

τC11
σl

L∑
`=1

(
1− τC11

e`

τC11
σ`

)
e−t/τ

C11
σl

)
θ(t)

]
∗ ∂xvx+[

C11

(
1−

L∑
`=1

(
1− τC11

e`

τC11
σ`

))]
×∂xvx+[

C13

(
1

τC13
σl

L∑
`=1

(
1− τC13

e`

τC13
σ`

)
e−t/τ

C13
σl

)
θ(t)

]
∗ ∂zvz+[

C13

(
1−

L∑
`=1

(
1− τC13

e`

τC13
σ`

))]
×∂zvz,

(11)

Here we note that RC11
xx and RC13

zz are the relaxation fields, and the detail expression for
these wave fields are:

RC11
xx =

[
C11

(
1

τC11
σl

L∑
`=1

(
1− τC11

e`

τC11
σ`

)
e−t/τ

C11
σl

)
θ(t)

]
∗ ∂xvx, (12)

RC13
zz =

[
C13

(
1

τC13
σl

L∑
`=1

(
1− τC13

e`

τC13
σ`

)
e−t/τ

C13
σl

)
θ(t)

]
∗ ∂zvz, (13)

With equation (12) and (13) σxx can be written as:

∂tσxx = Ċ11∂xvx + Ċ13∂zvz =

RC11
xx +

[
C11

(
1−

L∑
`=1

(
1− τC11

e`

τC11
σ`

))]
×∂xvx+

RC13
zz +

[
C13

(
1−

L∑
`=1

(
1− τC13

e`

τC13
σ`

))]
×∂zvz,

(14)

When we choose l = 1 and take the partial derivative of the relaxation fields with
respect to time, we have :

∂tR
C11
xx = (∂xvx) ∗

[
π
−1

τC11
σl

2

(
1− τC11

εl

τC11
σl

)
e−t/τ

C11
σl θ(t) + π

1

τC11
σl

(
1− τC11

εl

τPσl

)
e−t/τ

C11
σl δ(t)

]

=− 1

τC11
σl

RC11
xx −

1

τC11
σl

C11

(
τC11
εl

τC11
σl

− 1

)
∂xvx,

(15)
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∂tR
C13
zz = (∂zvz) ∗

[
π
−1

τC13
σl

2

(
1− τC13

εl

τC13
σl

)
e−t/τ

C13
σl θ(t) + π

1

τC13
σl

(
1− τC13

εl

τPσl

)
e−t/τ

C13
σl δ(t)

]

=− 1

τC13
σl

RC13
xx −

1

τC13
σl

C13

(
τC13
εl

τC13
σl

− 1

)
∂zvz,

(16)

Thus when we are using one relaxation scheme. The stress in viscoelastic VTI media
can be expressed as:

∂tσxx = Ċ11∂xvx + Ċ13∂zvz =

C11R
C11
xx +

[
C11

(
τC11
e`

τC11
σ`

)]
∂xvx+ C13R

C13
zz +

[
C13

(
τC13
e`

τC13
σ`

)]
∂zvz,

(17)

where RC11
xx and RC13

zz can be expressed as:

∂tR
C11
xx = − 1

τC11
σl

RC11
xx −

1

τC11
σl

C11

(
τC11
εl

τC11
σl

− 1

)
∂xvx (18)

∂tR
C13
zz = − 1

τC13
σl

RC13
zz −

1

τC13
σl

C13

(
τC13
εl

τC13
σl

− 1

)
∂zvz (19)

∂tσzz = Ċ13∂xvx + Ċ33∂zvz =

C13R
C13
xx +

[
C13

(
τC13
e`

τC13
σ`

)]
∂xvx+ C33R

C33
zz +

[
C33

(
τC33
e`

τC33
σ`

)]
∂zvz,

(20)

where RC13
xx and RC33

zz can be expressed as :

∂tR
C13
xx = − 1

τC13
σl

RC13
xx −

1

τC13
σl

C13

(
τC13
εl

τC13
σl

− 1

)
∂xvx (21)

∂tR
C33
zz = − 1

τC33
σl

RC33
zz −

1

τC33
σl

C33

(
τC33
εl

τC33
σl

− 1

)
∂zvz (22)

∂tσxz = Ċ44 (∂zvx + ∂xvz) =

C44R
C44
zz +

[
C44

(
τC44
e`

τC44
σ`

)]
(∂zvx + ∂xvz)

(23)

where RC44
xx can be expressed as :

∂tR
C44
xx = − 1

τC44
σl

RC44
xx −

1

τC44
σl

C44

(
τC44
εl

τC44
σl

− 1

)
(∂zvx + ∂xvz) (24)
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Algorithm 1 Sequence of calculations in the viscoelastic VTI RNN cell
Input: Source: sx, sz; Space partial derivative convolution kernel. kx2 ,kz1 ,kx1 ,kz2 time

step: dt. Stiffness parameters: C11,C13,C33,C44,
Output: Update velocity field at t+ 1

2
and stress fields at t+ 1

1: σtxx ← σtxx + sx
2: σtzz ← σtzz + sz
3: ∂xσ

t
xx ← (σtxx ∗ kx1)/ρ

4: ∂zσ
t
xz ← (σtxz ∗ kz2)/ρ

5: ∂xσ
t
xz ← (σtxz ∗ kx2)/ρ

6: ∂zσ
t
zz ← (σtzz ∗ kz1)/ρ

7: v
t+ 1

2
x ← v

t− 1
2

x + dt(∂xσ
t
xx) + dt(∂zσ

t
xz)

8: v
t+ 1

2
z ← v

t− 1
2

z + dt(∂zσ
t
zz) + dt(∂xσ

t
xz)

9: ∂xv
t+ 1

2
x ← v

t+ 1
2

x ∗ kx2
10: ∂zv

t+ 1
2

x ← v
t+ 1

2
x ∗ kz1

11: ∂xv
t+ 1

2
z ← v

t+ 1
2

z ∗ kx1
12: ∂zv

t+ 1
2

z ← v
t+ 1

2
z ∗ kz2

13: σt+1
zz = σtzz + dt

{
C13R

C13
xx +

[
C13

(
τ
C13
e`

τ
C13
σ`

)]
∂xvx + C33R

C33
zz +

[
C33

(
τ
C33
e`

τ
C33
σ`

)]
∂zvz

}
14: σt+1

xx = σtxx + dt

{
C11R

C11
xx +

[
C11

(
τ
C11
e`

τ
C11
σ`

)]
∂xvx + C13R

C13
zz +

[
C13

(
τ
C13
e`

τ
C13
σ`

)]
∂zvz

}
15:

16: σt+1
xz = σtxz + dt

{
C44R

C44
zz +

[
C44

(
τ
C44
e`

τ
C44
σ`

)]
(∂zvx + ∂xvz)

}
17: ∂tR

C11
xx = − 1

τ
C11
σl

RC11
xx − 1

τ
C11
σl

C11

(
τ
C11
εl

τ
C11
σl

− 1

)
∂xvx

18: ∂tR
C13
xx = − 1

τ
C13
σl

RC13
xx − 1

τ
C13
σl

C13

(
τ
C13
εl

τ
C13
σl

− 1

)
∂xvx

19: ∂tR
C13
zz = − 1

τ
C13
σl

RC13
xx − 1

τ
C13
σl

C13

(
τ
C13
εl

τ
C13
σl

− 1

)
∂zvz

20: ∂tR
C33
zz = − 1

τ
C33
σl

RC33
xx − 1

τ
C33
σl

C33

(
τ
C33
εl

τ
C33
σl

− 1

)
∂zvz

21: ∂tR
C44
xz = − 1

τ
C44
σl

RC44
xx − 1

τ
C44
σl

C44

(
τ
C44
εl

τ
C44
σl

− 1

)
(∂zvx + ∂xvz)

Algorithm 1 shows the basic structure of the recurrent neural network. At each time step
the discrete sources sx and sz act as inputs; the velocity and stress information, v

t− 1
2

x , v
t− 1

2
z ,

σtxx, σtzz, and σtxz, is communicated between the RNN cells ; the partial derivative fields,

∂xσ
t
xx, ∂zσtzz,∂xσ

t
xz, ∂zσ

t
xz, ∂xv

t+ 1
2

x , ∂zv
t+ 1

2
x ,∂xv

t+ 1
2

z , ∂zv
t+ 1

2
z are the internal variables in each

RNN cell. Stiffness parameters: C11,C13,C33,C44, are the stiffness matrix parameters we
are going to invert for the inversion and τC11

σ` ,τC11
ε` are the stress and strain relaxation time

for parameter C11. τC13
σ` ,τC13

ε` are the stress and strain relaxation time for parameter C13.
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τC44
σ` ,τC33

ε` are the stress and strain relaxation time for parameter C33. τC44
σ` ,τC44

ε` are the
stress and strain relaxation time for parameter C44. We find that this image convolution
operator is also capable of calculating space partial derivatives if the convolution kernel is
designed according to the finite difference coefficients. dx, dz are the grid intervals, and the
image convolution kernels are: kx1 = a/dx, kx2 = b/dx, kz1 = aT/dz, and kz2 = bT/dz,
where a = [0, 1/24,−9/8, 9/8,−1/24] and b = [1/24,−9/8, 9/8,−1/24, 0]. a and b
are 1×5 dimension arrays. kx1 and kx2 are kernels, for the image convolution process,
responsible for calculating the staggered grid space partial derivative in x direction. kz1 and
kz2 are kernels, for the image convolution process, responsible for calculating the staggered
grid space partial derivative in z direction, and that is also why the arrays, a and b, are
transposed in kz1 and kz2 . Space partial derivative calculated in this way is, mathematically,
the same with conventional staggered grid method.

INVERSION WITH TOTAL VARIATION REGULARIZATION

Here we fist introduce the elastic RNN misfits based on l2 norm with high order TV
regularization:

ΦTV
l2 (C11,C13,C33,C44,Qc11,Qc13,Qc33,Qc44, ) =

1

2
‖Dsyn(C11,C13,C33,C44,Qc11,Qc13,Qc33,Qc44)−Dobs‖2

2+

αc11
1 ΘTV (C11) + αc13

1 ΘTV (C13) + αc33
1 ΘTV (C33) + αc44

1 ΘTV (C44)+

αQc11
1 ΘTV (Qc11) + αQc13

1 ΘTV (Qc13) + αQc33
1 ΘTV (Qc33) + αQc44

1 ΘTV (Qc44)

αc11
2 ΥTV (C11) + αc13

2 ΥTV (C13) + αc33
2 ΥTV (C33) + αc44

2 ΥTV (C44)+

αQc11
2 ΥTV (Qc11) + αQc13

2 ΥTV (Qc13) + αQc33
2 ΥTV (Qc33) + αQc44

2 ΥTV (QC44),

(25)

where αc11
1 , αc13

1 , αc33
1 , αc44

1 , are values of Lagrange multipliers. ΘTV and ΥTV represent
first and second order TV regularization functions respectively. Dsynrepresents the syn-
thetic data, which is the function of the model parameters. Dobs is the observed data. ΘTV

and ΥTV represent functions for calculating the first and second order TV relularizations
for the models.

The first order TV regularization term can be expressed as:

TV1((m)) =
n−1∑
i=1

m−1∑
j=1

|Mi+1,j −Mi,j|+
n−1∑
i=1

m−1∑
j=1

|Mi,j+1 −Mi,j| =

(
∇x,∇z

)(m
m

)
=
(
Lx,Lz

)(m
m

)
= ΘTV (m),

(26)

where Mi,j represents the element in model parameter vector. n and m are the grid num-
bers in x and z directions respectively. The second order TV regularization term can be
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expressed as:

TV2((m)) =
n−1∑
i=1

m−1∑
j=1

|Mi+1,j − 2Mi,j +Mi−1,j|+
n−1∑
i=1

m−1∑
j=1

|Mi,j+1 − 2Mi,j +Mi,j−1|

=
(
∇xx,∇zz

)(m
m

)
=
(
Kxx,Kzz

)(m
m

)
= ΥTV (m).

(27)

Lx and Lz are the first order differential vectors to calculate the first order total vari-
ations in x and z directions respectively. Kxx and Kzz are the second order differential
vectors to calculate the second order total variations in x and z directions respectively.

The derivative of ΦTV
l2 for each parameter, which is the gradient for C11, C13 and C33,

C44 based on the lTV2 norm, can be expressed as:

∂ΦTVl2
∂C11
∂ΦTVl2
∂C13
∂ΦTVl2
∂C33
∂ΦTVl2
∂C44
∂ΦTVl2
∂Qc11
∂ΦTVl2
∂Qc13
∂ΦTVl2
∂Qc33
∂ΦTVl2
∂Qc44


=



Gl2c11

Gl2c13

Gl2c33

Gl2c44

Gl2Qc11

Gl2Qc13

Gl2Qc33

Gl2Qc44


+



Rl2c11

Rl2c13

Rl2c33

Rl2c44

Rl2Qc11

Rl2Qc13

Rl2Qc33

Rl2Qc44


, (28)

where Gl2c11 ,Gl2c13 ,Gl2c33 ,Gl2c44 , Gl2Qc11
,Gl2Qc13

,Gl2Qc33
,Gl2Qc44

,are the gradient vec-
tors for parameters C11,C13, C33, C44, Qc11,Qc13, Qc33, Qc44 respectively. In this study
we use the Automatic Differential method, which is to generate the gradients for the model
parameters.

Now we rewrite the misfit function as:

ΦTV = JD + Jr1 + Jr2, (29)

where JD represents the any kind of norm misfit between observed data and synthetic data.
Jr1 = αc11

1 ΘTV (C11) + αc13
1 ΘTV (C13) + αc33

1 ΘTV (C33) + αc44
1 ΘTV (C44) +

αQc11
1 ΘTV (Qc11) + αQc13

1 ΘTV (Qc13) + αQc33
1 ΘTV (Qc33) + αQc44

1 ΘTV (Qc44). Jr2 =
αc11

2 ΘTV (C11) + αc13
2 ΘTV (C13) + αc33

2 ΘTV (C33) + αc44
2 ΘTV (C44) +

αQc11
2 ΘTV (Qc11) +αQc13

2 ΘTV (Qc13) +αQc33
2 ΘTV (Qc33) +αQc44

2 ΘTV (Qc44). The values
for Lagrange multiples are chosen according to the following formula:

K =
JD

Jr1 + Jr2
. (30)

We should keep the balance between the influence of the regulation terms and data misfit
term. If K is too large, the data misfit JD would dominate the final misfit value and the
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regularization term does not have enough influence on the inversion results. If K is too
small, the regularization term would have too much influence on the inversion results. In
this study, K value is chosen to between 0.1 and 1, to make sure the regularization terms
have reasonable influence in the inversion. K should be relatively large when noise occurs
in the data.

FIG. 1. True and initial viscoelastic VTI models. (a) True C11 model (b) Initial C11 model. (c) True
C44 model (d) Initial C44 model. (e) True C13 model (f) Initial C13 model. (g) True C33 model (h) Initial
C33 model. (i) True Qc11 model (j) Initial Qc11 model. (k) True Qc44 model (l) Initial Qc44 model. (m)
True Qc13 model (n) Initial Qc13 model. (o) True Qc33 model (p) Initial Qc33 model.

NUMERICAL TEST

In this numerical test, the size of the model is 50×50. dx = dz = 7m. The source is
the Rickre’s wavelet with main frequency 25Hz. Figure 1 (a) and (b) are the true and initial
C11. Figure 1 (c) and (d) are the true and initial C44. Figure 1 (e) and (f) are the true and
initial C13. Figure 1 (g) and (h) are the true and initial C33. Figure 1 (i) and (j) are the true
and initial Qc11. Figure 1 (k) and (l) are the true and initial Qc44. Figure 1 (m) and (n) are
the true and initial Qc13. Figure 1 (o) and (p) are the true and initial Qc33.

Figure 2 shows the inversion results by using the surface acquisition. In this study the
sources and the receivers are all located at the surface of the models. Figure 2 (a) is the
inversion results for C11. Figure 2 (b) is the inversion results for C44. Figure 2 (c) is the

CREWES Research Report — Volume 32 (2020) 9
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FIG. 2. Surface acquisition RNN viscoelastic VTI models the inversion. (a) C11 inversion result. (b)
C44 inversion result. (c) C13 inversion result. (d) C33 inversion result. (e) Qc11 inversion result. (f)
Qc44 inversion result. (g) Qc13 inversion result. (h) Qc33 inversion result.

inversion results for C13. Figure 2 (d) is the inversion results for C33. Figure 2 (e) is the
inversion results for Qc11. Figure 2 (f) is the inversion results for Qc44. Figure 2 (g) is
the inversion results for Qc13. Figure 2 (h) is the inversion results for Qc33. From the
comparison between the inversion results and the true models, we can see that the general
structure of the box model has been recovered, however, the inversion shows a certain
amount of noise be which does not appear in the true models. This may due to the inversion
is based on gradient-based method and the inversion is influenced by the cross-talk between
the parameters.

FIG. 3. RNN viscoelastic VTI models the inversion based on cross well data. (a) C11 inversion
result. (b) C44 inversion result. (c) C13 inversion result. (d) C33 inversion result. (e) Qc11 inversion
result. (f) Qc44 inversion result. (g) Qc13 inversion result. (h) Qc33 inversion result.

Figure 3 shows the inversion results by using the cross well data. In this numerical test,

10 CREWES Research Report — Volume 32 (2020)
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the shots are generated by the vertical well on the right-hand side of the model and the
receivers are on both the surface and another well on the left side of the model. 10 shots
are distributed in the well on the right side of the model. 50 receivers are distributed on the
surface and the well on the left side of the model.Figure 3 (a) is the inversion results for
C11. Figure 3 (b) is the inversion results for C44. Figure 3 (c) is the inversion results for
C13. Figure 3 (d) is the inversion results for C33. Figure 3 (e) is the inversion results for
Qc11. Figure 3 (f) is the inversion results for Qc44. Figure 3 (g) is the inversion results for
Qc13. Figure 3 (h) is the inversion results for Qc33. From the comparison between Figure
2 and Figure 3. We can see that in Figure 3 the box structure of the models is more clearly
recovered, especially for C11, Qc11, C44 and Qc44. The cross-talk noise in the inversion
still appears in the inversion results, which means that the inversion still suffers from the
cross-talk issue. Cross well data has a better ability to recover the true structure of the
velocity models.

FIG. 4. Cross well data and surface data acquisition RNN viscoelastic VTI FWI with high order
total variation. (a) C11 inversion result. (b) C44 inversion result. (c) C13 inversion result. (d) C33

inversion result. (e) Qc11 inversion result. (f) Qc44 inversion result. (g) Qc13 inversion result. (h)
Qc33 inversion result.

Figure 4 shows the inversion results by using the cross well data and the surface data
acquisition with total variation regularization. Figure 4 (a) is the inversion results for C11.
Figure 4 (b) is the inversion results for C44. Figure 4 (c) is the inversion results for C13.
Figure 4 (d) is the inversion results for C33. Figure 4 (e) is the inversion results for Qc11.
Figure 4 (f) is the inversion results for Qc44. Figure 4 (g) is the inversion results for Qc13.
Figure 4 (h) is the inversion results for Qc33. With this high order TV regulation the inver-
sion of the box structure is more clearly reflected, i.e. Figure 4 (a) , Figure 4 (b), Figure 4
(e), Figure 4 (f). The cross-talk noise between the parameters is also mitigated in this test.
Thus we believe the inversion with the combination of surface and cross well data with
high order TV regulation has the best inversion results.

Figure 5 to Figure 12 shows the inversion for part of the Marmusi model. The size of
the model is 125×125. dx = dz = 10m. The source of the wavelet is the Ricker’s wavelet.
The main frequency of the wavelet is 30Hz. We also use both the combination of the cross
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FIG. 5. C11 inversion. (a) True C11. (b) Initial C11. (c) Inversion result for C11.

FIG. 6. C13 inversion. (a) True C13. (b) Initial C13. (c) Inversion result for C13.

FIG. 7. C33 inversion. (a) True C33. (b) Initial C33. (c) Inversion result for C33.

well data and the surface data acquisition to invert the models. We use the Adam algorithm
as the optimization method. The maximum iteration is 100. From Figure 5 to Figure 8 we
can see that the inversion gives accurate inversion results for the elastic modulus, especially
for parameter C11 and C13, Though noise appears in the inversion results for C13 and C44,
the inversion still has the tendency to converge to the right inversion results. Figure 9 to
12 shows the inversion results for the attenuation models.The inversion suffers from the
dispersion noise occurs between the fined layers. This effect may due to the dispersion
effect of the forward modeling and the cross-talk between the parameters. How to mitigate
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FIG. 8. C44 inversion. (a) True C44. (b) Initial C44. (c) Inversion result for C44.

FIG. 9. Qc11 inversion. (a) True Qc11. (b) Initial Qc11. (c) Inversion result for Qc11.

FIG. 10. Qc13 inversion. (a) True Qc13. (b) Initial Qc13. (c) Inversion result for Qc13.

such kind of effect still need to be further studied.

CONCLUSIONS

In this study, based on the viscoelastic VTI staggered grid stress velocity wave equa-
tion, we build the VTI anelastic RNN cell and performed the viscoelastic full waveform
inversion, which forms the theory based machine learning full waveform inversion. This
inversion framework would generate the gradient automatically, and the gradients are the
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FIG. 11. Qc11 inversion. (a) True Qc11. (b) Initial Qc11. (c) Inversion result for Qc11.

FIG. 12. Qc44 inversion. (a) True Qc44. (b) Initial Qc44. (c) Inversion result for Qc44.

exact gradients based on the forward computational graph.

Numerical testes show that the inversion framework we introduced would generate the
correct inversion results for C11, C13, C33, C44 and Qc11, Qc13, Qc33, Qc44. The numerical
tests shows that the inversion of θ the title angle is the hardest to recover. We also use high
order total variation (TV) regularization to mitigate the cross-talks between each param-
eters. With Automatic differential method the gradient of the complex media parameters
based on complex misfits can be calculated. The numerical tests also proved the validation
of this method.
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