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ABSTRACT

In this study, we use the recurrent neural network (RNN) to achieve TTI elastic full
waveform inversion. The motivation for building such a network is that in real media full
waveform inversion, the physics of wave propagation is very complex, and implementing
insufficient accurate wave equations in such complex media would lead modeling errors.
Most fractures are not vertically but with certain dips and azimuths, thus estimating the title
angles along with the elastic parameters are important for accurately invert the parameters.
The recurrent neural network (RNN) is a typical type of neural network that is consisted of
several RNN cells. In this study, each RNN cell is designed according to the staggered grid
stress velocity TTI wave equation and the Voigt stiffness parameters and the title angles
are considered as the parameters in this inversion. Based on the forward computational
graph, the gradients with respect to each parameter are given by the backpropagation of
the forward computational graph. In order to mitigate the cross talk, we use high order
total variation (TV) regularization to mitigate the cross-talk in the inversion, Numerical
inversions using simple models and complex models prove the validation of this method.

INTRODUCTION

Full-waveform inversion (FWI), an iterative nonlinear optimization procedure, can be
used to obtain high-resolution seismic images. Tarantola (1984) shows that the Fréchet
derivatives of a waveform-difference misfit function can be computed via the interaction
between a forward-propagating wavefield and a reverse- propagating data-residual wave-
field. In TI media the anisotropic symmetry axis is commonly chosen to be orthogonal
to the bedding plane of geologic structures. Wang and Tsvankin (2013) shows that the
anisotropic parameters α0, ε, and δ are recoverable through the moveout of a common-
image-gather of Kirchhoff migration, which is iterated using ray-based tomography. The
symmetry axis is assumed to be perpendicular to reflectors in the migrated image. Oropeza
and McMechan (2014) estimate the 2D acoustic TTI parameters α0, ε, and δ by maximiz-
ing the stacked amplitude along the traveltime curve in a common-reflection-point gather.
During the inversion, α0 is weighted less than θ and ε to reduce the dominance of α0. The
orientation of the symmetry axis orthogonal to the local reflector orientation is calculated
using parsimonious migration Hua and McMechan (2003), and errors in θ are shown to
affect the recovery of ε and δ. In 2D elastic VTI media, Lee et al. (2010) propose a strat-
egy, in which the Voigt parameters C11, C33, C44, and ε are independently updated, and C11

is updated using the estimated C33 and ε. Gholami et al. (2013) consider three different
parameterizations, namely, α0, δ, ε, and αNMO, δ, ε, and αNMO, δ, n. In each of the above
parameterizations, the dimensionless parameters are less influential than the wave speed α0

or αNMO; at the final iteration, the inverted Thomsen parameters are similar to the initial
ones. These experiments imply that keeping the true Thomsen parameters for example,
obtained from well logs, Hornby et al. (2003), fixed during the inversion does not signifi-
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cantly affect the recovery of the wave speeds. Gholami et al. (2013) also note that C11 and
C33 significantly affect the data, and they are three times more sensitive than C14, which is
subject to trade-offs for far offset data.

The power of machine learning has become more and more noticed by Geophysicists.
One of the most powerful advantages for machine learning is that it could build the linear or
nonlinear relationship between the input and output through training the trainable parame-
ters. Data-driven methods in machine learning has been implemented by many Geophysics
researchers. Reading et al. (2015) showed how the statistical, robust, output from the ma-
chine learning exercise can be used to guide the construction of improved volume geome-
try within a 3D GOCAD geological and geophysical modeling environment.Cracknell and
Reading (2013) found that the use of optimal uncertainty thresholds significantly improves
the overall classification accuracy of RF predictions, but not those of supportive vector ma-
chine (SVM), by eliminating the maximum number of incorrectly classified samples while
preserving the maximum number of correctly classified samples Wrona et al. (2018) used
state-of-the-art 3D broadband seismic reflection data of the northern North Sea. Yang and
Ma (2019) introduced an inversion method that is based on the convolutional neural net-
work, which reduces the strong dependency of initial models for scalar wave FWI. Lin and
Wu (2018) designed the InverseNet bases on the convolutional network to do full wave-
form inversion. However, these methods are mainly based on the data-driven methods,
which means that these methods need a huge amount of time for training and ignore the
theory we know about inversion and wave propagation. If the over-fitting and under-fitting
problems occur in these methods, the inversion results would be badly influenced.

In this study, we are implementing theory-guided networks, which are different from
the data-driven methods. Data-driven methods use a large amount of data set to train a
network so that a network can learn the pattern between the input and output and build a
mapping between them. However, such a training process ignores the basic physics laws
we know about wave propagation. Also, how to choose the training data set would be
an issue since the wave propagation in the under-ground world is so complex that we can
hardly get the exact mapping between the seismic records and the elastic parameters in
the real data set for training. It has recently been shown (Sun et al., 2020) that seismic
wave propagation can be simulated with a specialized recurrent neural network (RNN),
and that the process of training such a network with a single seismic data set is equivalent
to carrying out seismic full waveform inversion (FWI). The recurrent neural network in this
test is built by using such a network the RNN cell is designed according to the staggered
grid TTI wave equation.

This article is organized as follows. First, we introduce the how TTI elastic wave equa-
tion is derived. Second, we show how the title angle can influence the waveform. Third, we
introduce the high order total variation misfits. Fourth, we perform inversions on simple
and complex models to prove the validation of this method. The final part is the conclu-
sions.
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DERIVATION OF THE TTI WAVE EQUATION

Tilted transverse isotropy (TTI) is a form of rotated transverse isotropy that can be de-
scribed by VTI parameters together with two spatially variable rotation angles, namely,
azimuth φ and tilt angle θ. For 2D TTI, the orientation of the anisotropic symmetry axis
can be described using only the tilt angle. In real earth medium, the patterns of the de-
veloped fractures are very complex. Most fractures are not vertically but with certain dips
and azimuths. In this case, the fractured medium is equivalent to an elastic TTI medium
and its stiffness matrix in Cartesian coordinate is no longer the same as the VTI medium
constitutive equations in the constitutive coordinate. For TTI medium with a tilted axis
of symmetry, there is an angle between its constitutive coordinates and the observation
coordinates.

Using bond transformation, the elasticity coefficients of TTI medium with any azimuths
and dips can be transformed from the constitutive coordinates to the Cartesian coordinates.
Subsequent wave equation derivation and solution can be facilitated. Bond transformation
matrix includes the polarization transformation matrix Mθ and the orientation transforma-
tion matrix Mφ:

Mθ =


cos2θ 0 sin2θ 0 −sin2θ 0

0 1 0 0 0 0
sin2θ 0 cos2θ 0 sin2θ 0

0 0 0 cosθ 0 sinθ
1
2
sin2θ 0 −1

2
sin2θ 0 cos2θ 0

0 0 0 −sinθ 0 cosθ

 (1)

Mφ =


cos2φ sin2φ 0 0 0 −sin2φ
sin2φ cos2φ 0 0 0 sin2φ

0 0 1 0 0 0
0 0 0 cosφ sinφ 0
0 0 0 −cosφ cosφ 0

−1
2
sin2φ −1

2
sin2φ 0 0 0 cos2φ

 (2)

In Cartesian observation system, the elastic coefficient matrix of a TTI media can be
expressed as:

CTTI = MθMθCVTIM
T
φM

T
φ , (3)

where the superscript T denotes the matrix transpose. In this study we note rotation matrix
R as rotation matrix and R = MθMθ.
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The transformation matrix is:

MθMθ =


cos2φ sin2φcos2θ sin2φsin2θ −sin2φsin2θ sin2φsinθ −sin2φcosθ
sin2φ cos2φcos2θ cos2φsin2θ −cos2φsin2θ −sin2φsinθ = sin2φcosθ

0 sin2θ cos2θ sin2θ 0 0
0 1

2
cosφsin2θ −1

2
cosφsin2θ cosφcos2θ sinφcosθ sinφsinθ

0 −1
2
sinφsin2θ 1

2
sinφsin2θ −sinφcos2θ cosφcosθ cosφsinθ

1
2
sin2φ −1

2
sin2φcos2θ −1

2
sin2φsin2θ 1

2
sin2φsin2θ −cos2φsinθ cos2φcosθ

 ,
(4)

Because we are stating the 2D theory, only a tilt-angle rotation is involved. If a 2D elastic
VTI medium is considered, the symmetric stiffness (Voigt) matrix is reduced to:

CVTI =

C11 C13 0
C13 C33 0
0 0 C44

 . (5)

The general 2D case the rotation matrix R:

R =

R11 R13 R15

R31 R33 R35

R51 R53 R55

 =

cos2φcos2θ cos2φsin2θ cos2φsin2θ
sin2θ cos2θ sin2θ
cosφsin2θ

2
− cosφsin2θ

2
cosφcos2θ

 . (6)

The stiffness matrix becomes:

RCVTIR
T =

R11C11 +R13C13 R11C13 +R13C33 R15C55

R31C11 +R33C13 R31C13 +R33C33 R35C55

R51C11 +R53C13 R51C13 +R53C33 R55C55

R11 R31 R51

R13 R33 R53

R15 R35 R55

 =

Ĉ11 Ĉ13 Ĉ15

Ĉ13 Ĉ33 Ĉ35

Ĉ15 Ĉ35 Ĉ55

,
(7)

where the Ĉ11, Ĉ13, Ĉ15 , Ĉ13 Ĉ33 Ĉ35 ,Ĉ15 Ĉ35, Ĉ55 are the stiffness coefficients for the
TTI media. The expression for each stiffness matrix parameter can be expressed as:

R11(R11C11 +R13C13) +R13(R11C13 +R13C33) +R15C55R15

(R11C11 +R13C13)R31 + (R11C13 +R13C33)R33 +R15C55R35

(R11C11 +R13C13)R51 + (R11C13 +R13C53)R53 +R15C55R55

(R31C11 +R13C13)R11 + (R31C13 +R33C33)R13 +R35C55R15

(R31C11 +R33C13)R31 + (R31C13 +R33C33)R33 +R35C55R35

(R31C11 +R33C13)R51 + (R31C13 +R33C33)R53 +R35C55R55

(R51C11 +R53C13)R11 + (R51C13 +R53C33)R13 +R55C55R15

(R51C11 +R53C13)R31 + (R51C13 +R53C33)R33 +R55C55R35

(R51C11 +R53C13)R51 + (R51C13 +R53C33)R53 +R55C55R55


=



Ĉ11

Ĉ13

Ĉ15

Ĉ13

Ĉ33

Ĉ35

Ĉ15

Ĉ35

Ĉ55


. (8)

The constitutive equations in a viscoelastic TTI fractured medium are:σxxσzz
σxz

 =

Ĉ11 Ĉ13 Ĉ15

Ĉ13 Ĉ33 Ĉ35

Ĉ15 Ĉ35 Ĉ55

vxxvzz
vxz

 (9)
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Detail expression of the normal stress, σxx and σzz, and shear stress σxz can be ex-
pressed as:

σxx = [R11(R11C11 +R13C13) +R13(R11C13 +R13C33) +R15C55R15]vxx

+[(R11C11 +R13C13)R31 + (R11C13 +R13C33)R33 +R15C55R35]vzz

+[(R11C11 +R13C13)R51 + (R11C13 +R13C53)R53 +R15C55R55]vxz

(10)

σzz = [(R31C11 +R13C13)R11 + (R31C13 +R33C33)R13 +R35C55R15]vxx

+[(R31C11 +R33C13)R31 + (R31C13 +R33C33)R33 +R35C55R35]vzz

+[(R31C11 +R33C13)R51 + (R31C13 +R33C33)R53 +R35C55R55]vxz

(11)

σxz = [(R51C11 +R53C13)R11 + (R51C13 +R53C33)R13 +R55C55R15]vxx

+[(R51C11 +R53C13)R31 + (R51C13 +R53C33)R33 +R55C55R35]vzz

+[(R51C11 +R53C13)R51 + (R51C13 +R53C33)R53 +R55C55R55]vxz

(12)

The geometric equations are expressed as:

vxx =
∂vx
∂x

,

vzz =
∂vz
∂z

,

vxz =
∂vx
∂z

,

(13)

∂vx
∂t

=
∂σxx
∂x

+
∂σxz
∂z

,

∂vz
∂t

=
∂σzz
∂z

+
∂σxz
∂x

,

(14)

In this study, we formulate the recurrent neural network (RNN) to simulate waveform
inversion. Algorithm 1 shows the basic structure of the recurrent neural network. At each
time step the discrete sources sx and sz act as inputs; the velocity and stress information,
v
t− 1

2
x , v

t− 1
2

z , σtxx, σtzz, and σtxz, is communicated between the RNN cells ; the partial deriva-

tive fields, ∂xσtxx, ∂zσtzz, ∂xσ
t
xz, ∂zσ

t
xz, ∂xv

t+ 1
2

x , ∂zv
t+ 1

2
x , ∂xv

t+ 1
2

z , ∂zv
t+ 1

2
z are the internal

variables in each RNN cell.

Algorithm 1 Sequence of calculations in the RNN cell
Input: Source: sx, sz; velocity and stress fields at the previous time step. TTI Voigt

stiffness parameters: Ĉ11,Ĉ13,Ĉ15,Ĉ13,Ĉ33,Ĉ35,Ĉ15,Ĉ35,Ĉ55,
Output: Update velocity field at t+ 1

2
and stress fields at t+ 1

1: σtxx ← σtxx + sx
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2: σtzz ← σtzz + sz
3: ∂xσ

t
xx ← (σtxx ∗ kx1)/ρ

4: ∂zσ
t
xz ← (σtxz ∗ kz2)/ρ

5: ∂xσ
t
xz ← (σtxz ∗ kx2)/ρ

6: ∂zσ
t
zz ← (σtzz ∗ kz1)/ρ

7: v
t+ 1

2
x ← v

t− 1
2

x + dt(∂xσ
t
xx) + dt(∂zσ

t
xz)

8: v
t+ 1

2
z ← v

t− 1
2

z + dt(∂zσ
t
zz) + dt(∂xσ

t
xz)

9: ∂xv
t+ 1

2
x ← v

t+ 1
2

x ∗ kx2
10: ∂zv

t+ 1
2

x ← v
t+ 1

2
x ∗ kz1

11: ∂xv
t+ 1

2
z ← v

t+ 1
2

z ∗ kx1
12: ∂zv

t+ 1
2

z ← v
t+ 1

2
z ∗ kz2

13: σtxx ← σt−1
xx + dt

(
Ĉ11∂xv

t+ 1
2

x + Ĉ13∂zv
t+ 1

2
z + Ĉ15∂zv

t+ 1
2

xz

)
14: σtzz ← σt−1

zz + dt
(
Ĉ13∂xv

t+ 1
2

x + Ĉ33∂zv
t+ 1

2
z + Ĉ35∂zv

t+ 1
2

xz

)
15: σtxz ← σt−1

xz + dt
(
Ĉ15∂xv

t+ 1
2

x + Ĉ35∂zv
t+ 1

2
z + Ĉ55∂zv

t+ 1
2

xz

)
Algorithm 2 Loop for TTI elastic RNN FWI

1: Set trainable parameters: C11, C13, C33,C44, θ in this test.
2: Set optimizers for parameters: Optimizer1, Optimizer2, Optimizer3, Optimizer4,
Optimizer5 for C11, C13, C33,C44,θ respectively.

3: for iter ∈ [1,maxiter] or not converge do
4: Dsyn = RNN(C11, C13, C33,C44,θ ): generate synthetic data
5: loss = costFunc(Dsyn, Dobs): calculate misfits
6: loss.backward(): Backpropagation and give gradients for the parameters
7: optimizers.step(): update parameters
8: end for

The ∗ symbol represents the machine learning image convolution operator. This im-
age convolution is the process of adding each element of the image to its local neighbors,
weighted by the image convolution kernel. We find that this image convolution operator
is also capable of calculating space partial derivatives if the convolution kernel is designed
according to the finite difference coefficients. dx, dz are the grid intervals, and the image
convolution kernels are: kx1 = a/dx, kx2 = b/dx, kz1 = aT/dz, and kz2 = bT/dz, where
a = [0, 1/24,−9/8, 9/8,−1/24] and b = [1/24,−9/8, 9/8,−1/24, 0]. a and b are 1×5
dimension arrays. kx1 and kx2 are kernels, for the image convolution process, responsible
for calculating the staggered grid space partial derivative in x direction. kz1 and kz2 are
kernels, for the image convolution process, responsible for calculating the staggered grid
space partial derivative in z direction, and that is also why the arrays, a and b, are trans-
posed in kz1 and kz2 . Space partial derivative calculated in this way is, mathematically, the
same with conventional staggered grid method. Ĉ11,Ĉ13,Ĉ15,Ĉ13,Ĉ33,Ĉ35,Ĉ15,Ĉ35,Ĉ55, are
the stiffness (Voigt) matrix in TTI media.

Figure 1 shows the snapshots for a TTI model. In Figure 1 C11 = 9 GPa, C13 = 1.79
GPa ,C33 = 8 GPa ,C44 = 2.79 GPa. In Figure 1 (a)-(d) the title angle is θ = π

2
. Figure
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FIG. 1. TTI wave fields snapshot with different title angles. (a) Vx with θ = π
2 . (b) Vz with θ = π

2 .
(c) σxx with θ = π

2 . (d) σzz with θ = π
2 . (e) Vx with θ = π

4 . (f) Vz with θ = π
4 . (g) σxx with θ = π

4 .
(h) σzz with θ = π

4 . (i) Vx with θ = π
6 . (j) Vz with θ = π

6 . (k) σxx with θ = π
6 . (l) σzz with θ = π

6 .

1 (e)-(h) the title angle is θ = π
4
. Figure 1 (i)-(l) the title angle is θ = π

6
. The source of

the wavelet is the Ricker’s wavelet with main frequency 30Hz located in the center of the
model. We can clearly see the corresponding change of the wavefields due to the change of
the title angle. The wavefields are rotated according to the title angle.

FIG. 2. TTI wave fields snapshot with different title angles. (a) title angle model θ = π
2 (b) title angle

layers model. θ1 = π
2 , θ2 = π

4 , θ3 = π
6 . (c) (b) title angle layers model. θ1 = −π2 , θ2 = −π4 , θ3 = −π6 .
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FIG. 3. TTI wave fields snapshot in layers model. (a) Vx with θ = π
2 . (b) Vz with θ = π

2 . (c) σxx
with θ = π

2 . (d) σzz with θ = π
2 . (e) Vx with θ1 = π

2 . θ2 = π
4 . θ3 = π

6 . (f) Vz with θ1 = π
2 . θ2 = π

4 .
θ3 = π

6 . (g) σxx with θ1 = π
2 . θ2 = π

4 . θ3 = π
6 . (h) σzz with θ1 = π

2 . θ2 = π
4 . θ3 = π

6 . (i) Vx with
θ1 = π

2 . θ2 = π
4 . θ3 = π

6 . (j) Vz with θ1 = −π2 . θ2 = −π4 . θ3 = −π6 . (k) σxx with θ1 = −π2 . θ2 = −π4 .
θ3 = −π6 . (l) σzz with θ1 = −π2 . θ2 = −π4 . θ3 = −π6 .

Figure 2 shows another forward modeling test. In Figure 2 (a) the title angle is θ = π
2
,

which means that this is a VTI model. The VTI model has three layers. Each layer has
different values of stiffness modulus but the same title angle θ = π

2
. In Figure 2 (b), the

title angle in first layer model is θ = π
2
, title angle in second layer has θ = π

4
, and title angle

in third layer is θ = π
6
. In Figure 2 (c), the title angle in first layer model is θ = −π

2
, title

angle in second layer has θ = −π
4
, and title angle in third layer is θ = −π

6
. Figure 3 also

shows the wavefields, Vx, Vz, σxx, σzz in these TTI layers model.

Figure 3 (a)-(d) illustrate the wavefields calculated in model Figure 2 (a), which is
the VTI model. Figure 3 (e)-(h) illustrate the wavefields calculated in title angle model
Figure 2 (b), which is a TTI model with all positive title angles. Figure 3 (i)-(l) illustrate
the wavefields calculated in title angle model, Figure 2 (c), which is a TTI model with all
negative title angle. From the comparison between Figure 3 (e)-(h) and (i)-(l), we can see
that with positive title angle the wavefields are drifted to the right, and with negative title
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angles the wavefields are drifted to the left, which shows different waveform propagation
pattern due to different title angle. Such a behavior, waveform changes due to the influence
of the title angle, should be considered when we do full waveform inversion, since a very
small change in the title angle can lead to the change of the waveform.

INVERSION WITH REGULARIZATION

Here we fist introduce the elastic RNN misfits based on l2 norm with high order TV
regularization:

ΦTV
l2 (C11,C13,C33,C44, θ, α

c11
1 , αc13

1 , αc33
1 , αc44

1 , αθ1, α
c11
2 , αc13

2 , αc33
2 , αc44

2 , αθ2) =

1

2
‖Dsyn(C11,C13,C33,C44)−Dobs‖2

2+

αc11
1 ΘTV (C11) + αc13

1 ΘTV (C13) + αc33
1 ΘTV (C33) + αc44

1 ΘTV (C44) + αθ1ΘTV (θ)+

αc11
2 ΥTV (C11) + αc13

2 ΥTV (C13) + αc33
2 ΥTV (C33) + αc44

2 ΥTV (C44) + αθ2ΥTV (θ)

(15)

where αc11
1 , αc13

1 , αc33
1 , αc44

1 , αθ1, αc11
2 , αc13

2 , αc33
2 , αθ2, are values of Lagrange multipliers.

ΘTV and ΥTV represent first and second order TV regularization functions respectively.
Dsyn represents the synthetic data, which is the function of the model parameters. ΘTV

and ΥTV represent functions for calculating the first and second order TV relularizations
for the models.

The first order TV regularization term can be expressed as:

TV1((m)) =
n−1∑
i=1

m−1∑
j=1

|Mi+1,j −Mi,j|+
n−1∑
i=1

m−1∑
j=1

|Mi,j+1 −Mi,j| =

(
∇x,∇z

)(m
m

)
=
(
Lx,Lz

)(m
m

)
= ΘTV (m),

(16)

where Mi,j represents the element in model parameter vector. n and m are the grid num-
bers in x and z directions respectively. The second order TV regularization term can be
expressed as:

TV2((m)) =
n−1∑
i=1

m−1∑
j=1

|Mi+1,j − 2Mi,j +Mi−1,j|+
n−1∑
i=1

m−1∑
j=1

|Mi,j+1 − 2Mi,j +Mi,j−1|

=
(
∇xx,∇zz

)(m
m

)
=
(
Kxx,Kzz

)(m
m

)
= ΥTV (m).

(17)

Lx and Lz are the first order differential vectors to calculate the first order total vari-
ations in x and z directions respectively. Kxx and Kzz are the second order differential
vectors to calculate the second order total variations in x and z directions respectively.

The derivative of ΦTV
l2 for each parameter, which is the gradient for C11, C13 and C33,
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C44 based on the lTV2 norm, can be expressed as:

∂ΦTVl2
∂C11
∂ΦTVl2
∂C13
∂ΦTVl2
∂C33
∂ΦTVl2
∂C44
∂ΦTVl2
∂θ


=


Gl2c11

Gl2c13

Gl2c33

Gl2c44

Gl2θ

+


Rl2c11

Rl2c13

Rl2c33

Rl2c44

Rl2θ

 , (18)

where Gl2c11 ,Gl2c13 ,Gl2c33 ,Gl2c44 , Gl2θ are the gradient vectors for parameters C11,C13,
C33,C44, θ respectively. In this study we use the Automatic Differential method, to generate
the gradients for the model parameters. The gradients for theses parameters can be derived
according to the adjoint state method as well.

Now we introduce how to choose the Lagrange multipliers. Let us first write the misfit
function as:

ΦTV = JD + Jr1 + Jr2, (19)

where JD represents the any kind of norm misfit between observed data and synthetic data.
Jr1 = αc11

1 ΘTV (C11) + αc13
1 ΘTV (C13) + αc33

1 ΘTV (C33) + αc44
1 ΘTV (C44) + αθ1ΘTV (θ).

Jr2 = αc11
2 ΥTV (C11) + αc13

2 ΥTV (C13) + αc33
2 ΥTV (C33) + αc44

2 ΥTV (C44) + αθ2ΥTV (θ).
The values αc11

1 , αc13
1 , αc33

1 , αc44
1 , αθ1, αc11

2 , αc13
2 , αc33

2 , αθ2, are chosen according to the
following formula:

K =
JD

Jr1 + Jr2
. (20)

We should control the values for αc11
1 , αc13

1 , αc33
1 , αc44

1 , αθ1, αc11
2 , αc13

2 , αc33
2 , αθ2 to keep the

balance between the influence of the regulation terms and data misfit term. IfK is too large,
the data misfit JD would dominate the final misfit value and the regularization term does
not have enough influence on the inversion results. IfK is too small, the regularization term
would have too much influence on the inversion results. In this study, K value is chosen to
between 0.1 and 1, to make sure the regularization terms have reasonable influence in the
inversion. K should be relatively large when noise occurs in the data.

NUMERICAL TESTS

Figure 4 (a), (d),(g),(j),(m) are the true models for C11,C13,C33,C44, and θ respectively.
Figure 4 (b), (e),(h),(k),(n) are the initial models for C11,C13,C33,C44, and θ respectively.
In this numerical test we use the Ricker’s wavelet as source. The main frequency of the
source is 30Hz. dx = dz = 7m. The size of the model is 30×50.

Figure 5 shows the gradients given in this TTI inversion method with high order total
variation regularization. Figure 5 (a) is the gradient for C11. Figure 5 (b) is the gradient for
C13. Figure 5 (c) is the gradient for C33. Figure 5 (d) is the gradient for C44. Figure 5 (e) is
the gradient for θ. Figure 4 (c), (f),(i),(l),(o) are the inversion results for C11,C13,C33,C44,
and θ respectively. Figure 6 shows the inversion profiles Profiles through the recovered
elastic models. Figure 6 (a) C11 inversion at 150m of the model. Figure 6 (b) C13 inversion
at 150m of the model. Figure 6 (c) C33 inversion at 150m of the model. Figure 6 (d) C44

inversion at 150m of the model. Figure 6 (e) θ inversion at 150m of the model. From the
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FIG. 4. RNN based TTI full waveform inversion. (a) True C11 model. (b) Initial C11 model. (c) C11

inversion result. (d) True C13 model. (e) Initial C13 model. (f) C13 inversion result. (g) True C33

model. (h) Initial C33 model. (i) C33 inversion result. (j) True C44 model. (k) Initial C44 model. (l) C44

inversion result. (m) True θ model. (n) Initial θ model. (o) θ inversion result.

comparison between the inversion results and the true models, we can see that the RNN
based TTI inversion with high order TV regulation can give correct inversion results for the
inversion. In Figure 6 (a), (b), (d) the inversions all gives the true right inversion results.
However, in 6 (c) and (e) the inversion for C33 and θ, the layer is a little bit misplaced.
This may due to the poor initial model which leads to the wrong position for the inversion
results.

In this numerical test, we use part of the BP model to test the efficiency of this inversion
method. The source of the wavelet is the Ricker’s wavelet with a main frequency of 35Hz.
The size of the model is 60×100 grid points. The grid length of the model is dz = dx =
7m. 7 shots are evenly distributed on the top of the model. Every grid point at the top of
the model is located a receiver. Figure 7 (a), (c), (e), (g), (e) are the true C11, C13, C33,
C44 and θ models respectively. Figure 7 (b), (d),(f),(h),(f) are the inversion results for C11,
C13, C33, C44 and θ models respectively. From the comparison of the inversion with the
true models we can see that the anticline structure of the model has been correctly updated,
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FIG. 5. Gradient for each parameters. (a) C11 gradient. (b) C13 gradient. (c) C33 gradient. (d) C44

gradient. (e) θ gradient.

however with some noise between the fine layers. This may caused because of the high
nonlinear relationship between the elastic stiffness parameters and the title angles. Figure
8 shows the profiles through the recovered elastic models at 100m of the models. Figure
8 (a) shows the inversion for C11. Figure 8 (b) shows the inversion for C13. Figure 8 (c)
shows the inversion for C33. Figure 8 (a) shows the inversion for C44. Figure 8 (e) shows
the inversion for θ. The red lines are the true values, the blue lines are the initial values and
the red lines are inversion results. From Figure 8 we can see that C11, C13, C33, C44 has
been correctly updated. However the value for θ is very hard in to recover in this model.

Figure 9 shows the gradients given by this method. Figure 9 (a) is the gradient for C11.
Figure 9 (b) is the gradient for C13. Figure 9 (c) is the gradient for C33. Figure 9 (d) is the
gradient for C44. Figure 9 (e) is the gradient for θ. During the forward propagation, how
the synthetic records are calculated would be recorded which forms the Dynamic Com-
putational Graph. The gradients of the trainable parameters would be calculated by using
this Dynamic Computational Graph, according to the backpropagation method. After the
gradients are calculated, with an optimization method and the step lengths for each model,
we can get the directions to update the trainable parameters and reduce the misfit. With
the Automatic Differential engine built in the machine learning library, the exact gradients
would be calculated according to this Dynamic Computational Graph. Not only the wave-
fields would be saved in RAM, but the mathematical operation and internal variables would
also be stored in the computer. Even though, the automatic differential method differs from
the conventional adjoint state method. I myself believe its ability in extreme complex me-
dia when wave equations are no longer self-adjoint. Also, this part still needs to be further
tested as well.
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FIG. 6. Profiles through the recovered elastic models. (a) C11 inversion at 150m of the model. (b)
C13 inversion at 150m of the model. (c) C33 inversion at 150m of the model. (d) C44 inversion at
150m of the model. (e) θ inversion at 150m of the model.

FIG. 7. Part of BP model inversion results. (a) True C11. (b) RNN TTI FWI C11 inversion result. (c)
True C13. (d) RNN TTI FWI C11 inversion result. (e) True C33. (f) RNN TTI FWI C11 inversion result.
(g) True C44. (h) RNN TTI FWI C11 inversion result. (i) True θ. (j) RNN TTI FWI C11 inversion result.

CONCLUSIONS AND FIGURE STUDY

In this study, based on the TTI staggered grid stress velocity wave equation, we build
the TTI RNN cell and performed the TTI full waveform inversion, which forms the theory-
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FIG. 8. Profiles through the recovered elastic models. (a) C11 inversion at 150m of the model. (b)
C13 inversion at 150m of the model. (c) C33 inversion at 150m of the model. (d) C44 inversion at
150m of the model. (e) θ inversion at 150m of the model.

based machine learning TTI full waveform inversion. This inversion framework would
generate the gradient automatically, and the gradients are the exact gradients based on the
forward computational graph. The title angle of the complex TTI media can be directly
inverted.

Numerical tests show that the inversion framework we introduced would generate the
correct inversion results for C11, C13, C33, C44 and θ. The numerical tests show that the
inversion of θ the title angle is the hardest to recover. With the Automatic differential
method, the gradient of the complex media parameters based on complex misfits can be
calculated. The numerical tests also proved the validation of this method.

For future study, first, we would like to do some comparison between the conventional
adjoint state method and the automatic differential method and prove it mathematically.
Second, we would like to apply these methods to the real data sets to prove the validation
in real seismic data. Third, we will seek methods that can reduce the computational cost of
this method, Fourth, we will combine more data-driven methods to mitigate the modeling
error problems.
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FIG. 9. Profiles through the recovered elastic models. (a) C11 Gradient. (b) C13 Gradient. (c) C33

Gradient. (d) C44 Gradient. (e) θ Gradient.
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