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ABSTRACT 

Many seismic applications require fast and accurate Eikonal equation solvers, such 

as Kirchhoff migration and tomography. One of the most stable and consistent methods is 

the Fast Sweeping Method, in which the Eikonal equation is numerically solved by the 

upwind finite difference scheme. Whenever finite difference is used, a plane wavefront is 

implicitly assumed. When waves propagate in inhomogeneous media, the assumption of 

plane wave front may be invalid. The errors generated in the spots on the bending wave 

front will propagate to the entire calculation domain, resulting in inaccurate propagation 

times. In this report, an adaptive finite difference scheme is introduced to improve the 

accuracy of the Eikonal solver in the Fast Sweeping Method. 
  

INTRODUCTION 

Many seismic applications require fast and accurate Eikonal equation solvers to 

generate travel time fields, such as Kirchhoff migration and tomography, and fast and 

accurate solvers for Eikonal equations are very attractive. Among these techniques, one of 

the most stable and consistent methods is the fast Sweeping method (Zhao 2004, Huang et 

al. 2019). It uses the upwind finite difference scheme and Gauss-Seidel iteration method to 

solve the discretized Eikonal equation. This method has high computational efficiency. 

One of the advantages of this method is that when the sweep direction is properly 

controlled, it can track the wavefront of a downward or turning wave, which can provide 

more insights into wave propagation. The use of finite difference to solve the Eikonal 

equation implicitly assumes that the wavefront is a plane wave or at least a local plane 

wave. In fact, when waves propagate in an inhomogeneous medium, the verification of this 

hypothesis may be invalid, so numerical errors will be inevitable. Finite difference is also 

used in dynamic ray tracing, where the ray tracing system is derived from Eikonal equation. 

In the ray tracing equation system, a flow coordinate is used, where one of the coordinate 

axes is chosen to coincide with the characteristic direction. In such way, the ray path in the 

inhomogeneous medium can be accurately predicted. The same idea can also be introduced 

into finite difference Eikonal equation solver for travel time calculation. In fact, as will be 

explained later, accurate travel time can be obtained in a special coordinate system. 

However, unlike ray tracing, arbitrary orthogonality may not be suitable for pre-

parameterized model grids, and we don't want to add too much computational cost to affect 

efficiency. In this report, the finite difference Eikonal equation solver uses a simple two 

finite difference schemes, which can significantly improve the accuracy of the fast 

sweeping method shown in examples. 

FAST SWEEPING METHOD 

      The Fast Sweeping Method (FSM) is an iterative algorithm which computes the 

travel times by successively sweeping the whole grid following a specific order. Gauss-

Seidel iterations is performed in alternating directions, i.e.  North-East, North-West, South-
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East and South-West (Combinations of traversing x and y dimensions forwards and 

backwards), as shown in Figure 1, so that all the possible characteristic curves of the 

solution to the Eikonal are obtained.   

 
Figure 1. Fast Sweeping direction in 2D represented with arrows. The darkest cell is the initial 
point and the shaded cells are those analyzed by the current weep. 

 

Sweeping may continue until no value is improved. In each sweep, the Eikonal equation is 

solved for every cell. In each cell with index i and j, Eikonal equation is approximated by 

first-order upwind-difference scheme, i.e. if let 

𝑇 = 𝑇𝑖,𝑗 

𝑇𝑥 = min⁡(𝑇𝑖−1,𝑗, 𝑇𝑖+1,𝑗) 

𝑇𝑦 = min⁡(𝑇𝑖,𝑗−1, 𝑇𝑖,𝑗+1) 

If we are assuming that the speed of the front is positive (F > 0), T must be greater than 𝑇𝑥 

and 𝑇𝑦 whenever the front wave has not already passed over the coordinates (i, j), we can 

rewrite the Eikonal Equation, for a discrete 2D space as:   
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Equation (1) must be solved under the condition that wavefront propagation follows 

causality, that is, in order to reach a point with a higher arrival time, it should first propagate 

through the neighbors of that point with a smaller value. Equation (1) cannot guarantee 

causality, so before accepting the solution, the causality must be checked. 

 

MODIFIED FAST SWEEPING METHOD 

The Eikonal equation is solved numerically by the finite difference method, which 

implicitly assumes the plane wave front. However, when a wave propagates in an 

inhomogeneous medium, the assumption of the plane wave front may be invalid. For 

example: Figure 1 is a rectangular domain with a grid spacing of 1 km and a wave constant 

slowness of 1 s/km. O is the source point of 𝑇𝑜 = ⁡0  s. Using circular wave front expansion, 

the propagation time of grid points A and B can be accurately calculated 𝑇𝐴 = ⁡𝑇𝐵 ⁡= ⁡1⁡𝑠. 

The propagation time of point C should be equal to the time that the wave propagates from 

point O to C along the characteristic line, that is⁡𝑇𝐶 ⁡= ⁡√2⁡𝑠. However, 𝑇𝐶 calculated by 

upwind finite difference scheme is  1 +⁡√2/2 s, the percentage error of the numerical 

propagation time of grid point C relative to the analytical solution can reach up to 20.7%. 

This error always exists throughout the calculation. As the seismic wave front evolves, it 

will pollute the entire computational domain and make the propagation time field 

inaccurate. 
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Figure 2. A Cartesian coordinate grid configuration. In this rectangular domain, wave slowness is 
1 s/km and grid space is 1km. Traveltime of grid point o is set to 0 s. Traveltimes of point A and B 
are initialized to 1 s as wavefront pass to them from point o. Traveltime of point C need to be 
calculated and the wavefront reach to it along the characteristic line. 

 

If you study this example carefully, it can be shown that when the characteristic 

line coincides with one of the coordinate axes, an accurate travel time can be obtained, i.e. 

𝑇𝐴 and 𝑇𝐵.   In fact, the Eikonal equation is independent of choice of coordinate. Therefore, 

if the coordinates are rotated by 45 degrees with 𝑇𝑜  as the origin of the coordinates, 𝑇𝐶  

can be accurately calculated by the central finite difference scheme 
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In equation (2), if 𝑇𝑜 < min⁡(𝑇𝐴, 𝑇𝐵),  it is always ensured that the solution 𝑇𝐶 of equation 

(2) is causal. Generally, the wavefront may not be circular as in the above example, but if 

the characteristic line direction of the wavefront is close to the axis of rotated coordinate, 

formula (2) can still give a good approximate the travel time. With this as an additional 

constraint, we arrive at an improved fast sweeping method (MFSM) by adaptive finite 

difference scheme Eikonal solver. 

 

________________________________________________________________________ 

Modified Fast Sweeping Method (MFSM) 

 
While (sweeping) 

 Choosing sweep direction: yStart,yIncrement,yEnd and xStart, xIncrement,  xEnd 

   do iy = yStart:yIncrement:yEnd 

       do ix = xStart: xIncrement:xEnd 

           T1 <- upwind scheme: equation (1) 

                             iky=iy- yIncrement; 

                             ikx=ix- xIncrement; 

                             select three points T(iky,jkx), T(iky,jx),T(iy,jkx) 

                            T2 <- central finite scheme:  equation (2) 

                            T(iy,ix)=min(T1,t2) 

         

 End 

________________________________________________________________________ 
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EXAMPLES 

Example 1: A constant velocity model with a 100 x 100 grid; the grid space is 10 

m, and the wave speed is 3000 km/s. Since the real travel time of the model can be easily 

calculated, only the difference between the real travel time and the calculated travel time 

is drawn. In Figure 3: (a): The time difference between the true traveltime and the 

traveltime calculated by MFSM , And (b): thetime  difference between the true traveltime  

and traveltime calculated by FSM. 

                   
                     (a)                                                                               (b) 

Figure 3. Traveltime difference between true and calculated by MFSM (a); and calculated by FSM 
(b). 

Example 2: Vertically increasing velocity model; The grid space is 10 m, and the 

vertical velocity is 𝑉𝑧 = 800⁡ + 2⁡𝑍, where Z increases from zero to the maximum depth, 

as shown in Figure 4(a). Figure (b) shows the travel time difference between FSM and 

MFSM. On the surface of the model, where the travel time can be analytically solved. 

Figure 4(c) shows the time difference between analytical solution and FSM (blue), and 

MFSM (black) at model surface. If the calculated travel time is used to fit the first break 

as normally do in seismic Tomo, FSM traveltime may produce larger errors than MFSM 

traveltime does. 

                       
                 (a)                                                                           (b) 

                                   

 
                                                                                        (c) 

 

Figure 4. (a) velocity mode; (b) traveltime difference between FSM and MFSM; (c) ) traveltime 
difference between analytical solution and MFSM (black), FSM (blue) at model surface. 
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Example 3: Applying FSM and MFSM traveltime to Kirchhoff migration.  In 

Figure 5: (a) is the velocity mode and (b) is a single shot gather generated by finite 

difference modelling; (c) is result of stacking all migrated single shot with FSM traveltime;  

(d) is same as (c) but with MFSM traveltime. 
 

 
 

                    
  (a)                                                                     (b) 

 

                    
        (c)                              (d) 

 Figure 5: (a) velocity mode and (b) One shot gather that generated by finite difference modelling; 
(c) Stacked of all single shot migrated results with FSM traveltime and (d) is same as (c) but with 
MFSM traveltime. 

 

CONCLUSIONS 

Numerical results show that the application of the adaptive finite difference scheme 

Eikonal solver to the fast sweeping method can significantly improve the accuracy of the 

travel time. It is expected that comparing to FSM, MFSM will produce better results in 

seismic applications, such as migration and traveltime tomography. 
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