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ABSTRACT

Full waveform inversion (FWI) methods can produce high-resolution images of the
physical properties of the subsurface. It has become a powerful tool for time-lapse or
4D seismic inversion, with applications in the monitoring of reservoir changes with injec-
tion and production, and potentially long term storage of carbon. Current time-lapse FWI
strategies include the parallel strategy (PRS), the sequential strategy (SQS), the double-
difference strategy (DDS), the common-model strategy (CMS), and the central-difference
strategy (CDS). PRS time-lapse inversion is affected by convergence differences between
the baseline and monitoring inversions, as well as non-repeatable noise and non-repeatable
acquisition geometries between surveys. The other strategies above are largely efforts to
fix these sensitivities of PRS. In this paper, we introduce and examine two strategies, which
we refer to as stepsize-sharing PRS (SSPRS) and stepsize-sharing CMS (SSCMS). As the
name suggests, they are characterized by a sharing of update stepsizes between baseline
and monitoring stages of the time-lapse FWI. Synthetic data tests indicate that stepsize-
sharing reduces artifacts caused by the PRS convergence variability. In particular, the
stepsize-sharing common-model strategy (SSCMS) appears to be adept at reducing arti-
facts caused by all of convergence differences, non-repeated noise, non-repeatable source
locations, and biased starting models. This breadth of robustness does not appear in any of
the other approaches tested. Especially given that SSCMS through its sharing incurs half
of the computational cost of CMS and CDS, we regard the workflow as being worth further
study.

INTRODUCTION

Time-lapse or 4D seismic analysis is a crucial technology for reservoir monitoring prob-
lems such as enhanced oil recovery and CO2 storage (Greaves and Fulp, 1987; Ross and
Altan, 1997; Wang et al., 1998; Barkved et al., 2003; Arts et al., 2003; Barkved et al.,
2005; Chadwick et al., 2009; Kazemeini et al., 2010; Pevzner et al., 2017). It has begun to
be incorporated as a matter of course into reservoir development plans (Jack, 2017). In non
time-lapse seismic problems, static geological information and that of dynamic fluid flow
and processes underoing change are interweaved, whereas, in the time-lapse seismic prob-
lem static information can be suppressed to emphasize dynamic, time-variant processes
(Lumley, 2001).

Full waveform inversion (FWI) (Lailly et al., 1983; Tarantola, 1984; Virieux and Op-
erto, 2009), a technology with the capacity to create high-resolution images of physical
properties of subsurface media, has become a powerful tool for time-lapse inversion. Real
field data applications have been reported with increased frequency recently (Raknes and
Arntsen, 2014; Hicks et al., 2016; Yang et al., 2016; Kamei et al., 2017; Fabien-Ouellet
et al., 2017; Bortoni et al., 2021), but challenges remain quite significant. The time-lapse
FWI approach mostly likely to be currently considered “conventional” is known as the par-
allel strategy (PRS). In PRS, baseline and monitor inversions are carried out independently
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but using the same starting model. Its challenges derive from detailed differences within
the the two independent inversions within it. They commonly exhibit different conver-
gence properties, and these induce artifacts in the time-lapse inversion. Furthermore, as
we will demonstrate in this paper, it is sensitive to non-repeatable random noise. To avoid
some of these issues, Routh et al. (2012) introduced sequential strategy (SQS), which uses
the inverted baseline as the starting model for the monitor inversion. However, examples
presented by Yang et al. (2015) and Zhou and Lumley (2021a) indicate that it can cause
strong artifacts in the time-lapse inversion by amplifying convergence differences between
the baseline and monitor inversions. Target-oriented SQS (Raknes and Arntsen, 2014; As-
naashari et al., 2015) has been shown to effectively constrain artifacts in the target zone,
this mitigation strategy requires significant prior information, especially about the location
of time-lapse change. Probably the most widely-adopted strategy at the moment is the
double-difference strategy (DDS), proposed by Zheng et al. (2011), which has been used
and adapted by many researchers (Zhang and Huang, 2013; Raknes et al., 2013; Fu and
Innanen, 2021), and has been vetted with real data case in Yang et al. (2016). It has several
points of weakness, some of which are addressable. For instance, Fu et al. (2020) intro-
duced a double-wavelet DDS to mitigate the impact of non-repeatability of baseline and
monitor source wavelets to the inversion. However, DDS remains very sensitive to non-
repeatability of source/receiver locations (Yang et al., 2015; Zhou and Lumley, 2021b). A
different approach was taken by Hicks et al. (2016), who introduced the common-model
strategy (CMS) and applied it to a North Sea field case study; it was adopted by Bortoni
et al. (2021) in real data of a post-salt field in the Campos Basin. A different variant, in-
troduced by (Zhou and Lumley, 2021a) and called the central-difference strategy (CDS),
has recently been shown to be robust to non-repeatable noise in time-lapse FWI (Zhou and
Lumley, 2021b). As they are amongst the most recent and robust time-lapse methods in the
literature, we will examine CMS and CDS under different conditions in this paper.

The main results of this paper are two new candidate time-lapse FWI strategies, which
aim to grow and extend the robustnesses sought in the above references, and simultane-
ously address computational burden. The main concept we will leverage is the sharing of
waveform inversion stepsizes across baseline and monitoring inversions. Conclusions are
based on benchmark synthetic data and comparative inversions with the new and recent
methods.

TIME-LAPSE FWI METHODS

In standard FWI (Lailly et al., 1983; Tarantola, 1984; Virieux and Operto, 2009) we
minimize the L2 norm misfit function:

E(m) =
1

2
||dobs − F(m)||2, (1)

where dobs is the observed data or recorded wavefields, F(·) is a forward modeling operator
based on the wave equation, and m is the updating model (e.g., P-wave velocity). Via some
appropriate optimization approach, based on steepest descents, conjugate gradients, etc.,
the model is updated iteratively as:

mk = mk−1 + δmk, (2)
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where k is the iteration number, and

δmk = µkg(mk−1,dk−1
res ), (3)

where
dk−1
res = dobs − F(mk−1), (4)

in which g(mk−1,dk−1
res ) is the updating direction of model in iteration k, which depends

on the updated model mk−1 and data residual dk−1
res in iteration k − 1. In the steepest de-

scent method, g represents the gradient of the misfit function (equation 1) with respect
to m, which is the zero-lag cross-correlation between forward wavefileds and backward
wavefields of data residuals. For the first iteration, a starting model m0 have to be pre-
pared, which can be obtained by velocity analysis or tomography. Furthermore, combining
equation 3 and 4, we have

δmk = µkg(mk−1,dobs), (5)

where the updating direction g depends on observed data and the updated model mk−1

in iteration k − 1. In this study, we use a time-domain constant-density acoustic finite-
difference method as the forward modeling operator, the steepest descent method as the
optimization, and we precondition the gradient with the diagonal approximation of the
Hessian matrix (Shin et al., 2001).

Common time-lapse inversion strategies

Parallel strategy

The parallel strategy (PRS) follows the workflow in Figure 1a. It includes two inde-
pendent FWI processes: baseline model inversion, with baseline data and a starting model
as inputs, and monitor model inversion, with monitor data and the same (baselind) starting
model as inputs. The estimated time-lapse model is the difference between the inverted
monitor model and the inverted baseline model. Since FWI is highly non-linear, with local
minima as common traps, the two FWI processes mentioned above often have different
convergence properties, with each difference tending to produce artifacts upon subtraction.

Sequential strategy

The sequential strategy (SQS) is summarized in the workflow in Figure 1b. It involves
has the same baseline inversion as PRS, and takes baseline data and a starting model as
input. The monitor inversion is different. In it, the inverted baseline model is used as the
starting model for the monitor inversion, and the difference of the two final inversions is the
time-lapse model. Inversions with different starting models also tend to produce different
convergence histories, however, and again strong artifacts are the result (Yang et al., 2015;
Fu et al., 2020; Zhou and Lumley, 2021a). We do not pursue SQS further in this study.

Double-difference strategy

The double-difference strategy (DDS), with workflow illustrated in Figure 1c, also con-
tains two FWI steps. The first is again the baseline model inversion. In the second, the
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starting model is the inverted baseline model, as with SQS, but the input monitor data are
not the observed monitor data. Instead, a composited data set is introduced:

dDD = F(mbas) + (dmon − dbas), (6)

where F(mbas) are synthetic data predicted from the inverted baseline model mbas, (dmon−
dbas) are difference data (observed monitor data dmon minus the observed baseline data
dbas). Accordingly, the misfit function for the monitor inversion becomes:

EDD(mmon) =
1

2
||dDD − F(mmon)||2, (7)

where F(mmon) are the synthetic data predicted from the inverted monitor model mmon.
Rewriting equation 7 as:

EDD(mmon) =
1

2
||(dmon − F(mmon))− (dbas − F(mbas))||2, (8)

we observe that minimizing the misfit function tends to equalize the baseline data residual
and the monitor data residual. DDS can reduce convergence differences between baseline
and monitor inversions, tending to suppress artifacts outside of the time-lapse change zone.
It is, in other words, a kind of target-oriented strategy. Its disadvantages arise largely in
difference data in equation 6, which are often weak. The signal is easy influenced by
non-repeatability in time-lapse surveys, and those differences can leak strongly into the
time-lapse model.

Common-model strategy

The common-model strategy (CMS), with workflow illustrated in Figure 1d, can be
seen as an upgraded version of the PRS. Essentially, it contains two instances of PRS. First,
the baseline and monitor inversions are performed independently with the same starting
model. Then a new starting model is taken from the average of the baseline and monitor
models; with this, the baseline and monitor inversions are performed independently again,
still with the original data sets. The final time-lapse model is obtained from a difference
of the baseline and monitor models derived during the second PRS. Although essentially
an upgraded PRS, the CMS strategy has proved in both synthetic and field case studies to
outperform the PRS on account of the changes in the effective baseline model (Hicks et al.,
2016).

Central-difference strategy

The central-difference strategy (CDS), with workflow illustrated in Figure 1e comprises
two instances of SQS, called the forward bootstrap FWI and the reverse bootstrap FWI.
The forward bootstrap FWI uses the baseline data and a starting model to invert for a
baseline model; then it uses the inverted baseline model as the starting model for monitor
inversion. The first time-lapse model is obtained by subtracting the baseline model from
the monitor model, and the second (i.e., the reverse bootstrap FWI) uses the monitor data
and the same starting model as in the first FWI to invert for the monitor model. Then the
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a) b)

c) d)

e)

FIG. 1. Flowcharts of present time-lapse FWI strategies. (a) Parallel strategy (PRS). (b) Sequen-
tial strategy (SQS). (c) Double-difference strategy (DDS). (d) Common-model strategy (CMS). (e)
Central-difference strategy (CDS).

inverted monitor model is used as the starting model for baseline model inversion. The
second time-lapse model is obtained by subtracting the baseline model from the monitor
model. The final time-lapse model is the average of these two time-lapse models. Zhou and
Lumley (2021a) find that artifacts in the first and second time-lapse models have opposite
phases, whereas the correct time-lapse estimations in the two models have identical phases,
hence the artifacts are attenuated after averaging the two models.
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a) b)

FIG. 2. Flowcharts of stepsizes-sharing time-lapse FWI strategies. (a) Stepsizes-sharing parallel
strategy (SSPRS). (b) Stepsizes-sharing common-model strategy (SSCMS).

STEPSIZE SHARING TIME-LAPSE INVERSION STRATEGIES

In this section, we propose two new strategies for time-lapse FWI that add to these
mitigating efforts the idea of sharing of stepsizes. Returning to the sequence in equations 2
to 5, if we substituted equation 5 into 2, we produce an expression for an updated baseline
model at iteration k:

mk
bas = mk−1

bas + µk
basg(m

k−1
bas ,dbas,obs), (9)

and an updated monitor model at iteration k expressed as:

mk
mon = mk−1

mon + µk
mong(m

k−1
mon,dmon,obs). (10)

At the end of two FWI procedures, the inverted baseline and monitor models are, respec-
tively:

mbas = m0
bas +

m∑
k=1

µk
basg(m

k−1
bas ,dbas,obs), (11)

and

mmon = m0
mon +

n∑
k=1

µk
mong(m

k−1
mon,dmon,obs), (12)

where m0
bas and m0

mon are, respectively, the starting models for baseline and monitor inver-
sions, and m and n are the maximum baseline and monitor iteration numbers, respectively.
Let

ddif = dmon,obs − dbas,obs,

be the difference data, and
mk−1

mon = mk−1
mon,bas +mk−1

tl ,

in which mk−1
mon,bas is the baseline model implied by the monitor model mk−1

mon and mk−1
tl is

the time-lapse model in iteration k − 1. With these in place we have

mmon = m0
mon +

n∑
k=1

µk
mong(m

k−1
mon,bas +mk−1

tl ,dbas,obs + ddif ). (13)
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Since g is linear with respect to the observed data, equation 13 can be rewritten as:

mmon = m0
mon+

n∑
k=1

µk
mong(m

k−1
mon,bas+mk−1

tl ,dbas,obs)+
n∑

k=1

µk
mong(m

k−1
mon,bas+mk−1

tl ,ddif ).

(14)
The quantity g is nonlinear with respect to the model, so we approximate the updating
direction by Taylor expansion as:

g(mk−1
mon,bas +mk−1

tl ,dbas,obs) ≈ g(mk−1
mon,bas,dbas,obs) + g

′
(mk−1

mon,bas,dbas,obs)m
k−1
tl , (15)

where g
′ is the derivative of the updating direction g with respect to model mk−1

mon,bas.
Putting equation 15 into equation 14, we have

mmon = m0
mon +

n∑
k=1

µk
mong(m

k−1
mon,bas,dbas,obs) +

n∑
k=1

µk
mong

′
(mk−1

mon,bas,dbas,obs)m
k−1
tl

+
n∑

k=1

µk
mong(m

k−1
mon,ddif ).

(16)
or

mmon = mmon,bas +mtl, (17)

where

mmon,bas = m0
mon +

n∑
k=1

µk
mong(m

k−1
mon,bas,dbas,obs), (18)

mtl =
n∑

k=1

µk
mong

′
(mmon,bas,dbas,obs)m

k−1
tl +

n∑
k=1

µk
mong(m

k−1
mon,ddif ). (19)

Comparing equation 11 with equation 18, we observe that the implicit baseline model can
be eliminated from the inverted monitor model under the conditions:

(1) We employ the same starting model, i.e. m0
bas = m0

mon;

(2) The iteration number is the same, i.e. m = n;

(3) The stepsizes are the same, i.e. µk
mon = µk

bas;

(4) The updated baseline models are the same, i.e. mk−1
mon,bas = mk−1

bas .

Conditions (1) and (3) in fact enforce condition (4), since equations 11 and 18 are recursive.
Hence, we only need to meet the first three conditions to eliminate the implicit baseline
model.

In PRS, two FWI procedures are enacted, starting from the same model, m0
bas = m0

mon,
and having the same iteration number, m = n (the case of different iteration numbers
normally enhances artifacts on the final time-lapse model). The implicit baseline model
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mmon,bas cannot be eliminated completely in the PRS, since the condition (3) is not met.
The remaining baseline model can be considered the source of the coherent artifacts in the
final time-lapse model.

PRS can be adapted to produce the stepsize-sharing parallel strategy (SSPRS), to meet
the condition (3), wherein µk

mon = µk
bas, such that the implicit baseline model is eliminated.

The workflow is illustrated in Figure 2a, in which we perform the monitor inversion first
with the inputs of a starting model and observed monitor data, and the outputs are not only
the monitor model but also the stepsizes for each iteration. Then, in the second FWI, the
baseline inversion, the inputs are not only the observed baseline data and the same starting
model, but also the stepsizes from the first monitor inversion. The final time-lapse model
is obtained by subtracting the baseline model from the monitor model. In addition to the
elimination of what is largely a source of artifacts, an advantage of this SSPRS approach is
that it saves on the cost of seeking the stepsizes during the second FWI. This is the first of
the two proposed methods.

The CMS approach can also be upgraded to incorporate this idea, leading to the stepsize-
sharing common-model strategy (SSCMS), the second of the two proposed methods. The
workflow is illustrated in Figure 2b. It involves four FWI steps. The first two are the same
as in SSPRS. In the second two, we repeat SSPRS but with a starting model comprising the
average of the inverted baseline and monitor model in the first two. The final time-lapse
model is the difference between the inverted monitor and baseline models in the second
two FWI outputs.

The baseline updating directions (g(mk−1
bas ,dbas,obs)) and the monitor updating direc-

tions (g(mk−1
mon,dmon,obs)) may not be produced at same scale, depending on the character

of data noise and differences in baseline and monitor source/receiver locations. So, in both
SSPRS and SSCMS, we recommend that the baseline and monitoring update directions
be calibrated to a common root-mean-square before multiplying the shared stepsizes from
monitor FWI.

NUMERICAL EXAMPLES

In this section, we use a land model to test our methods and have comparisons with
present methods. The true baseline model is displayed in Figure 3a, two reservoirs are
located at the left below corner and near the center, respectively. To mimic the fluid change,
4% or 49m/s velocity changes, displayed in Figure 3b, are added at the two reservoirs to
obtain the monitor model. A smooth starting model is displayed in Figure 3c, which is
employed in the first FWI of all time-lapse strategies mentioned above. The model size is
101-by-208 with 10m spacing. On the top of the model, seven sources are evenly spread
at the depth of 10m and each surface cell grid is located a receiver. The source wavelet
used for baseline and monitor data sets is identical, which is a minimum phase wavelet
with a dominant frequency of 10Hz. The time sampling interval is 2 milliseconds and
the maximum recording time is 1.2 seconds. To show the capacity of the FWI program,
a time-domain constant-density acoustic FWI, used in this study, we display the inverted
baseline model in Figure 4a, and two traces crossing the two reservoirs at distances of 970m
and 1700m are abstracted and plotted in Figure 4b. The results show a good performance
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FIG. 3. (a) True baseline model and acquisition geometry. (b) True time-lapse model, all non-zero
values are identical, 49m/s, and clipped in [−60, 60]. (c) Starting model.
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FIG. 4. (a) Inverted baseline model. (b) The solid black lines are the true model, the dash black
lines are starting models, and the red lines are inverted baseline models at distance 970m (left)
and 1700m (right).

of the FWI program. In the next subsections, we will implement the PRS, SSPRS, DDS,
CMS, CDS, and SSCMS with noise-free data sets, noisy data sets, data sets with non-
repeatable source locations, and biased starting models, and have comparisons between
different strategies. All data sets are acoustic and synthetic, and all inversions have the
same iteration number.

Noise-free data tests

In this subsection, noise-free data sets with perfectly repeatable acquisition geometries
are employed. The result of different strategies are displayed in Figure 5, and the corre-
sponding model errors (L1 norms of model residuals) are displayed in Figure 6. We observe
the SSCMS gives the best result, and the DDS is slightly worse, which is followed by the
SSPRS and CDS, and the worst results are given by the PRS and CMS. Comparing Figure
5a and b or Figure 5d and f, we observe sharing stepsizes between baseline and monitor
inversions do help to reduce the artifacts caused by the convergence difference. Further-
more, the CMS cannot help to reduce the artifacts in the PRS, conversely, it enhances the
artifacts. Overall, the SSPRS, DDS, CDS, and SSCMS all can help to reduce the artifacts
in the PRS.

Non-repeatable random noise

In this subsection, noisy data sets with a perfectly repeatable acquisition geometry are
employed. The noise added to the noise-free data is Gaussian random noise, and the noise
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FIG. 5. Inverted time-lapse results using noise-free data for different strategies: (a) parallel strat-
egy (PRS), (b) stepsize-sharing parallel strategy (SSPRS), (c) double-difference strategy (DDS),
(d) common-model strategy (CMS), (e) central-difference strategy (CDS), (f) stepsize-sharing
common-model strategy (SSCMS). All figures are clipped in the same color bar that in Figure 3b.
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FIG. 6. Model errors of time-lapse results in Figure 5.
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FIG. 7. Inverted time-lapse results using data with SNR=20 for different strategies. All figures are
clipped in the same color bar that in Figure 3b.
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FIG. 8. Inverted time-lapse results using data with SNR=10 for different strategies. All figures are
clipped in the same color bar that in Figure 3b.

level for baseline and monitor data is the same but from different implements. In Figure
7-9, we display the results of different strategies using data sets with SNR (signal-to-noise
ratio) 20, 10, and 5. And the model errors of all results are plotted in Figure 10. We observe
Comparing with the PRS and SSPRS, the other four strategies show a much better anti-
noise property. Also, we observe the CMS, CDS, and SSCMS have similar performance,
and the DDS is slightly better.

Non-repeatable source positions

In this subsection, noise-free data sets are used, but the acquisition geometries for base-
line and monitor surveys are different. Normally, we have two cases in practice, the first
is an acquisition geometry with sparse sources but dense receivers, the second is that with
dense sources but sparse receivers. According to the reciprocal manner, the second case
can be converted to the first to reduce the number forward modeling. So we only dis-
cuss the first case in our study. Moreover, the positioning non-repeatability can happen in
sources or/and receivers. But for the case of dense receivers, we can uniform the receiver
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FIG. 9. Inverted time-lapse results using data with SNR=5 for different strategies. All figures are
clipped in the same color bar that in Figure 3b.
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FIG. 11. Inverted time-lapse results of different strategies in the case of monitor source locations
are 10m larger than baseline source locations. All figures are clipped in the same color bar that in
Figure 3b.
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FIG. 12. Inverted time-lapse results of different strategies in the case of monitor source locations
are 20m larger than baseline source locations. All figures are clipped in the same color bar that in
Figure 3b.

positions by interpolation. Hence, in this study, we only investigate the effects of source
positioning non-repeatability to time-lapse inversion strategies. The receiver is located in
each surface cell grid of the model, and the seven monitoring source positions will move
the same distance to the right from the baseline source position.

In Figure through 11 to 13, we plot the time-lapse results of different strategies and
the source position differences between twice surveys are, respectively, 10m, 20, and 40m.
And the corresponding model errors are plotted in Figure 14. We observe that the DDS
is sensitive to the source position non-repeatability. The CMS, CDS, and SSCMS have
similar results and are better than the PRS and SSPRS which are also similar.
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FIG. 13. Inverted time-lapse results of different strategies in the case of monitor source locations
are 40m larger than baseline source locations. All figures are clipped in the same color bar that in
Figure 3b.
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FIG. 15. (a) is the biased starting model which equals the unbiased model (Figure 3b) plus 100m/s,
and (b) is the corresponding inverted baseline model. (c) Traces abstracted at distances 970m
(left) and 1700m (right), the solid black lines are the true model, the dash black lines are the biased
starting models, the dot black lines are the unbiased starting models, and the red lines are inverted
baseline models.

Biased starting models

In the previous tests, the starting model (Figure 3c) used is smoothed directly from
the true baseline model (Figure 3a), which is an unbiased starting model crossing the cen-
ter of the true model. In this subsection, we employ two biased starting models (Figure
15a and 16a) to test the different strategies with baseline and monitor data sets that are
noise-free and are of identical acquisition geometries. The biased starting model in Figure
15a equals the unbiased model (Figure 3b) plus 100m/s, and its corresponding inverted
baseline model are plotted in Figure 15b and c. Another biased starting model plotted in
Figure 15a equals the unbiased model minus 100m/s, and its corresponding inverted base-
line model is plotted in Figure 16b and c. In Figure 17a-c, the observed baseline data and
the synthetic data of the inverted baseline models are plotted. From the figures, we observe
that the biased starting models generate inversion results with serious deviations, but it can
still clearly show the main geological structure, and all the deviated results have good data
fitting. Since FWI is apt to plunge into a local minimum, and its result depends too much
on starting model. The cases of biased starting models are very usual in reality, hence, it is
necessary to investigate how the biased starting models can impact the inverted time-lapse
models.

In Figure 18 and 19, the inverted time-lapse models from different strategies are plotted,
and their model errors are plotted in Figure 20. We observe the PRS, SSPRS, CMS, and
CDS fail to give a meaningful result, especially, the CMS and CDS are more sensitive to the
biased starting models than others. Compared with other strategies, the DDS and SSCMS
are more stable, the inverted results can still focus on the true reservoir change. But from
the results of DDS and SSCMS, we note the obvious changes of reservoir position and
the strong artifacts of negative velocity change near the reservoirs, which may mislead the
reservoir interpretation.
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FIG. 16. (a) is the biased starting model which equals the unbiased model (Figure 3b) minus
100m/s, and (b) the corresponding inverted baseline model. (c) are the traces abstracted at the
distances 970m (left) and 1700m (right), and legends are the same as that in Figure 15.
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FIG. 17. Black curves are observed baseline data, and red curves are synthetic data of the inverted
baseline models using (a) the unbiased starting model in Figure 3b, (b) the biased starting model in
Figure 15a, and (c) the biased starting model in Figure 16a. All synthetic data can fit the observed
data well.
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FIG. 18. Inverted time-lapse results of different strategies in the case of starting model (Figure 15a)
is 100m/s larger than the unbiased one. All figures are clipped in the same color bar that in Figure
3b.
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FIG. 19. Inverted time-lapse results of different strategies in the case of starting model (Figure 16a)
is 100m/s smaller than the unbiased one. All figures are clipped in the same color bar that in Figure
3b.
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FIG. 20. Model errors of time-lapse models in Figure 5, 18 and 19.
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FIG. 21. Inverted time-lapse results of different strategies in the case of SNRs for both baseline
and monitor data sets are 20, the monitor source locations are 10m larger than baseline source
locations, and starting model (Figure 15a) is 100m/s larger than the unbiased one. All figures are
clipped in the same color bar that in Figure 3b.
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FIG. 22. Inverted time-lapse results of different strategies in the case of SNRs for both baseline
and monitor data sets are 20, the monitor source locations are 10m larger than baseline source
locations, and starting model (Figure 16a) is 100m/s smaller than the unbiased one. All figures are
clipped in the same color bar that in Figure 3b.

Combined random noise, non-repeatable source locations, and biased starting
models

In Figure 21 and 22, we test different strategies in the case of combining all conditions
tested before. In the tests, SNRs for both baseline and monitor data sets are 20, the monitor
source locations are 10m larger than baseline source locations, and biased starting models
are employed (Figure 15a for Figure 21 and Figure 16a for Figure 22). And model errors
of all results in Figure 21 and 22 are plotted in Figure 23. We observe only the SSCMS can
survive under complex cases of combining different issues.

DISCUSSION AND CONCLUSIONS

From the results in this study, we observe:
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FIG. 23. Model errors of time-lapse results in Figure 21 and 22.

(1) The parallel strategy (PRS) has the artifacts caused by the difference of the conver-
gences, is not noise resistant, and is sensitive to biased starting models.

(2) The double-difference strategy (DDS) is well applicable for the case of well-repeatable
time-lapse surveys, but it is too sensitive to the difference in source locations

(3) The common-model strategy (CMS) cannot solve the artifacts resulting from the dif-
ference of the convergences, but can improve the anti-noise property, and is stable in
unrepeatable source locations, but fails in the case of biased starting model.

(4) The central-difference strategy (CDS) has good performance in the cases of noisy
data and non-repeatable source locations, also can decay the artifacts resulting from
the difference of the convergences in some degree, but it fails in the case of biased
starting model too.

(5) The stepsizes-sharing strategies can reduce artifacts caused by the convergences dif-
ference. Especially, the stepsize-sharing common-model strategy (SSCMS) has good
performance on reducing the artifacts caused by the convergences difference, noisy
data, non-repeatable source locations, and biased starting models. It may as a poten-
tial strategy for real field data inversion. The SSCMS can also save half of the time
cost of seeking stepsizes when compared with the CMS and CDS.

(6) Biased starting models can lead to wrong reservoir positions and artifacts of nega-
tive reservoir changes rather than the correct positive ones. These may mislead the
reservoir interpretation.

CREWES Research Report — Volume 33 (2021) 19



Fu and Innanen

In this study, elastic effects are not taken into consideration, since we need to perform
too many times FWI (110 times totally) which means it may take a too long time to im-
plement elastic FWI. A better solution may be performing the acoustic FWI with elastic
observed data (Zhou and Lumley, 2021a), but the remnant wavefields that cannot be mim-
icked by the acoustic wave equation may interfere with the comparisons between different
strategies. Only the land model is discussed here, things could be different in the marine
model, such as water level and/or velocity change. And the surface change is not considered
either, which could happen between different seasons on the land and impact time-lapse in-
version results. The subsurface change caused by the overburden pressure variation is all
ignored in our study, it is often very small when compared with the reservoir change and
could happen during the oil/gas production.
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