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ABSTRACT

We present a rock physics workflow based on the soft-sand model to convert reservoir
properties (e.g., porosity, lithology, fluid saturation, and pressure) to seismic elastic at-
tributes (e.g., velocity, density, and modulus) at the CaMI Field Research Station, Alberta,
Canada. This model is selected based on the geological setting of the study region and its
visible fit to the well-log data. We use the constructed rock physics model to predict the
shallow section of velocity and density logs which is missing. The result shows a good
agreement with the local geology. We further carry out sensitivity studies for the estima-
tion of reservoir properties from seismic attributes. This is a nonlinear inverse problem and
we solve it using a directed Monte-Carlo method (neighborhood algorithm). Various input
data parameterizations and model parameterizations are considered. We illustrate that most
reservoir properties are difficult to estimate when the inversion system is underdetermined
with non-unique solutions. To obtain accurate estimates, it is best to include enough input
data or focus on limited solid and fluid phases by making appropriate assumptions on the
others. Because the rock physics model used in the study is validated using well data, our
analysis should be applicable to the regional area centered on the well.

INTRODUCTION

The CaMI Field Research Station (FRS) is located in Newell County, southwest of
Brooks, Alberta. The injection of CO2 at this pilot site at a shallow depth of approximately
300 meters is designed to simulate leakage of CO2 from a deeper and larger CO2 storage
project (Lawton et al., 2019). The FRS is now at the early phase of its life-cycle of monitor-
ing CO2 injection. Different geophysical data have already been acquired to characterize
the subsurface and will be used as baselines for the monitoring of CO2 injection (Macquet
et al., 2019) .

The Countess 10-22 well was drilled to a depth of 550 m to characterize the overburden
and the underburden within the FRS (Lawton et al., 2019). This well has subsequently been
completed as an injection well. The shallow stratigraphy is composed of approx.1000 m
of interbedded sandstone and shale-dominated strata of Cretaceous age. The stratigraphic
succession of the Upper Cretaceous strata is shown in Figure 1. The Basal Belly River
Sandstone (BBRS) injection zone is at a depth of 295 m below ground surface and it is a 7-
m-thick fine to medium-grained sandstone. The overlying sealing succession of the storage
complex is composed of interbedded mudstone, fine-grained sandstone, and uncleated coals
that directly overlies the injection zone. Together, the potential top seal has a combined
average net thickness of 225 m in the study area.

A comprehensive log suite including a dipole sonic log was acquired at the Countess
10-22 well. Figure 2 plots the well logs for P-wave velocity (VP), S-wave velocity (VS), and
density (ρ), of the range 223-535 m. To construct the logs in the shallow section (0-223 m),
previous efforts (Eaid et al., 2020) adopt the VP log of an offset well and then use regres-
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sions of VP to otain VS and ρ. However, this approach tends to overestimate the correlation
between VP and ρ as well as the VS values near the surface (0-50 m). The wireline logs of
the injection well (e.g., gamma ray, resistivity, dipole sonic and bulk density) were studied
using Schlumberger’s elemental log analysis (ELAN) that provided calculated depth pro-
files, starting from 12 m, of effective porosity, permeability, and rock fraction composition
(Swager, 2015). In Figure 3, the interpreted porosity and solid composition logs are plotted
.

The main goal of this study is to build a regional rock physics model that links the rock
properties in Figure 3 to the elastic parameters in Figure 2. Once the rock physics model
is validated at the well, it can be used to construct the shallow sections of the VP, VS and
ρ logs. In addition, it allows us to examine parameter resolution issues for the estimation
of rock properties from elastic parameters. The paper is organized as follows. First, we
illustrate the forward problem, which is to build a rock physics model to link elastic and
rock physics properties. Second, we carry out inversion tests to examine the sensitivity of
different rock physics properties with respect to various input data parameterizations.

FIG. 1. Stratigraphic succession in the Countess 10-22 well (Lawton et al., 2019).
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FIG. 2. P-wave velocity (VP), S-wave velocity (VS), and density (ρ) logs of the injection well.
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FIG. 3. Porosity and Lithology extracted from the ELAN logs. From left to right: Porosity and the
volume fractions of quartz, clay, calcite, and coal.
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ROCK PHYSICS MODELING

A significant number of rock physics models have been developed, based on experi-
mental data or physical theories or both, to relate the elastic properties of rock to porosity,
mineralogy and pore fluid (Dvorkin, 2004). The rock physics model to be used in interpre-
tation generally depends on the geologic environment. Granular media models based on
Hertz-Mindlin contact theory are generally applied in reservoir with sand and shale forma-
tions, whereas inclusion models are often used in carbonate reservoirs (Grana, 2016). In
the proposed approach, we use the soft-sand model combined with Gassmann’s equations
and the density equation.

Method

The soft-sand model intends to heuristically describe the elastic behavior of a pack
of identical elastic spheres where porosity reduction is due to the introduction of non-
cementing particles into the pore space. The soft-sand model connects two endpoints in the
elastic modulus versus porosity plane. The zero-porosity endpoint has the bulk and shear
moduli of the solid phase K0 and G0, which is calculated according to Voigt–Reuss–Hill
average (Hill, 1952):

K0 =
1

2

 N∑
i=1

fiKi +

(
N∑
i=1

fi/Ki

)−1
 ,

G0 =
1

2

 N∑
i=1

fiGi +

(
N∑
i=1

fi/Gi

)−1
 , (1)

whereN is the number of mineral components, fi, Ki, andGi are the volume fraction, bulk
modulus, and shear modulus of the ith mineral component, respectively. Hertz-Mindlin
grain-contact theory provides an estimation of the bulk and shear moduli of a dry rock,
under the assumption that the rock frame is a random pack of spherical grains, subject
to an effective pressure Pe, with a given porosity, and an average number of contacts per
grain n (coordination number). In the soft sand model, Hertz-Mindlin equations are used
to compute the bulk and shear moduli of the dry-rock KHM and GHM at the critical porosity
φc:

KHM =

[
n2(1− φc)

2G2
0

18π2(1− v0)2
Pe

]1/3

,

GHM =
2 + 3f − v0(1 + 3f)

5(2− v0)

[
3n2(1− φc)

2G2
0

2π2(1− v0)2
Pe

]1/3

, (2)

where v0 is the Poisson’s ratio of the solid phase, and f is the degree of adhesion between
the grains. We estimate coordination number as n = 30−34φ+φ2 (Macquet et al., 2019). φ
is porosity. Then, for φ ∈ (0, φc), the bulk and shear moduli Kdry and Gdry of the dry-rock
are estimated by interpolating the elastic moduli at zero porosity and at critical porosity
using the modified Hashin-Shtrikman lower bounds:

Kdry =

(
φ/φc

KHM + 4/3GHM

+
1− φ/φc

K0 + 4/3GHM

)−1

− 4/3GHM,

4 CREWES Research Report — Volume 33 (2021)



Rock physics analysis

Gdry =

(
φ/φc

GHM + ξ
+

1− φ/φc

G0 + ξ

)−1

− ξ, (3)

where
ξ =

GHM

6

9KHM + 8GHM

KHM + 2GHM

. (4)

According to Gassmann’s equations, the shear modulus of the saturated rock Gsat is the
same as that of the dry rock, and the bulk modulus of the saturated rock Ksat is given by:

Ksat = Kdry +
(1−Kdry/K0)

2

φ/Kf + (1− φ)/K0 −Kdry/K2
0

where Kf is the bulk modulus of the fluid phase and is calculated using the Brie’s fluid
mixing equation:

Kf = (Kliquid −Kgas)(1− Sgas)
3 +Kgas, (5)

where Kgas is the gas bulk modulus, Kliquid = (Swater/Kwater + Soil/Koil)
−1 is the liquid

bulk modulus given by the Reuss average. The density of the saturated rock is computed
as a weighted average of the densities of mineral and fluid components:

ρ = (1− φ)
N∑
i=1

fiρi + φ
M∑
i=1

f
′

iρ
′

i, (6)

where ρi and ρ′
i are the density of the ith mineral component and the density of the ith fluid

component, respectively. The velocities as functions of the elastic moduli and density are
then

VP =

√
Ksat +

4
3
Gsat

ρ
, VS =

√
Gsat

ρ
. (7)

Application

Based on the lithology interpretation result in Figure 3, we consider four mineral com-
ponents: quartz, clay, calcite and coal. Their volume fractions are denoted by Vqu, Vcl, Vca,
and Vco, repectively. We consider two fluid components: water and CO2, even if the CO2

saturation (Sco2) can be assumed 0 for the Countess 10-22 well (Macquet et al., 2019) be-
cause the log suite was acquired before injection. We also take into account the pressure
effect and include effective pressure (Peff) as a variable. Therefore, combining Equations
(1)-(7), we built a rock physics model with 6 variables (since Vco = 1− Vqu − Vcl − Vca):

(VP, VS, ρ) = f(φ, Vqu, Vcl, Vca, Sco2 , Peff). (8)

The predicted velocity and density logs match the real one closely (Figure 4), with an
avarage relative error of 3.4% for VP, 5.5% for VS, and 1% for ρ. The rock physics are
then used to construct the shallow section (0-223m) of logs. We observe two favorable
features in the result. First, the velocities decrease as they approaches the surface, which is
geologically meaningful. Second, the variation of VP, VS, and for ρ are consistent with the
stratigraphic succession in this well, especially at the coal zone.
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Table 1. Rock physics parameters used in this study

Parameter Value Parameter Value
Quartz bulk modulus 37 GPa Coal bulk modulus 8 GPa
Quartz shear modulus 44 GPa Coal shear modulus 3 GPa
Quartz density 2.65 g/cm3 Coal density 2 g/cm3

Clay bulk modulus 25 GPa Water bulk modulus 2.2 GPa
Clay shear modulus 9 GPa Water density 1 g/cm3

Clay density 2.6 g/cm3 CO2 bulk modulus 0.01 GPa
Calcite bulk modulus 76.8 GPa CO2 density 0.4 g/cm3

Calcite shear modulus 32 GPa Critical porosity 0.36
Calcite density 2.71 g/cm3 Degree of adhesion 0.5
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FIG. 4. Predicted velocity and density logs versus real logs
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FIG. 5. Constructing the shallow section (0-223 m) of VP,VS, and ρ logs.
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ROCK PHYSICS INTERPRETATION

Quantitative estimation of rock-physics properties is of great importance for reservoir
characterization. In seismic reservoir characterization, the estimation of rock and fluid
properties is generally achieved in two steps: seismic inversion and rock physics inversion
(Bosch et al., 2010; Grana, 2016; Dupuy et al., 2016a,b). In seismic inversion, we invert
the seismic data (e.g., amplitude, time, waveforms) for models of elastic attributes. In rock-
physics inversion, we use the realizations of elastic attributes to estimate useful reservoir
properties (Doyen, 2007).

The estimation of rock physics properties is not a trial task because most rock physics
models are nonlinear. However, before we adopt a complex inversion algorithm, we should
examine if there is a regression relationship between the data and the model. In Figure 6,
we crossplot the log data for different elastic-rock physics combinations. Their correlation
coefficients are shown on the top of the panel. We observe that most rock physics variables
are poorly correlated with either velocity or density, making them difficult to estimate using
regressions. The only variable that can be recovered this way is porosity, which has a
high correlation with velocities. Even so, it is still necessary to examine if a theory-guide
approach can give better results. We can also tell that the correlation between any two
rock physics variables are poor, or else they would have similar correlation with the same
elastic parameter. Therefore, we are not able to reduce the number of variables using their
interdependence.
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FIG. 6. Scatter plots of elastic parameters against rock physics parameters. Well-log data are used.
The correlation between two variables is shown on the top of the panel.
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Method

The inverse problem consists in the extraction of models (rock physics parameters)
from input data (elastic attributes) and is formulated as

d = f(m). (9)

As illustrated in Equation 8, the model vector m comprises of six rock physics parame-
ters: porosity, CO2 saturation, effective pressure, and volume fractions of quartz, clay, and
calcite; the data vector comprises of VP,VS, and ρ; the function f is the rock physics model.

The optimization aims to minimize a scalar function (misfit function) describing the
discrepancy between the observed data dobs and calculated data f(m) (by forward model-
ing). We use the L2 norm to compute the misfit as

E(m) =
1

2
[(dobs − f(m))TC−1

d (dobs − f(m))], (10)

where C−1
d is the data covariance matrix, which contains information on data uncertainties.

We use a global optimization method: the neighborhood algorithm (NA). It belongs to
the category of directed Monte Carlo methods. Unlike the uniform Monte Carlo method,
which by definition is a completely blind search since each new sample is independent of
the previous samples, the neighborhood algorithm makes use of previous samples to guide
their search Sambridge (1999).

To make a search for new models be best guided by all previous models, NA makes use
of the geometrical constructs known as Voronoi cells to derive the search in model space.
Each cell is simply the nearest neighbor region about one of the previous samples. For
example, the Voronoi cell about point mi is given by

V (mi) = {x|‖x−mi‖2 ≤ ‖x−mj‖2 for j 6= i}. (11)

The algorithm uses the spatial properties of Voronoi cells to directly guide the sampling of
parameter space. It can be summarized in four steps:

1) Generate an initial set of ns models uniformly (or otherwise) in parameter space;

2) Calculate the misfit function for the most recently generated set of ns models and
determine the nr models with the lowest misfit of all models generated so far;

3) Generate ns new models by performing a uniform random walk in the Voronoi cell
of each of the nr chosen models (i.e. ns/nr samples in each cell);

4) Go to step 2.

The philosophy behind the algorithm is that the misfit of each of the previous models
is representative of the region of space in its neighborhood (defined by its Voronoi cell).
Therefore at each iteration new samples are concentrated in the neighborhoods surrounding
the better data-fitting models. In this way the algorithm exploits the information contained
in the previous models to adapt the sampling.
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Numerical Examples

We study the sensitivity of rock physics parameters with respect to three data param-
eterizations: (VP), (VP, VS), and (VP, VS, ρ). Also, we consider different realistic model
parameterizations.

Cases:

1) 6 unknowns: porosity (φ) + 4 minerals (Vqu, Vcl, Vca, Vco) + 2 fluids (Sco2 , Sw);

2) 4 unknowns: porosity (φ) + 4 minerals (Vqu, Vcl, Vca, Vco) + 1 fluid (Sw).

3) 3 unknowns: porosity (φ) + 2 minerals (Vqu, Vcl) + 2 fluids (Sco2 , Sw).

4) 2 unknowns: porosity (φ) + 2 minerals (Vqu, Vcl) + 1 fluid (Sw).

5) 2 unknowns: porosity (φ) + 1 mineral (Vqu) + 2 fluids (Sco2 , Sw).

In these cases, we assign random values to the rock physics properties. The data are
computed with the same algorithm (i.e., the rock physics model in Equation 8) for observed
and computed data in inversion. We first run tests from case 1 to case 5 with the exact input
data. We then repeat case 5 using erroneous data.

We find:

a) If the number of model parameters is larger than the number of data, the inversion
system is underdetermined with non-unique solutions (case 1, case 2, and cases 3-5
with only VP as input). In these cases, repeating the test always leads to a different
solution, depending on which one is randomly picked. As a result, none of the model
parameters can be accurately estimated. The major focus in this problem should be
which parameter is relatively stable.

b) The estimation is very accurate as soon as the system is not underdetermined, such
as the estimation of (φ, Vcl, Sco2) from (VP, VS, ρ) in case 3, the estimation of (φ,
Vcl) from (VP, VS) in case 4, and the estimation of (φ, Sco2) from (VP, VS) in case
5. Although (VP, VS) is enough to estimate two model parameters, adding density
improves the convergence.

c) In Figure 12, although VS and ρ are erroneous, including them as input data can still
largely reduce the uncertainty in rock physics interpretation (a motivation to choose
elastic inversion over acoustic inversion).
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FIG. 7. Case 1: Inversion of 6 parameters from (VP, VS, ρ). Red cross: true model. Red square:
inverted model
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FIG. 8. Case 2: Inversion of porosity and the volume fractions of quartz, clay, and calcite from (VP,
VS, ρ).
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FIG. 9. Case 3: Inversion of porosity, clay content, and CO2 saturation from (a, d) VP, (b, e) VP, VS,
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FIG. 10. Case 4: Inversion of porosity and clay content from (a) VP, (b) VP, VS, and (c) VP, VS, ρ.
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FIG. 12. Repeat Case 5 but add 5% error to VP, VS, and 10% error to ρ

CONCLUSIONS

In this study we provide a rock physics model to link the elastic and rock physics
properties at the CaMI FRS. The model is validated using the data of the Countess 10-22
well. We then use the rock physics model to predict velocity and density logs near the
surface. The result could provide data for establishing low frequency model for seismic
inversion. Moreover, based on the rock physics model, we carry out sensitivity studies for
the estimation of reservoir properties from seismic attributes. We illustrate that it is difficult
to obtain accurate estimates when the inversion system is underdetermined. Therefore, it is
important to include enough input data by running elastic seismic inversion.
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