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ABSTRACT

The seismic impedance inversion problem is ill-posed and nonlinear because of in-
sufficient data, and is limited by wavelet estimation and frequency band-limited data. A
machine learning long short-term memory algorithm (LSTM) can capture long-term de-
pendencies so that it can work with long and densely sampled well log data to eliminate
these limitations and take advantage of the known rock physics trend with depth. In this
work, two models including the stacked bidirectional long short-term memory (SBDL-
STM) recurrent neural network, and 1D convolutional neural network (CNN) with stacked
BDLSTM have been applied to the inverse problem P-impedance and S-impedance calcu-
lation. Near, mid, far offset seismic data, migration velocity and well log data attributes
are provided to generate the training set. Extreme gradient boosting (XGBoost) is used as
the baseline model for comparison. Results show that SBDLSTM can predict impedance
more accurately than the XGBoost method in some rapidly changing layers. 1D CNN with
stacked BDLSTM can also calculate a high-frequency impedance prediction with fewer
artifacts. The promising aspect is that both SBDLSTM and 1D CNN with SBDLSTM
approaches can maintain a good fit when given a small number of training datasets.

INTRODUCTION

Seismic impedance inversion is used for interpreting internal rock properties. Machine
learning methods have been implemented successfully to seismic inversion problems to
learn the non-linear relationships, and achieve high accuracy and productivity (Calderón-
Macías et al., 2000; Moya and Irikura, 2010; Alfarraj and AlRegib, 2019; Roy et al., 2020).
Das et al. (2019) use a convolutional neural network to obtain seismic impedance inver-
sion. Pham and Wu (2019) apply bidirectional convolutional long short-term memory to
estimate missing logs. However, because the seismic inversion problem is ill-posed due
to insufficient and inaccurate data, training data collection with high quality is a difficult
task. The idea is to think of a system that can handle a small group of data to predict
seismic impedance based on physical meaning. The convolutional neural network has the
advantage of features extraction, which can be used to analyze seismic attributes and make
our inversion result close to the ground truth. Bidirectional long-term memory (BDLSTM)
(Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005) can learn from both
long-term forward and backward temporal dependencies from historical data, and it works
with long and dense borehole traces. The deep BDLSTM architectures are networks with
several stacked BDLSTM hidden layers, where the output of a BDLSTM hidden layer
will be fed as the input into the subsequent BDLSTM hidden layer. These stacked layers’
mechanisms can enhance the power of neural networks. We propose a data-driven method
to predict seismic impedance using the 1D convolutional neural network with stacked bidi-
rectional long short-term memory (1DCNN-SBDLSTM) based on a small number of well
log data. Thirty-seven attributes are applied as features or channels for the neural network
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to learn. For example, background velocity, stack seismic in near, mid, and far offset, in-
stantaneous amplitude, instantaneous phase, instantaneous frequency, integrated absolute
amplitude etc. 1DCNN-SBDLSTM improves prediction accuracy on different rock types.
It also mitigates artifacts compared with using the extreme gradient boosting (XGBoost)
method.

THEORY

In this section, a 1D convolutional neural network with a stacked bidirectional long
short-term memory algorithm will be delineated in detail, along with a basic framework
shown in Figure 1.

FIG. 1: Workflow for 1DCNN-SBDLSTM algorithm.

The proposed model has five parts. The input part includes different seismic attributes.
ConvNet can extract key features from attributes, and the output of the last convolutional
layer is used as the input to the stacked BDLSTM, which can keep tracking the information
and capture long-term dependencies. A dense layer is used for outputting the final predic-
tion. P-impedance and S-impedance are predicted separately to avoid interference. Next
step, we will go over each part in detail.

Input attributes

For input traces, thirty-seven seismic attributes were chosen for the neural network to
learn features. The major attributes include background velocity, stack seismic in near, mid,
and far offset, instantaneous amplitude, instantaneous phase, cosine instantaneous phase,
instantaneous frequency, amplitude weighted instantaneous frequency, integrated absolute
amplitude, derivative amplitude and so on. They are used to characterize sequences and
indicate amplitude anomalies to identify lithology variations. Additionally, the estimation
of seismic attribute amplitude attenuation will help derive the potential location of oil and
gas reservoirs.
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1D convolutional neural network

In 1DCNN-BLSTM, 1DCNN is used to extract key features from various seismic at-
tributes. For example, capturing rapid change through the attribute peaks or troughs. The
network consists of convolutional and pooling layers. We chose the maximum pooling
layer to capture variance and control some outliers or noise. In each 1D CNN-layer, the
forward propagation is expressed as:

ylk = f(blk +

Nl−1∑
i=1

conv1D(wl−1
ik , sl−1

i )) (1)

where ylk denotes the intermediate output, blk is the bias of the kth neuron at layer l, and sl−1
i

represents the output of the ith neuron at layer l − 1. wl−1
ik is the kernel from the ith neuron

at layer l − 1 to the kth neuron at layer l. conv1D(...) is used to perform 1D convolution.
Then, ylk will be used to determine

slk = ylk ↓ ss (2)

where slk stands for the output of the kth neuron at layer l, and ↓ ss means the down-
sampling process with a scalar factor ss.

After the Conv layer blocks, the final block output will be regarded as the input of the
stacked bidirectional long short-term memory block.

Long short-term memory

The output of the last convolutional layer is used as the input to the stacked BLSTM
which can keep tracking the information. We can start with a simple LSTM framework,
then dive into the BLSTM. Within each LSTM cell, the forget gate Γf is determined by

Γf = σ(Wf [ht−1, xt] + bf ) (3)

where ht−1 is the hidden layer vector from previous time and xt means the current input
vector. σ, Wf and bf represent the activation function, weight matrices and bias for the
forget gate.

Then, the input gate follows the similar behavior as forget gate but with different weight
and bias:

Γu = σ(Wu[ht−1, xt] + bu) (4)

The cell input activation vector is obtained by

c̃t = g(Wc[ht−1, xt] + bc) (5)

Next step is to calculate next cell state by using equations 2, 3 and 4:

ct = Γuc̃t + Γf c̃t−1 (6)
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The output ht of the LSTM cell can be determined by the output gate Γo:

Γo = σ(Wo[ht−1, xt] + bo) (7)

ht = Γoct (8)

Bidirectional long short-term memory

For the bidirectional LSTM, forward LSTM and backward LSTM need to consider as
two separate layers (Du et al., 2020). The final output can be obtained by

ht = αhft + βhbt (9)

yt = σ(ht) (10)

where hft is the forward LSTM layer output which takes time sequences from x1 to xT ,
hbt denotes the backward LSTM layer output which takes the reverse time sequences from
xT to x1. α and β represent the importance of forward LSTM and backward LSTM, and
satisfy α + β = 1. ht is the sum of two LSTM outputs, and yt is the impedance prediction.
Note that for the output dense layer, a linear activation function is chosen because seismic
attributes might have negative values.

Model parameters

Three models are applied in this project. One is extreme gradient boosting (XGBoost)
which is considered as the baseline model. A separate stacked bidirectional long short-term
memory is implemented to see how the sequential model works on time series or the well
log data in this project. Another model combines a 1D convolutional neural network and
stacked bidirectional long short-term memory.

The parameters in the XGBoost approach include 50 gradient boosted trees, four-layer
depth for base learners and random number seed equals to zero.

For the stacked BDLSTM model, a two-layer stacked BDLSTM block is used with 512
units and 0.2 recurrent dropouts. It will also return the hidden state for remembering and
learning long dependencies. The third model uses three sets of 1D ConvNet blocks, which
have 128 filters for the first two sets and 256 filters for the last set. The length of the 1D
convolution window is three, and the output has the same length as the input. The size of
the max-pooling layer is 3 with the same padding size. The stacked BDLSTM block in
the latter method has the same parameter setting as the former approach, but has only one
BDLSTM layer with returning sequences setting.

NUMERICAL EXAMPLES

In this section, training and testing sets will be shown for delineating and evaluating the
approach performance.
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Train and test sets

We train and test this proposed model using Poseidon 2D/3D seismic data and six well
log data. For example, well log 11 information after feature engineering is shown in Figure
2. The attributes including background velocity, seismic near offset integral, instantaneous
amplitude and phase will be considered as the train set.

FIG. 2: Well 11 attribute information.

Train set prediction

Figure 3a and 3b show a part of training well data prediction. All three models can
have a good alignment with the ground truth. Some details XGBoost can perform better,
but Conv layers with SBDLSTM will give more accurate amplitudes at some peaks. For
example, at around point 40 and 170 in Figure 3a and point 60 and 80 in 3b, XGBoost gives
higher amplitude predictions; whereas at point 120 and 150 in 3a, and point 87 and 185 in
3b, our proposed method predictions are providing a better match with the true amplitude.

Test set prediction and evaluation

Figure 4a and 4b show the P-impedance and S-impedance predictions on the test set
separately. Compared to the XGBoost blocky result, both stacked BDLSTM and 1DCNN-
SBDLSTM can predict a more accurate trend and indicate more precise geologic layer
boundaries. For example, for the two-way traveltime at the Johnson top (2420 ms), Jame-
son top (2720 ms) and near Plover top (3140 ms), our proposed models can recover the
lithology variance by rapid impedance amplitude change. However, the baseline model
only gives small fluctuations at the boundary layers. Even though SBDLSTM will generate
some incoherent spikes, 1DCNN-SBDLSTM can help suppress the artifacts by the CNN
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a)

b)

FIG. 3: Part of the training well for (a) P-impedance and (b) S-impedance prediction: true
value (blue) and prediction by 1DCNN-SBDLSTM (red).

feature extraction.

R-squared scores are considered as the evaluation matrix for relatively showing the re-
gression result. Due to the fact that small-scale datasets are given, the R-squared score
of 1DCNN-SBDLSTM with P-impedance is 0.314 but is higher than that of the XGBoost
method: 0.291, which means P-impedance inversion by 1DCNN-SBDLSTM obeys the
subsurface geologic structure and has a better alignment compared with the baseline model.
On the other hand side, the score of XGBoost in S-impedance prediction is 0.308, which
is higher than our proposed models. One reason could be that the baseline model result is
close to the average impedance values, whereas our proposed methods give some spiking
predictions. However, the R-squared score is not the only standard way to judge the esti-
mation. Since even though the difference of R-squared between the baseline model and our
proposed model is not large, the baseline model result is blocky and smooth, which cannot
match the true well log data trend.
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a)

b)

FIG. 4: Testing well for (a) P-impedance and (b) S-impedance: true value (blue), XG-
Boost prediction (red dashed line), stacked BDLSTM prediction (orange dashed line) and
1DCNN-SBDLSTM prediction (green solid line).

Table 1: R2 comparison in three methods.
R2 Baseline: XGBoost Model 1: BDLSTM Model 2: 1DCNN-SBDLSTM
Zp 0.291 0.080 0.314
Zs 0.308 0.275 0.208

Applying median filter

Another option to mitigate the spiking prediction influence in our models is to apply
a median filter. A 10-point median filter is chosen for fine-tuning the results of using our
proposed models. The outcome in Figure 5 shows that the median filter is robust and good
at preserving sharp edges and removing some outliers. Both of our proposed models can
provide high resolution and good matches on P- and S-impedance prediction. For exam-
ple, between time window 2200-2400 ms, and 2600-3100 ms, the variation predictions by
our proposed approaches provide more accurate fitting compared with the baseline model.
The R-squared scores (Table 2) in Model 2 for Zp and Zs after applying the median filter
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increase to 0.328 and 0.224 respectively.

a)

b)

FIG. 5: After using median filter, the results (a) P-impedance and (b) S-impedance: true
value (blue), XGBoost prediction (red dashed line), stacked BDLSTM prediciton (orange
dashed line) and 1DCNN-SBDLSTM prediction (green solid line).

Table 2: R2 comparison in three methods after median filter.
R2 Baseline: XGBoost Model 1: BDLSTM Model 2: 1DCNN-SBDLSTM
Zp 0.291 0.080 0.328
Zs 0.308 0.286 0.224

Our proposed method can predict a better fitting of impedance with higher resolution
when given a small number of well log data compared with XGBoost based on physical
seismic attributes. Again, the R-squared score does not fully count on the regression per-
formance.

CONCLUSIONS

Stacked bidirectional long short-term memory can capture the trend of well log data,
and combined with 1D convolutional neural network help to extract key features to in-
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dicate reflectors and structure boundaries. When given an insufficient dataset, 1DCNN-
SBDLSTM can maintain a better fit, suppress more artifacts and recover the prediction
with higher resolution and more accurate trend compared with either XGBoost or stacked
BDLSTM only. In future work, we will try to train and update this approach using more
well log data.
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