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ABSTRACT

Elsewhere in this report we make some suggestions about the use of statistical - me-
chanical models to assess geophysical inverse problems. Computational difficulties appear
in general when the Boltzmann theory is applied to real-world problems, with only a rela-
tively small number of problems giving rise to summable series and closed-form solutions.
So, our approach has been to start from well-known models that have been shown to be
mathematically tractable, and press these into geophysical service. (If this proves to be
a valuable exercise, expending the resources to solve more computationally involved ver-
sions may then be justifiable.) In this review, we set up some of the ideas and concepts of
statistical mechanics, as well as the basics from which we establish and analyze models.
Then, we review several relevant models, some with the aim of exemplifying the rules, and
others because of their possible use in geophysics. The latter class includes especially (or
so it seems at present) the molecular zipper and the law of atmospheres.

INTRODUCTION

Geophysical inversion, and optimization/estimation problems generally, continually bump
up against the methods and ideas of statistical mechanics. An obvious instance of this is
simulated annealing (e.g., Velis and Ulrych, 1996), in which model updates that increase
the value of an objective function are permitted probabilistically, and decreasingly often, as
the system is “cooled”, in a process that is akin to cooling and quenching in metallurgy —
or more simply, “shaking the bubble out of the crystal” (Gleick, 1992). However, Bayesian
estimation methods involving sampling of a posterior probability density function (e.g.,
Buland and Omre, 2003) are rooted in statistical mechanics also. For instance, sampling
with Metropolis-Hastings type acceptance criteria (e.g., de Figueiredo et al., 2019), and
related sampling approaches, wherein a probability density function whose normalization
factor is unknown is estimated, were initially developed because of the difficulties of deter-
mining the partition function of statistical models, such as the Ising model, which we will
discuss in this report.

Less obvious relations between geophysical inversion and statistical mechanics are also
suggested by the recent literature. For instance, the increased use of seismic full waveform
inversion (FWI) methods has motivated research into quantifying FWI model uncertainties.
Uncertainty estimates do not naturally emerge from descent-based optimization methods,
and in the case of FWI they are badly needed. The method of null-space shuttles has been
put forward as a partial solution to uncertainty assessment (Fichtner et al., 2021; Keating
and Innanen, 2021). In the approach, model realizations are treated as shuttles, or point
particles, that during updating move around in model space, like a space shuttle might in
physical space. The objective function, meanwhile, acts like a gravitational potential field,
attracting shuttles towards the nearest local minimum. In the same sense that the space
shuttle in orbit around the Earth possesses a fixed total energy (kinetic from its motion and
potential from the Earth), a model shuttle with a fixed objective function explores regions of
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model space which satisfy the data equally well. This exploration of what is referred to as
the model null-space, then provides a means of making computable uncertainty predictions.
A plausible next step, it would appear to the author, would be to increase the statistical
explanatory power by treating the shuttle as an element in a 1 or many particle gas. To
do this, in the context of the Hamiltonian approach of Fichtner et al. (2021), would be to
bring to bear on the problem of uncertainty quantification in FWI the methods of statistical
mechanics.

Problems of assessing non-uniqueness, and the importance of contributions from differ-
ent grid cells in geophysical inversion, seem to be generally accessible to analysis via
statistical-mechanical models. The full rationale for this will be left for a separate report.
However, we can be motivated by the fact that doing, for instance, brute force calcula-
tions of the exact number of discretized slowness models that produce the same traveltime,
requires the same combinatorical and statistical machinery underlying Boltzmann theory.

With all that in mind, and with the sense that research in these areas could contribute mean-
ingfully to new geophysical inversion methods and appraisal schemes, a selective review
of statistical-mechanical methods and models is presented here. At the broadest scale, the
review is patterned after Susskind (2013), but in detail it involves quite a lot of excursions
and additions. The early parts follow Susskind closely, especially the logical development
of the Boltzmann distribution and the partition function, however the possibility of a chem-
ical potential has been added in at the outset, as it seems to be more smoothly delivered
this way. Furthermore, in the harmonic oscillator example, Susskind leaves a ground state
term out of the energy levels of a quantum oscillator, producing nonstandard results, so
that has been changed in order that results recognizable from other sources are produced.
Several models from other sources have also been added, including the two that appear
to be good starting points for geophysical applications. The barometric equation, or “law
of atmospheres”, is re-derived, following the methods of Sears (1959) but translating the
terms so they match with the rest of the review. Also, the “molecular zipper” model of
Kittel (1969) is set out, first without and then with phase transitions as possibilities. The
end of the review involves a full derivation of distributions and the partition function of the
Grand Canonical Ensemble, which Susskind uses but does not develop. That derivation
follows the logic presented in a different text, that of Kestin and Dorfman (1971), again
with language and terminology adapted to fit in the review.

STATISTICS OF SYSTEMS THAT EXCHANGE ENERGY

Systems and ensembles

We will use the term system to mean some portion of space that we are paying particular
attention to. “Space” here can be quite a general thing, however, so the system might be a
box of gas, or a region of the atmosphere, but it might also be a strand of DNA or a grid
cell in an Earth model. The system contains particles (or some general set of elements),
often identical, whose motion (or behaviour in general) ultimately gives rise to the main
results of the analysis. If the system is defined to be a box containing a monatomic gas, the
elements would then be point-like and massive particles which are in motion in the box.
The system is in contact with its environment (i.e., all of, or some portion of, the rest of
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space), and we assume that it is able to in some well-defined ways interact with it. Finally,
whatever the exact nature of the exchanges between the system and its environment is, we
will assume that they occur at equilibrium, meaning that as time evolves, they are steady
and free of transient phenomena.

Each element contributes energy to the system, and changing the character of the element
can be thought of as a process that costs energy to carry out. A precise specification of
these costs, i.e., how an element contributes energy must be provided in order to produce
a well-defined statistical-mechanical model. For instance, in a box of monatomic gas, the
particles have mass and are in motion, so each one contributes kinetic energy to the system.
If the particles interact with each other, the potential energy between pairs of particles also
contributes. The number of degrees of freedom needed to describe the motion (and energy)
of an element of the system can be very large — particles might also vibrate internally, or
rotate and have angular momentum; they might interact not only in pairs but in triplets,
etc. For the moment, however, it is sufficient to say that each element contributes energy,
and those contributions combine to produce a well-defined total energy of the system as a
whole.

A full accounting of the motion and behaviour of each element in the system at a given
instant of time gives its microstate. We assume that while the behaviour of an individual
element in the system may be quite simple to describe, the number of elements in the system
is large enough that the microstate is not measureable or knowable. Instead, we envision
a large number, say N , of replicas of the system, each essentially similar, but each in a
different precise microstate. Predictions about the system from statistical mechanics come
from computing averages across this set of imaginary replicas, which are called ensembles.

It is helpful to cultivate a mental picture of systems and ensembles. One useful picture
of an ensemble involves a set of systems, all arranged in a line, and each connected to
its neighbours such that exchanges can occur. In this picture, one of the systems in the
ensemble is the “actual” system, and the rest constitute the environment. An example is
illustrated in Figure 1. N boxes, each containing some set of elements (e.g., atoms, or
molecules), are arranged in a line. The boxes are represented as square wells plotted with
energy on the vertical axis, to emphasize that for a particle to leave a vessel through the
wall it must have more than a certain threshold of energy.

The boxes are connected such that two types of exchange are possible. They are thermally
connected, meaning they can exchange energy, and they are chemically connected, meaning
they can exchange particles. Energy exchange is represented notionally in Figure 1 by the
pipes between the wells (the “E path”), and chemical exchange is represented notionally
by the arrows going over the potential walls (the “N path”). This notional picture helps
emphasize that for a particle or element to leave, energy greater than µ is needed.

We consider that the system and the environment are in equilibrium, meaning that transient
behaviour does not occur. However, since energy and particles can be exchanged, any box
at any time can have one of a variety of values of energy, and one of a variety of populations
(i.e., numbers of particles). We consider that there is a list of allowable values the energy
and population of a box can take on. For instance, the box labelled ‘3’ in Figure 1 is in
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FIG. 1. Statistical-mechanical ensembles. A system (e.g., a box of gas) and its environment are
envisioned as a suite of replica systems all of the same nature and in equilibrium – the system
is one of the boxes and the rest constitute its environment. The boxes contain variable numbers
of particles Ni and total energies Ei. In the Grand Canonical Ensemble, the system exchanges
particles and energies with its environment (i.e., there are two paths for exchange, an N (number)
path, over the energy barrier, and an E (energy) path, through thermal contact; in the Canonical
Ensemble, the system exchanges only energy with its environment; in the Microcanonical Ensem-
ble, the system is isolated from its environment. Averages in statistical mechanics are computed
across these ensembles.

a microstate that has energy E702. That is, the energy of the box is the 702nd entry on a
list of available and allowable energy levels. This list has to be present at the outset, i.e., it
is an input, not a prediction, of the statistical theory. The box, furthermore, contains N41

particles, which is, similarly, the 41st entry on a list of allowable numbers of particles*.

This is called the grand canonical ensemble, and we will return to it near the end of this
review. To begin our analysis, we will restrict the setup. We fix the number of particles
to be the same in each box, and then increase µ until essentially no particle exchange is
possible. Doing so we reduce the number of types of exchange between boxes to one,
namely energy exchange. This is referred to as the canonical ensemble.

The canonical ensemble

Eliminating the number of particles per box as a variable, we focus our attention on energy.
In general, many different microstates will have the same total energy. If we look at the
example boxes in Figure 1, for instance, we see that two of the boxes have energy E417.
Suppose of the N boxes, 24 have this energy. We would then say that energy E417 had an
occupation number of n417 = 24. We can imagine counting up all the ni for i = 1, .., and
retaining them in a list. This list of energies is not necessarily finite — in many models
there is no real maximum number of allowable energy values. However, since there will
tend to exist threshold energy values, beyond which no microstates are ever actually found,
in almost any situation a practical maximum, sayM , can be set without producing incorrect
results.

We can use the occupation numbers {n1, n2, ..., nM} to formally define probabilities. If, of
the N boxes, ni have energy Ei, then we can define the probability of randomly choosing

*If the list of allowable numbers of particles is just the set of all integer numbers up to some maximum,
this would just mean 41 particles.
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a box with energy Ei from the ensemble as being

Pi = P (Ei) =
ni
N
, (1)

which, since
∑M

i=1 ni = N , can be quickly confirmed to obey the rule for probabilities:

M∑
i=1

Pi = 1. (2)

So, by normalizing the list of occupation numbers, we produce a probability distribution.
Given probabilities, we can also compute averages. For instance, the average energy per
box, which we denote either with angle brackets, 〈E〉 or with the un-indexed letter E, is:

〈E〉 = E =
M∑
i=1

PiEi. (3)

The fundamental question underlying statistical mechanics is, what probability distribution
actually obtains for a box of gas? If boxes can find themselves with virtually any particular
energy (apart from those above the maximum as discussed above), almost every arrange-
ment of occupation numbers {n1, n2, ..., nM}, and hence probabilities, could be discovered.
Which one actually will be discovered in practice?

Boltzmann’s (and Gibbs’) answer to this is to observe that some sets of occupation numbers
{n1, n2, ..., nM} are produced by many different microstates, and some are produced by
relatively few microstates. If all microstates are equally probable, then the set of occupation
numbers {n1, n2, ..., nM} we should expect to observe is that which is produced by the
largest number of microstates.

Enumeration of microstates

After making this assertion, the problem becomes one of counting. We need to know how
many microstates produce any given {n1, n2, ..., nM}, or, equivalently, how many ways can
we distribute N boxes into this specific set of M categories. The answer is a well-known
result of combinatorics:

W
(
{n1, n2, ..., nM}

)
=

N !

n1!n2!...nM !
. (4)

To motivate it, let us drop the technical use of energy for a moment and imagine instead
a simpler labelling. Instead, let the N boxes be painted N different colours, and then
ask how many different ways those differently-coloured boxes can be arranged. Start with
N = 2 case, and let all the boxes be different colours (say blue, b, and red, r). The boxes
can be arranged in two ways:

{b, r}, {r, b}. (5)
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Then go to the next higher case,N = 3 (say with the new colour being green, g). Consider
the first element in the above list, {b, r}. The new green box can appear at the front, the
middle, or the back of this list:

{g, b, r}, {b, g, r}, {b, r, g}. (6)

Same with the second element in the list:

{g, r, b}, {r, g, b}, {r, b, g}. (7)

This process of dropping a g into every space between the r and b entries produces a
complete list of the possible arrangements for N = 3. Clearly this new list has 3 × 2
elements. For the N = 4 list, we repeat this process again: we take each of the 3 × 2
elements, and drop another box (say orange o) at the front, in the back, and in the two
internal slots:

{o, g, b, r}, {g, o, b, r}, {g, b, o, r}, {g, b, r, o},
{o, b, g, r}, {b, o, g, r}, {b, g, o, r}, {b, g, r, o},
{o, b, r, g}, {b, o, r, g}, {b, r, o, g}, {b, r, g, o},
{o, g, r, b}, {g, o, r, b}, {g, r, o, b}, {g, r, b, o},
{o, r, g, b}, {r, o, g, b}, {r, g, o, b}, {r, g, b, o},
{o, r, b, g}, {r, o, b, g}, {r, b, o, g}, {r, b, g, o}.

(8)

This creates 4 arrangements for each of the 3×2 previous elements, for a total of 4×3×2.
This is enough to guess the pattern: N distinguishable boxes (i.e., boxes each with its own
colour) can be arranged in N ! different ways.

Now suppose the boxes are not necessarily all differently-coloured. To help adapt the
formula, let us write the N = 4 number again, this time as a fraction, with 4 instances of
1! formally introduced into the denominator:

4!

1!1!1!1!
=

(total # boxes)!
(# red boxes)!(# blue boxes)!(# orange boxes)!(# green boxes)!

. (9)

Suppose that instead of orange, the fourth box was blue, just like the first. To model this,
we can swap all o values in (8) with b:

{b, g, b, r}, {g, b, b, r}, {g, b, b, r}, {g, b, r, b},
{b, b, g, r}, {b, b, g, r}, {b, g, b, r}, {b, g, r, b},
{b, b, r, g}, {b, b, r, g}, {b, r, b, g}, {b, r, g, b},
{b, g, r, b}, {g, b, r, b}, {g, r, b, b}, {g, r, b, b},
{b, r, g, b}, {r, b, g, b}, {r, g, b, b}, {r, g, b, b},
{b, r, b, g}, {r, b, b, g}, {r, b, b, g}, {r, b, g, b}.

(10)

This is no longer a viable list of possibilities, because not all of the elements are distinct.
In fact, hunting through the list, you can easily confirm that every element now has an
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identical partner (e.g., top row first column and second row third column). The number of
distinct possibilities has, in other words, been cut in half:

1

2

4!

1!1!1!1!
=

4!

1!2!1!
=

(total # boxes)!
(# red boxes)!(# blue boxes)!(# green boxes)!

. (11)

We observe that the right number can be gotten by removing one of the 1! from the denom-
inator of the original formula, and changing another to 2!. There are now only 3 groups of
possible colours, red, green and blue, and there are 2 blues and 1 each of red and green.
It suggests a more general pattern: divide N !, the factorial of the total number of boxes,
by the factorials of the numbers of boxes of each possible colour. We won’t include bigger
examples here, but a few of these should be enough to convince. Equation (4), of course,
follows just that pattern, with energy re-introduced instead of colour.

Stirling’s approximation and entropy

Now that we know how many microstates contribute to a given set of occupation numbers
(or probabilities), we can start to ask the question we wanted to ask, namely, which set of
occupation numbers is produced by the largest number of microstates. We will accomplish
this in a manner very familiar to geophysicists, by solving a constrained optimization prob-
lem, in which we ask for the set {n1, n2, ..., nM}, or the associated {P1, P2, ..., PM}, for
which both (1) W is a maximum and (2) the Pi are well-behaved probabilities.

Optimization problems are more convenient to solve if they do not involve unknowns oc-
curring in a product, or factorials of unknowns. Let us start by adjusting the factorial aspect
of the formula. Suppose we wish to evaluate N !:

N ! = N × (N − 1)× (N − 2)...× 2× 1. (12)

Taking logarithms,

logN ! = log 1 + log 2 + ...+ log(N − 1) + logN =
N∑
x=1

log x. (13)

As N becomes large, the distance between integers shrinks relative to it. If we treat the
space between integers as infinitesimal, the sum in (13) becomes an integral that is easy to
solve:

N∑
x=1

log x ≈
∫ N

1

dx log x ≈
[
x log x− x

]N
1

≈ N logN −N . (14)

If you work through this integral, you will see that in forming the approximation we have
also assumed that N is large enough that we can neglect the influence of an extra 1 that
appears in the integral. Re-exponentiating, we have

N ! ≈ eN logN e−N ≈
(
elogN

)N
e−N ≈ NN e−N . (15)
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This is called Stirling’s approximation (approximation because the space between integers
is not infinitesimal). It dramatically simplifies the calculation of a factorial without much
cost in terms of accuracy. For instance, withN = 100, Stirling’s approximation is roughly
4 × 10156, and the actual factorial is about 25 times larger; the error in the logarithms of
these numbers is therefore on the order of only about a percent.

We can then re-express W using Stirling’s approximation:

W =
N !

n1!n2!...nM !
≈ NN eN

nn1
1 e

n1nn2
2 e

n2 ...nnM
M enM

≈ NN

nn1
1 n

n2
2 ...n

nM
M

. (16)

Now the factorials are gone, which is convenient when we contemplate optimization. The
multiplicative operations are still here, but we can drop them also by taking logarithms —
fortunately, the argument that minimizes a scalar f is the same argument that minimizes
log f in general, so it does not change our problem to consider logW instead of W . Re-
calling the rules log xa = a log x and log x/y = log x− log y, we have

logW = N logN − n1 log n1 − ...− nM log nM = N logN −
M∑
i=1

ni log ni. (17)

Let us lastly transform from the occupation numbers ni to probabilities Pi = ni/N . Then

logW = N logN −
M∑
i=1

(NPi) log(NPi)

= N logN −N
M∑
i=1

Pi

(
logN + logPi

)

= N logN −N logN
M∑
i=1

Pi −N
M∑
i=1

Pi logPi

= −N
M∑
i=1

Pi logPi,

(18)

where in the last line we have used (2). From this, we define logW = NS, where S is
referred to as the entropy:

S = −
M∑
i=1

Pi logPi. (19)

Since N is fixed, the problem of finding the {n1, n2, ..., nM} for which W is a maximum
is seen to be identical to the problem of finding the Pi values for which S is a maximum,
or (as we will frame it), the Pi values for which (−S) is a minimum.

The method of Lagrange multipliers

At this stage the problem is nearly formulated – we set the derivatives of (−S) with respect
to all {P1, P2, ..., PM} to zero and solve. However, if we do this directly we will get into
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trouble, because we will likely arrive at an illicit set of Pi values — ones which sum to a
number different from 1, or which fail to produce correct average energy values. In order
to properly solve this problem, we have to enforce (2) and (3). The full problem is in fact
to minimize

M∑
i=1

Pi logPi (20)

with respect to the Pi, subject to
M∑
i=1

Pi − 1 = 0 and
M∑
i=1

PiEi − 〈E〉 = 0. (21)

𝜙(𝑥, 𝑦)

𝑓 = 0

𝑥

𝑦 (a)

(b)

(c)

𝑓 →

𝜙(𝑓)

(d) (e)

(d)
(e)

FIG. 2. A toy two-variable constrained minimization problem. Contours of a merit or objective
function φ are plotted against two variables x and y. The minimum is at point (d). We are interested
not in this (d), the global minimum of φ, but rather the minimum (e) that lies on the curve f(x, y) = 0,
which is a curve embodying a constraint. We consider φ varying along a path passing through (d)
and (e) which is everywhere perpendicular to the contours (red curve). We plot this φ(f) versus f in
the upper right corner. It appears as the grey curve (a). The minimum of φ can be shifted arbitrarily,
e.g., to (b), by adding a term that is linear in the independent variable. The method of Lagrange
multipliers involves minimizing an adjusted version of φ, whose minimum has been shifted such
that it coincides with f = 0. This is (c).

To solve this we will employ the method of Lagrange multipliers. The method is used
quite regularly in geophysical inversion, but it is normally introduced very formally, and
without intuition, so we will expand on the idea here for a moment. Suppose we have
a two-variable problem, i.e., we wish to solve for the x and y that minimizes a function
φ(x, y). The contours of φ, which are illustrated in Figure 2, make clear more or less where
the minimum is – we mark it with a black dot and label it (d). Now we add to the problem
the constraint f(x, y) = 0. Such an equation describes a curve on the x-y plane†. An

†For instance, if f(x, y) = y −mx− b, the curve is a line with slope m and intercept b.
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example constraint curve is illustrated as a bold line in Figure 2. The constrained problem:

min
x,y

φ, subject to f(x, y) = 0, (22)

amounts to finding the minimum of φ lying along the f = 0 curve (the large red dot labelled
(e) in Figure 2). The approach of Lagrange is to ask if a new function L can be created,
whose minimum is guaranteed to be on the large red dot. The answer is yes. To find it,
the only extra piece of information we have to fold in is a geometric fact: at (e), the curve
f = 0 is tangent to the contour of φ.

Let us imagine that we will be able to adjust φ such that its minimum follows a path starting
at (d) and ending at (e). This adjusted quantity can then be minimized to give us the answer
we seek. Let us define the path to be that which starts at (d), ends at (e), and is everywhere
perpendicular to the contours of φ. This path is sketched in red in Figure 2. Since f = 0
is tangent to the contour, the new path is perpendicular to it at (e), by definition. In fact, it
defines a family of curves f = ...,−1, 0, 1, 2, ..., amongst which the actual constraint f = 0
is just one example. The trick is to allow this set of points to become a new independent
coordinate axis, along which we can examine φ, i.e., we examine φ(f). The φ(f) curve
is illustrated in the top right of Figure 2 (the grey curve labelled a). The minimum (d) is
visible in the region of negative f , since it can be seen to be to the left of the constraint
f = 0; the value of φ(f = 0) is also marked (e). The plan, then, is to adjust φ such
that, after adjustment, the minimum has moved along this red curve so that it sits at (e),
satisfying the constraint.

Any univariate curve with an independent coordinate (say z) can have its minimum shifted
by adding a term proportional to z‡. In our case, the independent variable is f , so we
accomplish the shift by adjusting φ as follows:

L(f) = φ(f) + λf. (23)

By selecting λ, we can shift the minimum arbitrarily (e.g., (b) in the top right of the Figure).
Amongst these possibilities for λ, the useful one is the one that moves the minimum to
f = 0, because this makes L a minimum on the constraint line (i.e., (c) in the top right of
the Figure).

Assuming that this special λ can be found, we can now proceed by minimizing L instead
of φ. In this example that produces two equations:

∂L
∂x

= 0,
∂L
∂y

= 0, (24)

‡Take the parabola h(z) = (z − z0)2, whose minimum is at z0. Add a term that is proportional to z:

h′(z) = h(z) + 2az =
[
z − (z0 − a)

]2
+ c.

Completing the square we find that the new curve has had its vertex moved by a distance a. Notice that
amongst the possible a values is one, a = z0, which moves the vertex to z = 0.
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or

∂φ(x, y)

∂x
+ λ

∂f

∂x
= 0,

∂φ(x, y)

∂y
+ λ

∂f

∂y
= 0. (25)

Now we just need to make sure that the λ in these equations is chosen such that the con-
straint is satisfied, making sure choice (c) is made rather than, say, (b), in the top right of
Figure 2. The final bit of elegance in Lagrange’s method is that, because λ appears in the
adjusted function L as a factor multiplying the constraint equation, by adding the auxiliary
equation ∂L/∂λ = 0, we automatically force λ to be chosen such that the constraint holds:

∂L
∂λ

=
∂

∂λ

(
φ(f) + λf

)
= f = 0. (26)

The Boltzmann distribution

The method of Lagrange multipliers can be applied to the problem of determining the
probabilities associated with the canonical ensemble as follows. We set up the augmented
functional

L =
M∑
i=1

Pi logPi + α

( M∑
i=1

Pi − 1

)
+ β

( M∑
i=1

EiPi − 〈E〉
)
, (27)

having introduced two multipliers α and β. The primary equations for the Pi are then

∂L
∂Pi

= logPi + 1 + α + βEi = 0. (28)

Solving for Pi, we obtain Pi = e−1−αe−βEi , or

Pi =
1

Z
e−βEi , (29)

for convenience setting Z = e1+α rather than using the more cumbersome exponential.
We then must determine β and Z (i.e., α), having seen that the constrained minimum will
have been properly reached as long as they are computed by enforcing the constraints. Z
is determined by enforcing

∑M
i=1 Pi = 1:

M∑
i=1

Pi =
1

Z

M∑
i=1

e−βEi = 1, (30)

therefore

Z(β) =
M∑
i=1

e−βEi . (31)

The form we have found for Pi in equation (29) is called the Boltzmann distribution, or
Boltzmann factor; the normalization Z(β) in (31) is called the partition function; it can be
seen in (31) to be a function of the second multiplier β, which we still need to determine.
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Calculations with Z and the meaning of β

We will approach the interpretation of β slowly. First, let us substitute the Boltzmann factor
into the second constraint equation:

〈E〉 =
M∑
i=1

EiPi =
1

Z

M∑
i=1

Eie
−βEi . (32)

Notice that if we take the derivative of Z with respect to β, we obtain

∂Z(β)

∂β
=

M∑
i=1

∂

∂β
e−βEi = −

M∑
i=1

Eie
−βEi , (33)

which means the average energy in (32) can be written in terms of Z in two useful ways:

〈E〉 = − 1

Z(β)

∂Z(β)

∂β
= −∂ logZ(β)

∂β
. (34)

It is likewise straightforward to develop further the form of the entropy S in terms of Z:

S = −
M∑
i=1

Pi logPi

= −
M∑
i=1

e−βEi

Z(β)
log

(
e−βEi

Z(β)

)
=

β

Z(β)

m∑
i=1

e−βEiEi +
logZ(β)

Z(β)

m∑
i=1

e−βEi

= β 〈E〉+ logZ(β),

(35)

where in the last line we have recognized the average energy in the first term, and the fact
that the sum in the second term reproduces Z, which is also in the denominator.

To interpret β, let us compare (35) to an important result from classical thermodynamics.
Switching (as we will regularly in this review) from the angle-bracket form 〈E〉 to the
un-indexed form for the average energy E, the entropy then has the form

S = βE + logZ(β). (36)

Since S is a function of both E and β, its differential is

dS =

(
∂S

∂E

)
dE +

(
∂S

∂β

)
dβ

= βdE +

(
E +

logZ(β)

Z(β)

)
dβ,

(37)

using (36) in the second line. But, the term in brackets vanishes, because of (34), leaving

dS = βdE. (38)
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This is a mathematical form that permits interpretation of β. We have not said anything
yet about what kinds of behaviours give our systems this energy value or that energy value,
or even what we want energy to be. Whatever the energy is, dE is a representation of a
small change in its average value. The multiplier β is thus seen to be a coefficient telling
how large of a change dS is enacted on the entropy, per (19), when the average energy is
incremented by dE. In the abstract this is as far as we can go.

Classical thermodynamics can help us take the interpretation further, because it involves
more concretely defined thermal systems, in which energy and entropy are pre-defined.
Also, it describes specific experiments, involving heating and cooling gases with flames,
etc. In these classical descriptions, heat flow into system via for instance a flame produces
very concrete changes in energy, dE, and in those descriptions the thermodynamic entropy
S changes by dS in the presence of such a dE by the amount

dS =
dE

T
, (39)

i.e., it defines the change in entropy as the change in energy divided by the temperature.
Comparison of (38) and (39) gives rise to the interpretation of β as the reciprocal temper-
ature. This T = 1/β deriving from the statistical description will, of course, correspond
exactly to the classical temperature in the end, but only after the energies we have so far
been discussing abstractly are properly specified. This abstractness is again important for
us to maintain, because our later use of statistical mechanics will involve very different
definitions of the energy; this in turn will change the interpretation of the temperature in
(38).

Fluctuations

Any average quantity in the ensemble can be computed by

〈Q〉 =
m∑
i=1

PiQi. (40)

We used the formula to compute the average energy 〈E〉, but we can use it to compute
average values of functions of Ei as well, for instance

〈
E2
〉

=
m∑
i=1

PiE
2
i , (41)

or 〈(
E − 〈E〉

)2
〉

=
m∑
i=1

Pi
(
Ei − 〈E〉

)2
. (42)

This last expression is the square of the average of the difference between the Ei and 〈E〉,
which is recognizable to us as the variance. In statistical mechanics it is denoted ∆E2.
The angle brackets comprise a linear operator, which means we can use simple algebra on
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quantites involving them. For instance, expanding (Ei − 〈E〉)2 = E2
i − 2Ei 〈E〉 + 〈E〉2,

we obtain

∆E2 =
m∑
i=1

PiE
2
i − 2 〈E〉

m∑
i=1

PiEi + 〈E〉2
m∑
i=1

Pi =
〈
E2
〉
− 〈E〉2 , (43)

again using (2) and (3). The term fluctuation is often employed in statistical mechanics
to discuss variances within the ensemble. Fluctuations are another example of a physical
quantity that can be derived when the partition function Z(β) is available. Returning to our
results in (33), we observe that they can be extended to higher derivatives:

∂nZ(β)

∂βn
=

m∑
i=1

e−βEi(−Ei)n, (44)

so

∂Z(β)

∂β
= −

m∑
i=1

e−βEiEi,
∂2Z(β)

∂β2
=

m∑
i=1

e−βEiE2
i , (45)

from which ∆E2 becomes

∆E2 =
〈
E2
〉
− 〈E〉2 =

1

Z(β)

∂2Z(β)

∂β2
−
(

1

Z(β)

∂Z(β)

∂β

)2

. (46)

But

∂2 logZ(β)

∂β2
=

∂

∂β

(
1

Z(β)

∂Z(β)

∂β

)
=

(
− 1

Z2(β)

∂Z(β)

∂β

)
∂Z(β)

∂β
+

1

Z(β)

∂2Z(β)

∂β2
,

(47)

so in fact

∆E2 =
〈
E2
〉
− 〈E〉2 =

∂2 logZ(β)

∂β2
= − ∂

∂β
〈E〉 , (48)

where in the last step we have recognized the original expression for the average energy.

MODELS BASED ON THE CANONICAL ENSEMBLE

The general calculation scheme in the previous section produces specific and interpretable
results when the energies Ei are determined, at which point the partition function can be
evaluated, and the behaviour of the system be predicted. In this section we will review
some of the famous and rare cases in which the energies in an important problem produce
a partition function that is straightforward to compute.
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Ideal gas

Let the system under study be a rectangular box with volume V = l1 × l2 × l3, filled
with a dilute, monatomic gas of N atoms, each of mass m. Let the first of these atoms
(Figure 3a) be labelled with position coordinates (x1, x2, x3) and momentum components
(p1, p2, p3). Then let the second atom have position components (x4, x5, x6) and momen-
tum components (p4, p5, p6). Continuing similarly, full lists of the position and momentum
components of the system, {x1, x2, ..., x3N} and {p1, p2, ..., p3N}, are produced, where the
triplets (x3k−2, x3k−1, x3k) and (p3k−2, p3k−1, p3k) respectively represent the position and
momentum components of the kth particle.

!3

!2

!1
"1

"2

"3

1

23

&2

&1

&3'

(

∆!3

! = #1#2

$

(a) (b)

FIG. 3. (a) One of N atoms making up a dilute, monatomic gas occupying a box of volume V =
l1l2l3, and its position and momentum components. (b) The box as a column with piston; the top
side of the box can move up and down when subject to a force, changing the box volume.

Atoms contribute to the total energy of a system through the kinetic energy of their motion,
and any potential energy they produce or experience. The contribution of the kth atom to
the total kinetic energy of the gas includes that due to its three momentum components, and
any other generalized momenta associated with its internal vibrations, rotations, etc. Here,
because we are assuming a monatomic gas, the atoms are point-like, meaning there are no
such extra degrees of freedom, and the kinetic energy of the kth atom is§

p2
3k−2

2m
+
p2

3k−1

2m
+
p2

3k

2m
. (49)

The kth atom can also contribute potential energy to the total energy of the gas. The energy
may originate externally, e.g., if the gas is in a gravitational field, or it may originate from
interactions between the atoms, e.g., when they collide, or otherwise exert forces on each

§We will use the momentum form of kinetic energy. Since p = mv,

1

2
mv2 =

1

2
m
( p
m

)2
=

p2

2m
.

The velocity form mv2/2 can be used as well, in order to determine velocity distributions, results which are
associated with Maxwell. We will not examine those in this review.
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other. The potential energy contributed by an atom is generally a function of its position
and those of all the others:

V (..., x3k−2, x3k−1, x3k, ...). (50)

We can now obtain the partition function for this problem. Formally, it is

Z(β) =
∑
i

e−βEi , (51)

where the sum is over all possible energy values accessible to the system. The problem
then is to realize this sum given the specifics of the gas. In principle each different value of
each of the 3N coordinates describing the gas produces its own energy value, so the sum
when realized must be over every possible configuration of the gas. This suggests that the
sum is an integral over the ranges of possible values of the 3N position values of the atoms
and their 3N momenta:∑

i

→ 1

N !

∫ l1

0

dx1...

∫ l3

0

dx3N

∫ ∞
−∞

dp1...

∫ ∞
−∞

dp3N , (52)

in which the spatial integrals are limited by the dimensions of the box; the momenta are
not restricted.

The factor 1/N ! is included because the integrals alone are only valid if each of the particles
is distinct from all others. For example, somewhere amongst all of the configurations being
counted in (52), there is a configuration in which some particle A has momentum/position
pA/xA and some particle B has momentum/position pB/xB; but, elsewhere in the counting
there is also a configuration in which particle B has momentum/position pA/xA and particle
A has momentum/position pB/xB. If the system is indifferent to the exchange of particles
A and B, then (52) evidently accounts for the same configuration twice. If only particles
A and B are indistinguishable, we would correct for this by dividing the integral in (52) by
2. But all N particles are interchangeable, so the integral in (52) in fact over-counts by a
factor of N !, i.e., the number of possible exchanges of particles. We compensate for this
by dividing by N !.

The energy of a particular configuration is the sum of all the contributions to the kinetic
and potential energy from each particle:

E(x1, ..., x3N , p1, ..., p3N) =
p2

1

2m
+ ...+

p2
3N

2m
+ ...+ V (..., x3k−2, x3k−1, x3k, ...) + ...,

where the V contributions include a term for each of the N particles that itself depends on
the positions of all other particles. These terms can make calculations quite complicated,
but fortunately important cases can be explored in which they are neglected. It is straight-
forward to set up a problem in which there are no external forces¶, but all particles in nature

¶We simply consider gases made up of inert particles. The only force we cannot reasonably eliminate this
way is gravity, since we have given the particles mass, but gravity can be neglected on the basis of its relative
weakness.
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interact with each other, at least at close range when they collide, which makes neglecting
these a possible problem. However, since the gas we are currently describing is dilute, the
fact that particles do interact at close range can itself be neglected, since it is rare for a pair
of particles to be close enough to contribute significantly. With this assumption in place,
the energy becomes

E(x1, ..., x3N , p1, ..., p3N) =
p2

1

2m
+ ...+

p2
3N

2m
. (53)

The partition function for this box of gas is therefore

Z(β) =
1

N !

∫ l1

0

dx1...

∫ l3

0

dx3N

∫ ∞
−∞

dp1...

∫ ∞
−∞

dp3N exp

[
−β
(
p2

1

2m
+ ...+

p2
3N

2m

)]
.

We observe that because the potential energy is neglected in this model, the integrand is
not a function of any of the spatial integration variables. Each triplet of spatial integrals
therefore gives the volume of the box. For instance, the first triplet gives:∫ l1

0

dx1

∫ l2

0

dx2

∫ l3

0

dx3 = V. (54)

There are N of these triplets, so the space integrals in total contribute a factor of V N . We
further observe that each term in the argument of the exponential pairs with one of the
momentum integral signs:

Z(β) =
V N

N !

(∫ ∞
−∞

dp1e
−βp21/2m

)
× ...×

(∫ ∞
−∞

dp3Ne
−βp23N/2m

)
. (55)

The momentum integrals therefore amount to 3N independent and identical integrals. Us-
ing
∫∞
−∞ e

−ax2 =
√
π/a, we obtain

Z(β) =
V N

N !

(
2πm

β

)3N/2

. (56)

With a definite form for the partition function we may then rapidly compute features of the
box of gas. The average energy, using (34), and again reverting to the non-bracketed form
E = 〈E〉, is

E = −∂Z(β)

∂β
=

3N

2
T, (57)

or T/2 for each of the 3N degrees of freedom in the gas. (To derive this result, use the rules
for logarithms of products and quotients, and separate out the term in β.) The entropy, being

S =
E

T
+ logZ(β), (58)

is also now immediately computable:

S =
3N

2

(
1− log β

)
+ C, (59)

where C is independent of β.
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Probabilities and single-particle gases

Analysis of Z alone gives us statistical features of the gas as a whole, but we have to return
to the full distribution to learn about how the atoms are arranged in space. We do not know,
for instance, what the “number density” of particles as a function of x1, x2, and x3 is for
the gas. We can guess: this is an ideal gas, subject to no external forces, so a fairly trivial
uniform distribution is expected.

To extract this quantity from the formalism, let us re-consider the box in Figure 3a. Let us
ask on the backdrop of the Boltzmann theory what the probability P (x1, x2, x3, p1, p2, p3, β)
is — i.e., the probability of finding an atom at (x1, x2, x3) and with momentum (p1, p2, p3)||.
According to the Boltzmann theory, this probability is

P (x1, x2, x3, p1, p2, p3, β) =
1

Z(β)
exp

[
− β

(
p2

1

2m
+

p2
2

2m
+

p2
2

2m

)]
, (60)

where in this case the partition function is the sum over all possible energies of the individ-
ual particle:

Z(β) =

∫ l1

0

∫ l2

0

∫ l3

0

dx1dx2dx3

∫ ∫ ∫
dp1dp2dp3 exp

[
− β

(
p2

1

2m
+

p2
2

2m
+

p2
2

2m

)]
.

Already we observe “uniformity” emerging – because the energy is not a function of posi-
tion, the probability has no dependence on the spatial variables. Let us keep the erstwhile
spatial dependence on the left hand side of (60) in any case, because this lack of depen-
dence is emerging from a calculation that would have given the dependence if it had been
there. In the partition function, we recognize the spatial integrals as again determining the
volume of the box, and the momentum integrals as three uncoupled Gaussian integrals, we
obtain

Z(β) = V

(
2πm

β

)3/2

, (61)

so in total we have

P (x1, x2, x3, p1, p2, p3, β) =
1

V

(
2πm

β

)−3/2

exp

[
− β

(
p2

1

2m
+

p2
2

2m
+

p2
2

2m

)]
. (62)

From this we can obtain the probability associated with a particle at (x1, x2, x3) for any
momentum, by integrating over all (p1, p2, p3). This means evaluating the same three mo-
mentum integrals once again, producing

P (x1, x2, x3, β) =

∫ ∫ ∫
dp1dp2dp3P (x1, x2, x3, p1, p2, p3, β)

=
1

V

(
2πm

β

)−3/2(
2πm

β

)3/2

=
1

V
.

(63)

||This sounds wrong at first blush — how can we determine statistics for one particle? However, we recall
that the statistics are built up over the ensemble, not over a physical group of atoms. An ensemble consisting
of many repetitions of a 1-particle system is just as good for statistics as an ensemble of systems of many
particles.
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We can then apply the results produced by considering a single particle back to the larger
set. For a box with N particles, we set the number of particles per unit volume, n, at
(x1, x2, x3), as (N , the number of particles overall)×P , or

NP (x1, x2, x3, β) =
N

V
. (64)

This is a constant corresponding to the ratio of N to the total volume of the box V , which
confirms our expectations. To be sure, this is a simple — almost trivial — result. However,
it sets out an approach that can be applied in more complex situations.

Helmholtz free energy, pressure, and the equation of state

In classical thermodynamics, the difference between the average energy and the product of
the entropy and the temperature is called the Helmholtz free energy F . It is a measure of
the energy available to the system to do work. To see this, first consider how work affects
the box (warning: we have to introduce some thermodynamical quantities here, which we
are not reviewing completely). We imagine that the top of the box is actually a piston,
which can move up or down in a rectangular column (Figure 3b). Work is done when this
happens. Specifically, an element of work dW is given by the formula**

dW = pdV = −dE, (65)

where in the rightmost term we have equated dW with a negative change in the average
energy of the gas — conventionally, if the gas does positive work, it does so at the expense
of its total energy. Equation (65) holds only if all of the work went into changing the energy
of the gas, or conversely if the whole change in the energy of the gas went into the work of
moving the piston. If some energy was lost in the process, say through dissipation of heat
from the box into its environment, dW = −dE no longer holds. So, to use it, we have to
add to (65) that the change dV occurred isentropically, with no change in entropy, which
is another way of saying it happened without such losses.

This and the righthand equality in (65) suggest we express pressure as a derivative based
on (65):

p = − ∂E

∂V

∣∣∣∣
S

, (66)

where the ·|S enforces the isentropic aspect of the process. In these circumstances E is
determined fully by temperature T and volume V , so another way of writing dE presents

**Work is the product of distance an object moves and the net force it experiences as it moves, i.e, dW =
Fdx. In our box, a force exerted by the gas moves the piston in the +x3 direction. So if A = l1l2 is the area
of the top of the box, the work done by the gas is

dW = Fdx3 =
F

A
×Adx3 = p× dV,

where p = F/A is the pressure exerted by the gas, and dV = Adx3 is the change in volume.
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itself, via the rule for differentials:

dE =
∂E

∂V

∣∣∣∣
T

dV +
∂E

∂T

∣∣∣∣
V

dT

=
∂E

∂V

∣∣∣∣
T

dV +
∂E

∂S

∣∣∣∣
V

∂S

∂T

∣∣∣∣
V

dT,

(67)

or, dividing through by dV :

dE

dV
=
∂E

∂V

∣∣∣∣
T

+
∂E

∂S

∣∣∣∣
V

∂S

∂T

∣∣∣∣
V

dT

dV
=
∂E

∂V

∣∣∣∣
S

. (68)

The left side is an allowable form for dE/dV since the process is already constrained to
occur at fixed S. This can be simplified, because in an isentropic process dS = 0, so, if it
too is a function of T and V only,

dS =
∂S

∂V

∣∣∣∣
T

dV +
∂S

∂T

∣∣∣∣
V

dT = 0, (69)

or

∂S

∂V

∣∣∣∣
T

dV = − ∂S

∂T

∣∣∣∣
V

dT. (70)

Dividing through by dV ,

∂S

∂V

∣∣∣∣
T

= − ∂S

∂T

∣∣∣∣
V

dT

dV
, (71)

and (68) becomes

∂E

∂V

∣∣∣∣
S

=
∂E

∂V

∣∣∣∣
T

− ∂E

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T

. (72)

We now identify several terms in (72). Because dE = TdS, ∂E/∂S|V = T . Also, the left
hand side evidently expresses the pressure as it has been set up in (66). So,

p = − ∂E

∂V

∣∣∣∣
T

+ T
∂S

∂V

∣∣∣∣
T

=
∂

∂V

[
E − TS

]
T

. (73)

The term in square brackets [·] is known as the Helmholtz free energy, and is usually given
the letter F . But by our expression for the entropy in (58)

E − TS = −T logZ(β), (74)

so

p = − ∂F

∂V

∣∣∣∣
T

= T
∂ logZ

∂V

∣∣∣∣
T

. (75)
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Now we can bring in the Z associated with the ideal gas from (56):

Z(β) =
V N

N !

(
2πm

β

)3N/2

= V NC(β),

where everything unconnected to the volume is packed into a term C. Taking logs we get

logZ(β) = N log V + C(T ), (76)

so

p = T
∂ logZ

∂V

∣∣∣∣
T

= T
N

V
. (77)

This gives us the relationship

pV = NT, (78)

which is the well known equation of state for an ideal gas.

Harmonic oscillator in a heat bath and diagnosis of incorrect physics

Consider a gas of particles that oscillate classically, as if it were built of two masses joined
by a spring, or equivalently a mass M joined by a spring with constant kM to a block that
is massive enough not to itself perceptibly oscillate (Figure 4). Let the distance of the mass
from its unperturbed position be xM .

M

𝑘M
𝑥M

FIG. 4. A gas of harmonic oscillators.

We will analyze a single-particle gas, which, as a classical oscillator, contributes to the
system the energy

p2
M

2M
+

1

2
kMx

2
M , with xM and pM ranging from (−∞,∞). (79)
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The first term represents the kinetic energy of the moving mass, and the second represents
the potential energy stored by the spring. We recognize that this oscillator will have a
characteristic frequency of oscillation of ω =

√
kM/M . The sum over states is∑

i

→
∫ ∞
−∞

dpM

∫ ∞
−∞

dxM , (80)

and so the partition function is

Z(β) =

∫ ∞
−∞

dpMe
−βp2M/2M

∫ ∞
−∞

dxMe
−βkMx2M/2 =

2π

βω
. (81)

If we included M independent harmonic oscillators, this would produce in turn M of these
pairs of new integrals, each pair independent, producing not the Z in (81) but rather

Z(β) =

(
2π

βω

)M
. (82)

Equation (82) can be analyzed to produce equations of state, average energies, etc., and
these would be appropriate for dilute gases involving diatomic particles, each of which
acted as a classical oscillator. For instance, the average energy of the single-oscillator gas
is

E = −∂ logZ

∂β
= − ∂

∂β

(
log 2π − logω − log β

)
=

1

β
= T, (83)

which suggests that each harmonic oscillator in a diatomic gas should contribute on average
an amount T to the energy of the system; since this has included an incorporation of both
kinetic and potential energy, we might further suggest that each of these aspects of the
oscillator individually contributes T/2 to the system.

Diagnosis of wrong physics

The problem is, dilute diatomic gases at relatively low temperatures do not behave like this,
i.e., according to the predictions of this updated partition function. The equation of state
pV = NT , for instance, still holds for diatomic gases to a high degree of approximation
— the altered phenomena predicted by the new partition function do not appear. More
importantly, as T decreases, the system does not drop to zero 〈E〉 as this formula predicts;
we see instead the famous zero-point energy being reached.

This disagreement is not the “fault” of statistical mechanics. In fact, the statistical-mechanical
“answer” in (81) is correct — given the physical rules that we imposed. The origin of the
problem is that the physical rules are wrong: harmonic oscillators at the atomic scale do
not contribute energy in the manner of classical oscillators, they behave quantum mechan-
ically. So equation (79) is the culprit. The oscillator cannot take on any energy value, as
this equation suggests. It is restricted to taking on one of a discrete range of possible ener-
gies, namely multiples of h̄ω = h̄

√
kM/M , plus a minimum ground state energy of h̄ω/2.
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This changes the partition function for the oscillator dramatically, to a discrete sum over all
multiples of this basic amount:

Z(β) = e−βh̄ω/2
∞∑
n=0

e−βnh̄ω, (84)

rather than Z2. As in the continuous/integral case, we are lucky here in that this sum can
actually be evaluated. Setting X = e−βh̄ω, (84) becomes

Z(β) = X1/2

∞∑
n=0

Xn = X1/2
(
1 +X +X2 + ...

)
=

X1/2

1−X
, (85)

that is

Z(β) =
e−βh̄ω/2

1− e−βh̄ω
. (86)

Checking the average energy contributed to the gas by the oscillator, as predicted by this
alternative partition function, we obtain

〈E〉 = −∂ logZ(β)

∂β
=

(
h̄ω

2

)
1 + e−βh̄ω

1− e−βh̄ω
. (87)

Some examples of this average energy are plotted in Figure 5, with panel (a) showing some
differences in the frequency dependence of 〈E〉 for different temperatures. In panel (b),
〈E〉 is instead plotted as a function of temperature for a fixed frequency. Scaled units are
chosen such that ω = h̄ = 1. Notice that as the temperature increases, 〈E〉 takes on a
roughly linear dependence, with a slope of 1, i.e., 〈E〉 ≈ T — the classical result in other
words is arrived at for sufficiently high temperature. However, this behaviour does not
persist as the temperature drops, in fact it flattens out and intersects the 〈E〉 axis at 1/2,
or rather, recalling that we have set ω = h̄ = 1, at h̄ω/2. This is the zero-point energy, a
minimum that cannot be dropped below in the quantum theory.

FIG. 5. Average behaviour of the quantum oscillator. (a) 〈E〉 versus frequency for three different
temperature values; (b) 〈E〉 versus temperature for ω = h̄ = 1.

This is a famous example of the use of a statistical-mechanical model to identify and adapt
incorrect physics, and in fact was an early argument for the adoption of the quantum theory.
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The molecular zipper

The “zipper model” of the unraveling of a DNA molecule in a cell (Kittel, 1969) behaves
itself so well mathematically that it appears in many textbooks on the subject. In the model,
one or many simple DNA molecules are assumed to have the structure of a set of parallel
links resembling a zipper, which may be found in any state of openness or closedness
(Figure 6a). Like a zipper, links can be open, but in the interior of the strand, a link can
only be open if all previous links to one side are also open.

a)
DNA
molecule

4 open
links 

b)
DNA
molecule

4 open links with 
each open link in
one of G possible
configurations 

FIG. 6. The molecular zipper, a ladder-like structure with breakable links. Two variant models are
considered, (a) the simple model in which broken links may take on only one possible configu-
ration, and (b) a more complicated model in which broken links may take on one of G possible
configurations.

In the model, it costs energy to open a link. If a closed link has an open link on one side of
it, we set the energy needed to open it to ε. If a closed link has closed links on either side
of it, the energy to open it will be defined to be infinite – meaning it cannot open. A zipper
with n open links is thus in a state with energy nε.

One further element was added to the problem by Kittel (1969). Two types of zipper are
possible. In the basic type of zipper, an open link is in a single configuration – “open”
(Figure 6a). In the more complicated type, once a link is open, it can find itself in one
of many different configurations, i.e., in which the broken link points either this way or
that (Figure 6b). The statistical description of the second type is more complex, and more
interesting, because each of these configurations has to be accounted for in the partition
function. As links open, the number of possible configurations grows exponentially, and
this explosion of accessible states has a profound effect on the predictions of the model, as
we will see later in this review.

For now, however, let us develop the basics of the model by analyzing the simpler zipper
type in panel (a). If we insist that the end of the molecule must remain closed, i.e., the
molecule cannot completely separate, then the possible energy values of a molecule with
N links is

0, ε, 2ε, ... , nε, ..., ..., (N − 1)ε. (88)

The partition function, which sums over all possible energy values the system can take on,
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is, then, for the single molecule,

Z(β) =
N−1∑
n=0

e−βnε. (89)

This is a discrete sum, like it was in the quantum oscillator model, and we can use a similar
strategy to analyze it. Setting X = e−βε, and using the identity

M∑
m=0

qm =
1− qM+1

1− q
, (90)

we can re-write Z as

Z(β) =
1−XN(β)

1−X(β)
, (91)

and subsequently the average energy is

〈E〉 = −∂ logZ

∂β
= ε

X

1−X
−Nε XN

1−XN
= ε 〈n〉 , (92)

where

〈n〉 =
X

1−X
−N XN

1−XN
(93)

is the average number of open links. We observe that 〈n〉 is a function of the temperature,
via β. This makes sense: presumably as the temperature of the heat bath increases, the
probability that a molecule has access to sufficient energy to open more links grows. In
fact, we can plot the 〈n〉 as a function of temperature to see how it should be expected
to vary. For simplicity, let us set ε = 1, and, rather than plotting 〈n〉 versus T , let us
instead for convenience plot it against X = e−β = e−1/T . Let us plot three versions, to see
the effect of increasing the number of links in the molecule (normalizing each time). See
Figure 7a.

It appears that there is some potentially interesting behaviour predicted here. Consider
a DNA molecule in a bath (of cellular fluid, presumably), whose temperature is being
changed such that we move across Figure 7a from left to right, i.e., with increasing X . By
Figure 7b, we see that we accomplish this by raising the temperature, or warming the bath.
As we approach X = 1, we predict a very particular rate of un-ravelling of the molecules
– noting that the number of links in the molecule is a strong parameter in deciding the rate
of change.

Especially for cases involving large numbers of links (which is likely the case for an actual
strand of DNA), further interesting behaviour is predicted as we pass X = 1. At this point,
the average number of open links suddenly flips from a relatively small number to a very
large number (nearly all of the links in the molecule). A discontinuous phenomenon of
this kind, occurring as the temperature continuously varies, is called a phase transition;
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FIG. 7. Visualizing the consequences of the zipper model. (a) The average number of open links,
normalized to 1, for various numbers of molecules, plotted versus X = e−βε. The plot is sugges-
tive of a phase transition at a critical temperature Tc corresponding to X = 1. (b) The relationship
between the independent variable X in plot (a) and the temperature. Although growing X corre-
sponds to growing T , we observe that no temperature can be found at which X = 1, and the phase
transition occurs. We would say then that no solution for a critical temperature Tc exists in this
model, and no phase transition is possible.

the temperature at which this takes place is referred to as a critical temperature. In later
parts of this review we will dig further in to such behaviour. For now, we unfortunately
have to recognize this particular phase transition as a bit of a mirage, because X never
passes through 1. To see this, we consult Figure 7b; note that as the temperature grows, X
approaches but never touches 1. So, the toy model we have set up here speaks of (in some
sense) a phase transition, but can never experience it. In spite of this, it is useful to see the
way in which such transitions emerge mathematically in statistical-mechanical models.

The law of atmospheres

Earlier we saw how to determine the probability density and number density of particles
in an ideal gas as functions of space, in the absence of an external field. To extend this
somewhat, and create a less trivial result, suppose now that the box of gas in Figure 3a has
no top, i.e., l3 → ∞, to simulate a column of atmosphere, and suppose further that in this
column the particles feel the force of gravity. The difference appears in the energy, which
then impacts the Boltzmann factor. Take the probability density function characterizing a
particle of gas (mass m) at (x1, x2, x3) with momentum components (p1, p2, p3):

P (x1, x2, x3, p1, p2, p3, β) =
1

Z(β)
e−βE(x1,x2,x3,p1,p2,p3). (94)

The particle has a kinetic energy determined by its momentum components, as before, but
it now also experiences a force due to gravity, which confers on it a potential energy mgz,
or, in the current coordinate system,

E(x1, x2, x3, p1, p2, p3) = E(x3, p1, p2, p3) =
p2

1

2m
+

p2
2

2m
+

p2
3

2m
+mgx3. (95)
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The partition function is the same in its momentum integrals as it was in the basic ideal gas
case, but its spatial integrals now must be split up:

Z(β) =

(∫ l1

0

dx1

∫ l2

0

dx2

)(∫ ∞
−∞

dp1e
−βp21/2m

)3 ∫ ∞
0

dx3e
−βmgx3

= A

(
2πm

β

)3/2(
1

βmg

)
,

(96)

where A is the area of the column in cross-section, and the rightmost bracketed term was
produced using

∫∞
0
e−sydy = 1/s. Substituting this Z into (94), and integrating over mo-

mentum to find the probability density function for position only, we obtain

P (x3, β) =

(
βmg

A

)
e−βmgx3 . (97)

Replacing β = 1/T , the particle number density of the gas at height z = x3 is therefore

n(z, T ) = NP (z, T ) =

(
Nmg

AT

)
e−mgz/T . (98)

We can also transition to an expression in terms of the pressure. This is still an ideal gas,
external force notwithstanding, so the equation of state pV = NT = nV T still holds. Thus
n = p/T , allowing us to write (98) as

p(z, T ) =

(
Nmg

A

)
e−mgz/T . (99)

Simplifying this, and recognizing the factor Nmg/A as a quantity in units of pressure that
can be considered a reference value p0, giving

p(z, T ) = p0e
−mgz/T . (100)

This is the well-known law of atmospheres, which approximates atmospheric pressure vari-
ations with temperature and elevation.

Magnetization

Another environment in which statistical mechanics has generated famous (and tractable)
models is in the description of magnetism and magnetic phenomena. We will start with
a 1D model, and then afterward extend to multiple dimensions. The system consists of
a 1D lattice of atoms, each of which has a magnetic moment ±µ (not to be confused
with the chemical potential µ), whose amplitude is a fixed number, but which might either
positive or negative. In Figure 8a the configuration is illustrated. In the figure, we have also
introduced a further variable σ = ±1, which keeps track of whether the magnetic moment
is positive or negative. The ± is the basis for our view of the orientation of the atoms as
little magnets, so we illustrate this using arrows that point either up or down.

Energy enters this discussion through the inclusion of a background magnetic field H , also
pictured. Suppose that the system is in a configuration in which, of the N atoms, n have a
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positive moment +µ, andm = N−n have a negative moment−µ. The energy of a system
with n upward-pointing moments is given by

En = (n−m)µH = MNµH, (101)

where M = (n −m)/N is the magnetization of the system. The energy contribution of a
moment +µ is positive because it has the same sign as H . This means that it costs energy
to point a magnet up. If the background magnetic field is reversed, i.e., H → −H , the
contribution to the energy of the downward pointing moment −µ becomes positive.

…

1 2 N…

H
+𝜇 +𝜇

10 …

−𝜇 +𝜇 +𝜇−𝜇

a)

b)
1

0
x

tanh(x)

𝜎(1) 𝜎(2) 𝜎(𝑁)…𝜎 10 = +1

FIG. 8. (a) 1D arrangement of N particles in a background magnetic field H, each with magnetic
moment ±µ. For later convenience we also introduce σ(i), which equals ±1, after which particle i
has magnetic moment µσ(i). (b) Behaviour of tanhx for x between 0 and∞.

The energy En of the configuration with n upward pointing magnets (in 101) contributes a
term of the form e−βµH(n−m) = e−βµH[n−(N−n)]. However, in the actual partition function
this factor has to be added in the sum more than once, since more than one configuration of
magnets gives n upward pointing moments. In fact, in this case the same logic by which we
determined the number of states in (4) can be used again. The number of ways of arranging
n upward-pointing moments out of a total of N is

N !

n!(N − n)!
, (102)

so the factor e−βµH[n−(N−n)] needs to be added in this many times. The full set of configu-
rations is then the sum of these, from the case of no upward pointing magnets, n = 0, up
to the case of all upward pointing magnets, n = N :

Z(β) =
N∑
n=0

N !

n!(N − n)!
e−βµH[n−(N−1)] =

N∑
n=0

N !

n!(N − n)!
XnY N−n, (103)

where X = e−βµH and Y = eβµH . At this point, fortune smiles, and the partition function
sums produce a closed form. The sum on the right is exactly the binomial formula, so
Z(β) = (X + Y )N , or

Z(β) =
(
e−βµH + eβµH

)N
= 2N

(
e−βµH + eβµH

2

)N
=

(
2 cosh

(
βµH

))N
, (104)
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using the definition of the hyperbolic cosine function. With the partition function in hand,
we can go about computing the average energy 〈E〉 and the average magnetization 〈M〉:

logZ(β) = N log 2 +N log cosh(βµH), (105)

so

〈E〉 = −∂ logZ(β)

∂β
= −N tanh(βµH)µH, (106)

whereby from (101)

〈M〉 = − tanh(βµH). (107)

The behaviour of tanh(x), where in our case x = βµH , is illustrated in Figure 8b. Large
values of the horizontal axis correspond to small values of T = 1/β; hence as the tempera-
ture decreases the average magnetization converges to −1. This corresponds to a configu-
ration in which all magnets point downward, which is the lowest energy this orientation of
H permits. This is a feature of systems described by the Boltmann theory – they are seek-
ers of minimum energy. Conversely, as temperature grows towards infinity our position on
Figure 8b moves towards zero, and the magnetization approaches 0 from below. This is
another features of systems described by the Boltzmann theory – increasing temperature
implies increasing disorder and a tendency for quantities (such as magnetization) which in
order to develop require order and cohesion, to go to zero on average.

The 1D Ising model

In the preceding analysis, the model of magnetism, though simple, introduced the counting
procedures by which hyperbolic trigonometric functions appear in the form of the partition
function, and then predicted a specific trade-off between temperature and magnetization; to
wit, the higher the temperature of the crystal, the lower the average magnetization. This re-
flects the idea that the alignment of moments that gives rise to measureable magnetic fields
is destroyed by thermal effects. However, other, more complex behaviour, for instance the
existence of a critical temperature (in magnetic settings often called the Curie tempera-
ture), a point at which a discontinuous change in magnetization occurs (and above which a
crystal loses its magnetization completely), is not predicted by the previous model.

We next move to a different model, called the Ising model, which is, ultimately, capable
of producing a critical temperature. We will in fact recognize in this model all of the
hallmarks of a phase transition††. It too involves a lattice of atoms (e.g., a crystal) with
magnetic moments, but this time the moments do not contribute to an energy by being
immersed in a background magnetic field. Instead, the moments contribute to the total
energy by dint of how they interact with one another.

We return for the moment to the 1D arrangement in Figure 8a, remove the background H ,
and assert that for any pair of particles, the contribution to the energy is negative if the two

††The very kind of change that failed to happen with our first attempt at a molecular zipper.
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are aligned (e.g., the first two particles, or the 5th and 6th particles) and positive if they
oppose (e.g., the second and third). Thus we add to the system (1) a mechanism of com-
munication between neighbouring atoms on the lattice, and (2) a tendency (via reduction
in energy) for adjacent atoms to be aligned. Whatever the solution of the problem is, it will
involve an attempt to produce fully aligned particles, combated by random variations as the
temperature grows.

To accommodate the idea of communication between neighbours, we set the energy con-
tributed by the first two adjacent particles to be

−J σ(1)σ(2), (108)

with the σ defined per Figure 8a. Here J contains the magnetic features of the system‡‡.
On the full 1D lattice, the total energy is then

E = −J
N−1∑
n=1

σ(n)σ(n+ 1). (109)

This setup has some interesting features from the start. Notice that to produce a low energy,
many pairs of aligned moments are needed, but the cases of all atoms aligned up (σ(n) and
σ(n+1) both positive) or all aligned down (σ(n) and σ(n+1) both negative) both do equally
well. Our expectation is that at high temperature random variations will dominate, but as
the temperature drops, an increase in the alignment of moments will be found. But which?
This question cannot be resolved without more information — currently it represents a
symmetry of the system.

Let us revert once again to an analysis of the statistics of only one of the N particles within
the ensemble, as we did in the case of the harmonic oscillator and the law of atmospheres.
The one particle alone contributes an energy to the partition function that is the product of
two terms that each take on either the value +1 or the value -1, so the contribution itself
must be either

eβ(+1)J or eβ(−1)J . (110)

The partition function is the sum of all (both) of these possible configurations:

Z(β) = e+βJ + e−βJ = 2 cosh βJ . (111)

The average energy is

〈E〉 = − 1

Z(β)

∂ logZ(β)

∂β
= −J tanh βJ , (112)

‡‡For completeness, J = µB, where as before µ is the magnetic moment of each atom (in this model we
assume all atoms are identical), and B is the magnetic field. Here B is often used as the field rather than H ,
although B is the magnetic flux density rather than the magnetic field proper. The distinction is important but
we will not pursue it here.
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and so, since energy in the amount−J is spent per “upward agreement” in orientation, the
average magnetic orientation σ must be

〈σ〉 = tanh βJ = tanh

(
J
T

)
. (113)

The function tanhx (and therefore the average magnetization 〈σ〉) is again illustrated in
Figure 9, this time over a wider range of x values. We can observe the symmetry now in
action. With J = 1 fixed and positive, with decreasing temperature (i.e., x → ∞) the
average 〈σ〉 stabilizes at 1, i.e., all pointing up. With the unit energy fixed and negative it
stabilizes at −1.

This sketch of average magnetization versus x bears some resemblance to Figure 7a. And as
in the zipper case, it does appear to hint at a phase transition – as the temperature changes,
and x varies from the left to the right, a transition seems to be implied, from an overall
negative magnetization to an overall positive one. But, again like in the zipper case, on
closer inspection we observe that for a system to pass through this transition is impossible,
since temperature approaches infinity as we approach x = 0 from either side.

1

0
x

tanh(x)

-1

slo
pe

 = 
1

FIG. 9. Sketch of tanh(x) versus x. Note the slope of the function is 1 at x = 0.

That aside, the 1D model is useful in that it allows us to develop an understanding of the
effect of communication between lattice points. Let us return to the full lattice, whose
energy is

E = −J
N−1∑
n=1

σ(n)σ(n+ 1) = −J
N−1∑
n=1

κ(n). (114)

In the rightmost term we have replaced σ(n)σ(n + 1) with κ(n). Doing this tends to shift
attention away from the atoms in the lattice, and onto the links between the atoms; for this
reason κ is referred to as a bond variable. Of course, there are 1 fewer bond variables
than there are atom configuration variables, but if we set the first σ, i.e., σ(1), equal to +1
(knowing that we will have to come back later and adjust for having done this), then there
are the same number of variables κ as there were σ. The partition function will then be a
sum of contributions of the form

exp

[
βJ

N−1∑
n=1

κ(n)

]
, (115)
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with a contribution included for every instance of the N − 1 values κ can take on across
the lattice. Since it is built of products of the σ values, and since σ can only be +1 or −1,
so too must κ be either +1 or −1. So, the κ(n) over n = (1, ..., N − 1) will be a string of
+1s and −1s. Suppose there are n instances of +1. Then, letting N ′ = N − 1,

N ′∑
k=1

κ(n) = n− (N ′ − n), (116)

and (115) becomes

exp

[
βJ [n− (N ′ − n)]

]
=
(
eβJ
)n(

e−βJ
)(N ′−n)

= XnY (N ′−n), (117)

where X = eβJ and Y = e−βJ . The partition function is proportional to the sum of all
such contributions, with each contribution multiplied by the number of times the situation
“n instances of +1 and N ′ − n instances of −1” occurs. This factor is given by the same
binomial formula we have now used several times:

Z(β) ∝
N ′∑
n=0

N ′!

n!(N ′ − n)!
XnY (N ′−n) = (X + Y )N

′
. (118)

Substituting X , Y , and N ′ = N − 1 back in, and again recognizing the hyperbolic cosine,
we have

Z(β) ∝
[

cosh
(
β
)]N−1

. (119)

Finally, we remove the ∝ sign by multiplying the whole partition function by 2. When we
transformed from the σ notation to the κ notation, we fixed σ(1) = +1. Now that we have
completed the analysis, we observe that we could have done the whole thing with the other
choice, namely σ(1) = −1, and gotten exactly the same answer. This means the sum over
all possibilities actually needed to happen twice:

Z(β) = 2
[

cosh
(
βJ
)]N−1

. (120)

From this we can quickly determine the average energy using our standard approach:

〈E〉 = −∂ logZ(β)

∂β
=

∂

∂β

(
2 + (N − 1)

[
cosh

(
βJ
)])

= −(N − 1) tanh βJ .

This suggests that tanh β must be the average value of κ. If we multiply the average value
of κ by (N − 1), we get the average number of +1’s contributing to the energy, and if we
then multiply that result by the unit energy per link −1, what emerges must be the average
energy. Thus

〈κ〉 = tanh βJ = tanh

(
J
T

)
. (121)
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The correlation function is the average product of σ(i) with σ(i+n). It gives the probability
that, if the ith particle is up, the (i+ n)th particle will also be up. This is

〈σ(i)σ(i+ n)〉 . (122)

Since the square of any σ is 1, i.e., σ(j)σ(j) = 1, we can insert pairs into the average
above without changing the result, and connect them in alternating pairs to reformulate the
construction in terms of κ:

〈σ(i)σ(i+ 1)...σ(i+ n− 1)σ(i+ n)〉 = 〈κ(i)κ(i+ 1)...κ(i+ n− 1)〉 . (123)

If we assume that the κ’s are all independent, this evaluates to the product of n average κ’s.
Therefore, by (121),

〈σ(i)σ(i+ n)〉 = 〈κ〉n =

(
tanh

J
T

)n
. (124)

This expresses the fidelity of communication between particles. If the temperature is low,
the tanh function is close to one, and as you step from one atom to another n links away,
the communication between them is sustained, since the repeated product of the tanh with
itself n times only reduces slightly. However, as the temperature increases, and tanh de-
scends towards zero, tanhn very rapidly diminishes the correlation. The probability of
alignment of two particles separated by n lattice points drops to zero.

Phase transitions

We have thus far twice been led to the brink of discussing phase transitions, but in both
situations, although the mathematical wherewithal was in place for a “jump” to take place,
from one distinct state to another, physically the jump required that a transit be made across
illegal variable values. In both situations it transpires that with slight alterations to the
problem the jumps can become realistic. We will cover these alterations in this section.

The multidimensional Ising model

In seeking a phase transition in the Ising model, what we are seeking is a global effect of
the communication between adjacent atoms on the lattice to occur. A magnetized crystal
has all of its atoms either fully up or fully down. We have seen that either case leads to
the same low energy, and so there is no a priori preference for either, and the situation
is symmetrical. To select one or the other in the context of the Ising model requires that
the atoms communicate any one choice between themselves, via the energy rules we have
established. The problem is that if information can only be conveyed via an adjacent atom,
and that atom is subject to some degree of randomness, then any trend to the left of a given
atom cannot be transmitted to the right, if that atom happens to be pointing in the wrong
direction. In fact, this all-or-nothing nature of information transmission in the 1D lattice is
the reason why the phase transitions based on communication are impossible here.

Consider instead a 3D lattice, like the one in Figure 10a. Here, even if we stick to the idea
of a lattice atom only being able to communicate with its immediate neighbours, now the
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FIG. 10. The multidimensional Ising model. (a) In D dimensions, the number of adjacent particles
is 2D. (b) Mean field theory is an approximate approach in which we equate the average site
magnetization with the average surrounding orientations.

number of those neighbours has increased. In fact, every atom in a lattice of dimension
D has 2D neighbouring atoms. The extension of the Ising model involves including all
of the neighbouring atoms in the calculation of the energy contribution of an atom with
orientation σ:

−J σ
2D∑
i=1

σ(i), (125)

with the sum being over all neighbours. From now on we will omit J , as we did previously,
assuming units are available within which J = 1. Next we will simplify our analysis by
making the mean field approximation, in which we replace the sum by 2D times the average
configuration, which we will call σ̄. The energy contribution becomes

−2Dσσ̄. (126)

Repeating our single-atom analysis in this context, the partition function is the sum of
contributions of this energy for all possible configurations, which in this case number 2,
one with σ = +1 and the other with σ = −1. This produces a similar form as that
determined previously:

Z(β) = eβ(2Dσ̄) + e−β(2Dσ̄) = 2 cosh
(
2Dσ̄

)
. (127)

As we did in (114), we can use this Z to compute 〈E〉 and then the average magnetic
orientation 〈σ〉. Skipping a few steps:

〈σ〉 = tanh
(
β2Dσ̄

)
, (128)

emphasizing that σ̄ is the average surrounding orientation, computed via the mean field
approximation, and 〈σ〉 is the average site orientation. So far in this extension, the mech-
anism for communication between atoms is not as clear as it was in the 1D model. There,
the reduction in energy of a pair of aligned orientations was the way one atom influenced
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its neighbour. Here, that communication is unclear, since there are multiple neighbours.
We include it with an additional step, which is to ask that the average site orientation be
equal to the mean field, i.e., that 〈σ〉 = σ̄. This transforms (128) into an equation for σ̄:

σ̄ = tanh
(
β2Dσ̄

)
. (129)

To make analysis easier, change variables to s = 2Dσ̄, in which case we have(
T

2D

)
s = tanh s. (130)

We plot this for several different values of T = 1/β in Figure 10b. At high temperature,
which corresponds to the steep line, case (i), the solution — which is the point at which
the line and the hyperbolic tangent function cross – occurs at the origin, s = 0. This
corresponds with σ̄ = 0, and signifies that when temperature is high, random fluctuations
in magnetic orientation dominate and no average magnetization occurs. As temperature
decreases, the slope of the line decreases, as illustrated with cases (ii) and (iii). As we
pointed out earlier, the slope of the tanh function is 1 at the origin, so when T = 2D,
the slope of the left hand side of the equation and the tangent of the righthand side are
equal. This is case (ii). Beyond this critical temperature, e.g., in case (iii), additional
solutions of (132) appear, at both positive and negative points along s, where the less-steep
line now intersects the curve tanh s. These solutions represent cases of full magnetization.
That is, below the critical temperature, a state of complete upward and a state of complete
downward magnetization become legitimate solutions. This passage of T through a critical
temperature represents a phase transition.

s

(T/
2D
)s

s=0

tanh (s+B/T)

B/T

FIG. 11. Framework for analyzing magnetization in the multidimensional Ising model in the pres-
ence of a background magnetic field. The intersection of the two curves represents the solution
– now, with the tanh function shifted to the left by B/T , a single solution is available, in which the
average magnetization is +1, i.e., the lattice is fully magnetized.

There remains the issue of the symmetry between up and down orientations — still we see
no mechanism to choose between the left solution and the right solution; further we see that
s = 0 remains a solution, which is slightly disconcerting. However, suppose we perturb
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this system by applying a weak constant magnetic field. To do this is to alter the energy in
(125)-(126) by adding a small term proportional to σ:

−2Dσσ̄ → −
(

2Dσσ̄ +Bσ

)
. (131)

Here B is the magnetic flux density of the field we have added, but for our purposes it
is sufficient to think of it as a constant. Propagating this through the same mathematical
sequence as before we find that (132) becomes(

T

2D

)
s = tanh

(
s+

B

T

)
. (132)

Evidently the problem is similar, but with the tanh function shifted to the left (assuming
B > 0) by an amount that depends on the temperature. The situation is illustrated in Figure
11.

Much has happened to clarify the process of magnetization in the Ising model. Now, s = 0
is no longer a viable solution, and the presence of the magnetic field has shifted the non-
linear function such that a single solution is selected – in this case the “upward” magnetic
orientation. Of course, this is the result of a positive B, i.e., it is the upward nature of B
that caused the upward magnetization to occur.

The molecular zipper revisited

It turns out that with a slight – and physically warranted – variation to the molecular zipper
model, we can also introduce the possibility of a phase transition. We just need to switch
to the model in Figure 6b. Here, when the zipper is open, the open links are free to change
their orientation, and take on one of some variety of positions. Suppose that that freedom
is somewhat restricted, and each open link can take on a discrete, countable number of
orientations, a number Kittel calledG. If so, it means we counted incorrectly in formulating
the zipper partition function, which we recall was built upon contributions of the form

e−βnε. (133)

We built up the partition function by counting one of these contributions for each possibil-
ity, from n = 0, meaning no zipper links were open, through to n = N − 1, meaning all
but one of the links were open. But, in the new model, if (say) one link is open, we need
to count this state G times, since the configuration can come up in G different ways. In
fact, there are Gn ways for n links to be open if each one is able to take on G different
orientations. So, the partition function for this “degenerate” problem is instead

Z(β) =
N−1∑
n=0

Gne−βnε =
N−1∑
n=0

Y n, (134)

where Y differs from the X we used in the earlier derivation only in the presence of the G,
i.e., Y = GX . The partition function is then as before but with Y in the place of X:

Z(β) =
1− Y N

1− Y
, (135)
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as is the average number of open links 〈n〉:

〈n〉 =
Y

1− Y
−N Y N

1− Y N
. (136)

The plot of this result will have the same left panel as before, but a new right panel, since
we will now plot Y as a function of temperature instead of X , and since within Y we now
have a parameter G. Setting G = 1.25, we obtain a counterpart to Figure 12. This time,
however, we observe in (b) that Y passes through the value 1 at a well-defined critical
temperature, and as Y passes through 1, we observe in (a) that a discontinuous jump in 〈n〉
occurs. The critical temperature satisfies

Y = Ge−ε/Tc = 1, (137)

and so

Tc =
ε

logG
, (138)

which gives Tc ≈ 4.5 for ε = 1 and G = 1.25, which is consistent with Figure 12b.

FIG. 12. The zipper model with more than 1 orientation for open links. Here G = 1.25 is used; now
the phase transition at Y = 1 is physically traversed by a system with increasing temperature.

The phase transition is a jump in the probable state of a single zipper from almost com-
pletely closed at T < Tc to almost completely open at T > Tc. As the number of links in
the zipper (N ) grows, the transition becomes extremely rapid, in fact discontinuous.

It is the presence of G > 1 that produces a finite Tc, in fact G = 1 is clearly not permit-
ted in (138), which is why we previously could not bring about a phase transition in the
zipper. Why intuitively does it occur though? How does the availability of more than one
orientation of an open link lead to the possibility of a phase transition?

STATISTICS OF SYSTEMS THAT EXCHANGE ENERGY AND PARTICLES

Thus far all of our models have grown out of (29), which is the distribution associated
with the Canonical Ensemble, i.e., systems which share energy but not particles with their
environment. Returning to Figure 1, we recall that initially we permitted two types of ex-
change between systems, energy, or thermal exchange, and particle, or chemical exchange,
but very quickly restricted the ensemble such that chemical exchange would not occur. Let
us now relax that restriction, and discuss the Grand Canonical Ensemble.
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The distribution and partition function of the GCE

The problem, in words, is much the same as in the case of the Canonical Ensemble; we seek
to determine a probability distribution descriptive of the system, and the partition function
normalizing it. We do this by considering the occupation numbers implied by Figure 1,
and at the appropriate moment re-express these numbers as probabilities. However, the
occupation numbers themselves now must change. We still haveN boxes in the ensemble,
but now the boxes distinguish themselves by having an energy Ei and a number of particles
Nj . We therefore count up not ni, or how many boxes have energy Ei, but instead nij , how
many boxes have both energy Ei and particle number Nj . Since the i run over a list of
allowable energy values, and the j run over a list of allowable numbers of particles, the nij
comprise an array of numbers:

nij =


n11 n12 . . . n1L

n21 n22 . . . n2L
...

... . . .
...

nM1 nM2 . . . nML

 , (139)

where M is, again, some maximum energy index, beyond which the energy is so high that
the number of microstates can be assumed to be nil, and where now L is a similar limit
on the maximum number of particles in the system. If we cycle through arrangements of
boxes, varying particles and energies, each time counting up and recording the array nij , we
observe as before that some nij arrays are produced by many arrangements of boxes, and
some are produced by relatively few. And as before, we assume that the nij that actually
occurs is that which is produced by the largest number of arrangements.

Given a set of occupation numbers nij , we determine the number of arrangementsW ({nij})
giving rise to it with the same combinatoric formula we used in the earlier case, but with
the now larger set of factorials in the denominator:

W ({nij}) =
N !

n11!n12!...nML!
=

N !∏M
i=1

∏L
j=1 nij!

. (140)

Taking the logarithm, applying Stirling’s approximation, and replacing nij with Pij =
P (Ei, Nj) = nij/N , we obtain

logW ({nij}) = NS, (141)

where

S = −
M∑
i=1

L∑
j=1

Pij logPij (142)

is the entropy. The problem of determining the nij that are produced most often when
cycling through microstates has again become the problem of determining the Pij that
minimize −S. Again the minimization problem is subject to constraints, in fact one more
constraint is now relevant. Proper Pij values must sum to one:

M∑
i=1

L∑
j=1

Pij − 1 = 0. (143)
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Also, the contributing energy values must add up to a total ET such that E = ET/N ,
recalling that the un-indexed E is a compact way of writing the average 〈E〉. The total
energy must in other words be the sum of the energy of each allowable level multiplied by
the number of instances of that level:

M∑
i=1

L∑
j=1

nijEi = ET , (144)

so (after dividing through by N ), the problem is constrained such that

M∑
i=1

L∑
j=1

PijEi − E = 0. (145)

Both of these are in concept the same as before. We have to add to these two statements
another, concerning the particles. They are permitted to re-distribute themselves amongst
the boxes in the ensemble, but they must contribute to a fixed total NT and produce a
well-defined average N = NT/N per box as well. That is,

M∑
i=1

L∑
j=1

nijNj = NN . (146)

Again dividing through by N , we obtain a new constraint equation:

M∑
i=1

L∑
j=1

PijNj −N = 0. (147)

This full package is then incorporated in an augmented functional

L =

M,L∑
i,j

Pij logPij + α

(M,L∑
i,j

Pij − 1

)
+ β

(M,L∑
i,j

PijEi − E
)

+ γ

(M,L∑
i,j

PijNj −N
)
,

whose derivatives with respect to each Pij set to zero produce

logPij = −(α + 1)− β
(
Ei − µNj

)
, (148)

where following convention we have changed variables from γ with µ = −γ/β. Exponen-
tiating and setting Z = eα+1, we obtain

P (Ei, Nj) =
1

Z(β, µ)
e−β
(
Ei−µNj

)
, (149)

where the new partition function is found, by applying the α constraint, to be

Z(β, µ) =
M∑
i=1

L∑
j=1

e−β
(
Ei−µNj

)
, (150)

where the sum is understood to be over all possible states. The formalism has introduced
a new parameter µ, which is called the chemical potential; as suggested by Figure 1, it is
interpreted as the amount of energy a particle in one of the boxes must “pay” to leave the
box.
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CONCLUSIONS

Equilibrium statistical mechanics provides calculation methods which seem on their face to
have applicability in geophysical inversion. However, to develop and test these possibilities
it seems prudent to use (or seek) forms in which full, large computational problems are
not immediately introduced. (After all, if we take the attitude that massive computation
problems are not a worry, we already have good inversion and appraisal methods.) To
the author, what is remarkable about the approach is that apparently complex problems do
occasionally have tractable, analyzable solutions. It suggests an approach to investigating
geophysical application possibilities, which is to stick near to shore, and see to what degree
tractable models of statistical mechanics port over. This review is intended to act as a kind
of resource as this investigation proceeds.
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