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ABSTRACT

We investigate the consequences in inversion of adapting our geometrical picture of
model space. We consider that model space is curved by the presence of the misfit or
objective function. Within such a space, the simplest possible curves, equivalent to straight
lines in flat space, are geodesics. Paths are normally followed by model estimates in the
process of updating and in estimating uncertainty, and we examine the geodesics with this
in mind — is it possible that visiting points in model space in the order determined by a
geodesic in these new spaces is a valuable exercise? There are some hints that the answer
may be yes. Geodesics computed with coordinates with lower (covariant) indices appear
to orbit regions of model space surrounding the minimum of the objective function in a
manner which may have application in uncertainty evaluation.

INTRODUCTION

The possibility of analyzing elements of model space by using more a general Rieman-
nian geometry than is standard in geophysical inverse problems was introduced in the 2020
CREWES report. There, flat but non-Cartesian (i.e., oblique-rectilinear) coordinate sys-
tems were focused on, but the use of curvature as a way of bringing the misfit function
into the problem was introduced. In this paper that possibility is fleshed out and its basic
numerical behaviour in low dimensions is examined.

Typically in a geophysical inverse problem we envision a flat model space, overlain by a
Cartesian coordinate system, in which individual models take the form of position vectors.
One vector is selected as a starting point, and then other update vectors are added to the
starting vector in search of an optimal final vector. This forms a discrete path through
model space. The updates are decided by the derivatives of a scalar functional defined on
model space called the objective function. Here we suppose instead that model space is no
longer flat, but is in fact curved, and the curvature is provided by the objective function.
After the space has been properly curved, we no longer explicitly analyze it, but instead
ask about what simple paths in that newly-curved space behave like. The main question is,
are these paths useful, in the sense of model construction or uncertainty characterization?

In this paper, we set the problem up mathematically, and carry out some initial numerical
exploration of the idea. Therefore we do not conclude with new algorithms for inversion;
rather, a set of observations about the character of simple paths (geodesics) in this space.
The formalism of geodesics and curvature is reviewed in a companion paper in this 2021
report.

Notation

Tensors are labelled with either Roman or Greek indices; upper indices refer to the con-
travariant components of a vector and lower indices refer to the covariant components. The
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number of unrepeated indices equals the rank of the tensor. Repeated indices (one up and
one down) imply summation, e.g., aµaµ = a1a1 + ...aNaN . Tensor indices are raised and
lowered in general with the metric tensor and its inverse mµν and mµν = (mµν)

−1, for
instance bµ = mµνbν and cµ = mµνc

ν .

MODEL SPACE WITH CURVATURE INDUCED BY A QUADRATIC
OBJECTIVE FUNCTION

Consider the N dimensional model space s and a parameterization, or coordinate system

sµ =


s1

s2

...
sN

 . (1)

Further, consider a quadratic objective function

Φ(s) =
1

2
sµφµνs

ν − ϕλs
λ + ψ, (2)

whose minimum is the solution of an inverse problem of interest. In (2) the matrix φµν
is referred to as the Hessian. The minimum is often determined iteratively through model
updates based on the gradient direction

gµ = Φ,µ = φµνs
ν − ϕµ. (3)

For later convenience we define g as the length of the gradient vector, and h and hµ as

h = gαφαβg
β, and hµ = gνφµν . (4)

We will require the metric tensor to be in-hand in order to compute the quantities in (4), as
they require known quantities to have their indices raised or lowered.

Typically, we treat Φ as an external object whose derivatives are suggestive about directions
in model space along which to update. Here we will instead have Φ induce in model space
an intrinsic, geometric curvature, and examine how simple paths in such a curved s behave.

The quadratic objective function is a good representative and tractable example of a figure
of merit or target for optimization. This is because even in nonlinear cases the objective
function in the vicinity of the minimum is often approximately quadratic, and furthermore
many different kinds of optimization produce variants of the same form (i.e., equation 2).
We could let Φ(s) contain the full objective information i.e., be made up of both data misfit
and regularization terms:

Φ(s) = Φd(s) + βΦm(s), (5)

where, for instance, if in the forward modelling scheme the ith datum is di = F i
µs

µ,

Φd(s) =
1

2
sµ
(
F i
µFiν

)
sν −

(
F i
λdi
)
sλ +

1

2
didi, (6)
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FIG. 1. Model space curved by misfit, N=2 dimensional example. (a) Standard view of model space
s as a plane overlain by a Cartesian coordinate system (contours of a quadratic objective function
included). (b) The same 2D model space viewed as a paraboloid surface, curved by the objective
function. The curvature is quantified and visualized by introducing a flat N + 1 = 3 dimensional
space r, within which the curved model space is embedded. The higher dimensional space r can
be discarded after the metric tensor is determined.

and if we penalize model properties magnified by an operator Wµν ,

Φm(s) =
1

2
sµ
(
W λ
µWνλ

)
sν . (7)

Or, we could set Φ = Φm, i.e., to be only the contribution of the regularization term to
the objective function. In the latter case, “straight line” navigation through model space
would be affected only by prior information, rather than by a data set. The choice impacts
the detailed form of the g and h quantities in (3)-(4), and so the general developments to
follow are not sensitive to it.

Metric of a model space curved by an objective function

We introduce an auxiliary (flat) space r, of N + 1 dimensions, with Cartesian coordinates

rn =


r1

r2

...
rN

rN+1

 . (8)

Let s be a surface embedded in r (Figure 1) satisfying the equations

r1 = s1, r2 = s2, . . . , rN = sN , rN = φ. (9)

This produces in s the intrinsic curvature discussed abo e. To determine the metric tensor
mµν(s) of this curved s, we observe that contravariant components of vectors lying in both
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r and s transform as rn = rn,νs
ν , where rn,ν is the N × (N + 1) matrix

rn,ν =
∂rµ

∂sν
=



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
g1 g2 g3 . . . gN

 . (10)

From this we have

mµν = rn,µr
n
,ν =


1 + g21 g1g2 . . . g1gN
g2g1 1 + g22 . . . g2gN

. . .
gNg1 gNg2 . . . 1 + g2N

 . (11)

The metric tensor can also be inverted using the identity (I+uuT )−1 = I−uuT/(1+uTu)
to produce its index-raising form:

mµν =


1 − g21

1+g2
− g1g2

1+g2
. . . − g1gN

1+g2

− g2g1
1+g2

1 − g22
1+g2

. . . − g2gN
1+g2

. . .

− gNg1
1+g2

− gNg2
1+g2

. . . 1 − g2N
1+g2

 , (12)

where g2 = gµgµ. After summing over n to create the right-hand side of (11), no depen-
dency on r remains, and per standard procedure the higher-dimensional space can now be
discarded, and mµν(s) be considered a received quantity. In other words, we now view
ourselves as inhabitants of a space s within which lengths must be measured using mµν .
Since the components of the gradient depend on position in model space (from 3), the met-
ric tensors do also, so, to us as inhabitants of s, the space appears curved. At present we
cannot yet be certain whether this curvature is apparent or intrinsic to the space.

Curvature

With the spatially-varying metric tensor in hand, Christoffel symbols of the first and sec-
ond kind for this curved model space can also be directly computed. By construction we
observe that they take the form of Kronecker products of the gradient and the Hessian:

Γµνλ = gλφµν , and Γλµν = gλφµν . (13)

The curvature and Ricci tensors and the scalar curvature are likewise determined directly
in terms of the Christoffel symbols. The curvature tensor is

Rβ
νρσ = φβρφνσ − φβσφνρ + Γβνσhρ − Γβνρhσ, (14)

the Ricci tensor and scalar curvature are the contractions

Rν
ρ = φµρφ

λ
µ − φµµφ

λ
ρ + hνhρ − hφνρ, R = φρβφ

β
ρ − φββφ

ρ
ρ + hρhρ − hφρρ. (15)
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Geodesics

A geodesic is a position vector varying continuously with a single scalar parameter, nor-
mally the path length τ , i.e., sµ(τ), satisfying

d2sλ

dτ 2
+ Γλµν

dsµ

dτ

dsν

dτ
= 0, (16)

or

duλ

dτ
+ Γλµνu

µuν = 0, (17)

with uµ = dsµ/dτ being the tangent vector to the path. Geodesic in the model space we
have been describing therefore satisfy (substituting 13)

duλ

dτ
+ gλφµνu

µuν = 0. (18)

From this a simple first-order discrete solution for the ith position and tangent vectors along
the geodesic, given an initial position sλ(0) and take-off direction uλ(0), is obtained:

uλ(i+ 1) = uλ(i) − ∆τgλ(i)uµ(i)φµν(i)u
ν(i),

sλ(i+ 1) = sλ(i) + ∆uλ(i),
(19)

where ∆τ is the discrete step length along the geodesic.

The geodesic equation with lowered index

We can make a version of the equation in which the particle track is computed in terms of
lowered indices:

mλσ

(
duσ

dτ
+ gσφµνu

µuν
)

= 0, (20)

or

duλ
dτ

+ gλφµνu
µuν = 0, (21)

and its discretized form

uλ(i+ 1) = uλ(i) − ∆τgλ(i)u
µ(i)φµν(i)u

ν(i),

sλ(i+ 1) = sλ(i) + ∆uλ(i).
(22)

The coordinate pairs produced by this equation are numerically different from those pro-
duced by the geodesic, so to avoid confusion we will refer to this track as the misfit-orbit.
The misfit-orbit appears to have properties that are more interesting from an inverse prob-
lem point of view than those of the standard geodesic, so we will focus on its behaviour in
the examples below.
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FIG. 2. A geodesic computed via equation (19).

LOW DIMENSIONAL BEHAVIOUR OF A MISFIT-ORBIT

Here we examine some of the numerical behaviour of moving points in model space. We
will focus on the coordinate pairs generated by the geodesic equation with lowered indices,
which are related to geodesics.

A bivariate example

We will remain largely in a bivariate environment in this paper, in order to be able to make
easily-visualizable results. Thus, the objective function will be explicitly built with the
matrix and vector pair

φµν =

[
φ11 φ12

φ12 φ22

]
, ϕµ =

[
ϕ1

ϕ2

]
, (23)

as well as a scalar:

Φ(s) =
1

2
[s1 s2]

[
φ11 φ12

φ12 φ22

] [
s1

s2

]
− [s1 s2]

[
ϕ1

ϕ2

]
+ ψ. (24)

So, a particular case can be produced by choosing 6 numbers.

The upper-index position vector components of the orbit

Let us start with the geodesic equation. Tracks which obey this equation should be expected
to be straight lines that are perturbed into smooth curves by the space. This is confirmed
with simple numerical implementations of equation (19) with the 6 weights in equation
(23). For example in Figure 2 a track is begun in a direction to the right of the minimum
of the objective function, but it gradually deviates towards the minimum, prior to being
ejected.

This clearly demonstrates that a geodesic is a path which, if followed by a model point
as dictated by a particular inverse problem, gives us information about the minimum, and
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FIG. 3. Change in orbit as computed with the geodesic equation with index lowered; from (a) to (d)
the discretization of the path grows.

by variation of the path, even uncertainty. However, the numerical values of the coor-
dinates plotted in Figure 2 and their relationship to the inverse problem appear (qualita-
tively) complex and difficult to interpret. Plots of the numerical values of the coordinate
pairs produced by solving equation (22), i.e., with lowered-indices, appear to produce more
readily-interpretable tracks, so we move to this equation next.

FIG. 4. Change in orbit as computed with the geodesic equation with index lowered; from (a) to
(d) the discretization of the path grows. In this case only the second half of the full orbit length is
included. We observe that the orbit has settled into a very regular, and almost precisely circular,
shape.

The lower-index position vector components of the orbit

Misfit orbits satisfying equation (22) appear to be more locally constrained by the min-
imum. Notice that the coordinates of the minimum do not change when we move from
plots with upper indices to ones with lower indices, because at that point the metric tensor
lapses to the identity.

In fact, we observe behaviour that suggestive of an attractor, but one whose features are
most strongly dictated by the discretization parameter ∆τ . In Figure 3, we show an example
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of this behaviour. The yellow circle is the starting model, and the misfit-orbit is begun with
a take-off direction away from the minimum. The orbit is then computed with four different
values of ∆τ , growing from small to large (a-d).

FIG. 5. Change in orbit as computed with the geodesic equation with index lowered; from (a) to (d)
the take-off angle of the path is varied.

Very fine discretizations – i.e., very accurate estimates of the orbit – reveal complex be-
haviour in the vicinity of the minimum in the early history of the orbit, caused by the
eliipticity of the objective function and its overall attractive influence. Examination of Fig-
ure 3a-d furthermore make clear how dependent the details of those paths are on However,
although it is evident that the path in the initial steps away from the starting point appears
to be strongly influenced by the discretization, after a certain number of iterations a surpris-
ingly regular orbit is attained, and stuck to. To expose this, in Figures 4a-d the examples
with varying path discretization are again plotted, but this time with the first half of the
positions calculated not included. In all cases, by halfway through their full extent, the
orbits have converged to very tight circles, with little inter-variation.

Dependence on take-off direction

This convergence does not appear to be particularly sensitive to take-off direction. In Figure
5a-d the take-off direction is varied, with all else kept fixed, and we see that the same final
orbit is arrived at.

Dependence on initial position

The initial position does not appear to lead to strong variations in the final orbit either
(Figure 6).

CONCLUSIONS

The possibilities associated with a treatment of model space as being curved by a misfit or
objective function of interest are pursued in an initial way. The tracks produced by a the
geodesic equation with indices lowered appear to produce some interesting behaviour, most
of which is yet to be completely analyzed. The similarity between the objective function
and an attractive potential was initially suggestive that orbits that probe regions of model
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Navigation in a model space with misfit-induced curvature

FIG. 6. Change in orbit as computed with the geodesic equation with index lowered; from (a) to (d)
the take-off angle of the path is varied.

space, rather than say point to a single model, were likely to emerge. That appears to be
the case, meaning that at present the treatment seems to be most immediately applicable to
uncertainty characterization. The geodesic equation is nonlinear, and so analytic interpre-
tation of the orbits can be difficult. The tendency of the coordinates of the solution to the
geodesic equation with lowered indices appears to naturally fall into a non-chaotic, qual-
itatively circular, attractor in a bivariate setting is notable. Whether this persists at higher
dimensions, and whether we can make practical use of it, is a matter of ongoing study. The
use of an orbit like this as a suite of null-space shuttles is one possibility.
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