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ABSTRACT

Elsewhere in this report we develop the idea of navigating in model space (e.g., to con-
struct the best estimate of an Earth model) not as usual, by being guided by an external
objective function and its derivatives, but rather, by following the simplest possible paths
in a space that is curved by the objective function. This requires ideas of Riemannian cur-
vature, parallel displacement, and geodesics to be reviewed. This review can be considered
as an addendum to the review on tensor analysis in non-Cartesian coordinate systems in the
2020 report.

INTRODUCTION

The 2020 CREWES report included a review (Innanen, 2020) of indicial notation for vector
and tensor analysis in non-Cartesian coordinate systems. This document adds to that review
some results involving changes to vector and tensor quantities when the space is curved.
These results are then used in a companion paper in this year’s report. As in 2020, the
ideas here are expanded and embellished versions of results found in many texts. Dirac’s
short text introducing general relativity (Dirac, 1975) is my personal favourite. It is a little
short on discourse, figures, etc., but the author manages to get a lot across with an extreme
economy of words. Especially the tricky derivation of parallel displacement comes mostly
from that resource.

NOTATION

Tensors are denoted and classified by Roman letters with upper, lower, or combined indices
which label components. For instance, tµνλ is a third rank tensor with one contravariant
index and two covariant indices. In this report we will allow the indices to be Roman or
Greek letters, so, sn is a tensor of rank 1 (or vector), and constructions like rνm are also
permitted. This is a useful device for keeping things clear when different indices range
over different numbers of dimensions.

If a vector xµ is perturbed to produce xµ + dxµ, the length of the displacement is the scalar
ds, where

ds2 = dxµdxµ = gµνdx
µdxν . (1)

Here gµν is the metric tensor, a quantity that contains all relevant information about obliq-
uity and scaling relationships between the coordinate axes. If the space is Cartesian,
gµν = δµν , i.e., it is the Kronecker delta. The metric tensor gµν acts as an operator for
raising or lowering indices:

aµ = gµνa
ν , bµ = gµνbν . (2)

The contravariant and covariant components of the metric tensor itself are related by

gµν = (gµν)
−1, gµν = (gµν)−1, gνµ = δνµ. (3)
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Derivatives are expressed in a number of ways depending on the situation. In general

∂aµ

∂xν
= ∂νa

µ = aµ,ν (4)

are all equivalent. The process of contraction, or identification of two indices, in these
cases produce divergence, or∇· type operations, e.g., aµ,µ = ∇ · a.

THE METRIC TENSOR IN CURVED SPACE

In a flat space, the metric tensor is everywhere constant, i.e., it can be written such that
it has no space-dependence; in a curved space, the components of the tensor depend on
position. Diagnosing the presence of curvature is important in many applications. The
main obstacle to proper diagnosis is the possibility of apparent curvature, produced not by
the space itself but by the choice of coordinates.

x0
<latexit sha1_base64="xK00liCx7ZO7y6uFr59mE0pGfFw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxilEcCK5kdZmHC7OxmptdICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+65FrI2J1j+OE+xEdKBEKRtFKd08Pbq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYlj1J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexdlCu3l6VaNYsjDydwCufgwRXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz8G842Y</latexit>

x1
<latexit sha1_base64="qF63en/fGEhY/NLjUOmFE4qeEeY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxilEcCK5kdZmHC7OxmptdICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+65FrI2J1j+OE+xEdKBEKRtFKd08PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYlj1J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexdlCu3l6VaNYsjDydwCufgwRXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz8Id42Z</latexit>

x1
<latexit sha1_base64="2mMkznQXhgUirRiPSQYB90xOTvM=">AAAB6nicdVDLSgMxFL1TX7W+qi7dBIvgQoaZWtBlwY3LivYBdSyZNNOGJpkhyYhl6Ce4caGIW7/InX9jpq3g80DI4Zx7ufeeMOFMG897dwoLi0vLK8XV0tr6xuZWeXunpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4Osv99i1VmsXyyowTGgg8kCxiBBsrXd7d+L1yxXNrXg70m/ju9PcqMEejV3677sckFVQawrHWXd9LTJBhZRjhdFK6TjVNMBnhAe1aKrGgOsimq07QgVX6KIqVfdKgqfq1I8NC67EIbaXAZqh/ern4l9dNTXQaZEwmqaGSzAZFKUcmRvndqM8UJYaPLcFEMbsrIkOsMDE2nZIN4fNS9D9pVV3/2K1e1Cr1o3kcRdiDfTgEH06gDufQgCYQGMA9PMKTw50H59l5mZUWnHnPLnyD8/oBFleNmQ==</latexit>

x0
<latexit sha1_base64="w3shV+x7hVUbkOMMkEZfKPTPvao=">AAAB6nicdVDLSgMxFL1TX7W+qi7dBIvgQoaZWtBlwY3LivYBdSyZNNOGJpkhyYhl6Ce4caGIW7/InX9jpq3g80DI4Zx7ufeeMOFMG897dwoLi0vLK8XV0tr6xuZWeXunpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4Osv99i1VmsXyyowTGgg8kCxiBBsrXd7deL1yxXNrXg70m/ju9PcqMEejV3677sckFVQawrHWXd9LTJBhZRjhdFK6TjVNMBnhAe1aKrGgOsimq07QgVX6KIqVfdKgqfq1I8NC67EIbaXAZqh/ern4l9dNTXQaZEwmqaGSzAZFKUcmRvndqM8UJYaPLcFEMbsrIkOsMDE2nZIN4fNS9D9pVV3/2K1e1Cr1o3kcRdiDfTgEH06gDufQgCYQGMA9PMKTw50H59l5mZUWnHnPLnyD8/oBFNONmA==</latexit>

q1 = ✓
<latexit sha1_base64="1zHO0WjIqYDyoqm/jaFNPm3D2oE=">AAAB83icdVDJSgNBEO1xjXGLevTSGAQPMszEgF6EgBePEcwCyRh6OjVJk57F7hohDPkNLx4U8erPePNv7EkiuD4o6vFeFV39/EQKjY7zbi0sLi2vrBbWiusbm1vbpZ3dpo5TxaHBYxmrts80SBFBAwVKaCcKWOhLaPmji9xv3YHSIo6ucZyAF7JBJALBGRqpe3vj0nPaxSEg65XKjl11ctDfxLWn3SmTOeq90lu3H/M0hAi5ZFp3XCdBL2MKBZcwKXZTDQnjIzaAjqERC0F72fTmCT00Sp8GsTIVIZ2qXzcyFmo9Dn0zGTIc6p9eLv7ldVIMzrxMREmKEPHZQ0EqKcY0D4D2hQKOcmwI40qYWykfMsU4mpiKJoTPn9L/SbNiuyd25aparh3P4yiQfXJAjohLTkmNXJI6aRBOEnJPHsmTlVoP1rP1MhtdsOY7e+QbrNcP3SGQ2w==</latexit>
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0 =
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<latexit sha1_base64="EMnK4wsjZsgW6tzdk118gujKsbg=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgQoaZWtCNUHDjsoJ9QB1LJs20oUlmTDJCGfoRblwo4tbvceffmGkr+DwQcjjnXu69J0w408bz3p3CwuLS8kpxtbS2vrG5Vd7eaek4VYQ2Scxj1QmxppxJ2jTMcNpJFMUi5LQdjs5zv31HlWaxvDLjhAYCDySLGMHGSu3bGw+dIdUrVzy35uVAv4nvTn+vAnM0euW3635MUkGlIRxr3fW9xAQZVoYRTiel61TTBJMRHtCupRILqoNsuu4EHVilj6JY2ScNmqpfOzIstB6L0FYKbIb6p5eLf3nd1ESnQcZkkhoqyWxQlHJkYpTfjvpMUWL42BJMFLO7IjLEChNjEyrZED4vRf+TVtX1j93qZa1SP5rHUYQ92IdD8OEE6nABDWgCgRHcwyM8OYnz4Dw7L7PSgjPv2YVvcF4/AA0ljqg=</latexit>

FIG. 1. 2D plane and both Cartesian and polar coordinates. The metric tensor in the polar coordi-
nates is spatially-varying, whereas its counterpart in the Cartesian system is constant.

In Figure 1 is an example system in which we can observe apparent curvature. It comprises
a Cartesian system (x0, x1) with x0 representing the vertical axis and x1 the horizontal axis.
Onto it we overlay a polar coordinate system (q0, q1) where q0 = r and q1 = θ, the angle
being measured counterclockwise from the +x1 axis. The x / q coordinates are related by

x0(q0, q1) = q0 sin q1, x1(q0, q1) = q0 cos q1, (5)

and

q0(x0, x1) =
√

(x0)2 + (x1)2, q1(x0, x1) = tan−1
(
x0

x1

)
. (6)

A small change in the q coordinates goes over into a small change in the x coordinates via

dx0 = x0,0dq
0 + x0,1dq

1 = sin q1dq0 + q0 cos q1dq1

dx1 = x1,0dq
0 + x1,1dq

1 = cos q1dq0 − q0 sin q1dq1,
(7)
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or [
dx0

dx1

]
=

[
sin q1 q0 cos q1

cos q1 −q0 sin q1

] [
dq0

dq1

]
. (8)

To keep ds2 = dxµdxµ in the x system invariant under the transformation to polar coordi-
nates q requires that

ds2 = [dq0 dq1]

[
sin q1 cos q1

q0 cos q1 −q0 sin q1

] [
sin q1 q0 cos q1

cos q1 −q0 sin q1

] [
dq0

dq1

]
, (9)

which, upon expanding, gives the 2D polar coordinate metric tensor

gµν =

[
1 0
0 (q0)2

]
=

[
1 0
0 r2

]
. (10)

Unlike in the oblique/rectilinear case, this metric tensor depends on spatial position –
specifically, radial distance from the origin. If we were not previously certain that the
2D plane was flat, the spatial dependence in (10) would be suggestive of curvature. In fact
it is the existence of the transform in (8), to the Cartesian system, that confirms that the
curvature is merely apparent. A flat space is one for which a transformation to a coordinate
system in which the metric tensor is constant can be found. In general it is difficult to know
if such a transform is available, so other more direct (though more complex) techniques
exist.

QUANTIFYING CURVATURE

To discuss curved spaces and flat spaces, it can be helpful to imagine beings who inhabit
those spaces, and measure positions and lengths within them. This artifice is particularly
useful when describing curved spaces embedded in flat spaces of higher dimension, so we
will use language of this kind regularly.

Let us start our analysis by constructing an example of a space that is curved. We start with
a 2D space, within which its inhabitants describe their positions with polar coordinates xµ,
µ = (0, 1), where

x0 = r, x1 = θ, (11)

as illustrated in Figure 2a. We saw previously that such a coordinate system gives an
apparent curvature, but let us this time give it an actual curvature. Consider that this space
in actuality forms a curved paraboloid surface embedded in a flat 3D space y, with Cartesian
coordinates y0, y1, y2. The 2D space is described in the y system by the equation

y2 = y2(y0, y1) =
1

2
(y0 − a)2 +

1

2
(y1 − b)2, (12)

as illustrated in Figure 2b. What does this mean for vectors and tensors defined in x? To
answer this, consider first the metric tensor of the 3D non-curved y space. This tensor,
which we will call hmn, with m, n ranging over 0, 1, 2, has components:

hmn =

 1 0 0
0 h11 0
0 0 h22

 , (13)
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where h11 and h22 have been initially set unequal to 1 to leave open the possibility that
the y coordinates have different mutual length scales. In contrast, the metric tensor of the
curved x space, say gµν with µ, ν ranging over 0, 1, will not be constant, but rather it will
be seen to be a function of either x0 or x1 or both. Question: given hmn on the y space and
the equations governing the paraboloid x space, what is gµν(x)?

y0
<latexit sha1_base64="oCBE6CLpgO6KHGjIqqngS7IREWM=">AAACpXicbVHNbtQwEHbCXwl/KdzgYrWK2F5WSZGAC1IlLr0gtai7rbTeXTnOZNeq40T2BDWK8gi8Cw/AC3DlxoNwx8muVGgZyZrP3zej+UsrJS3G8S/Pv3P33v0HOw+DR4+fPH0W7j6f2rI2AiaiVKW5SLkFJTVMUKKCi8oAL1IF5+nlx14//wLGylKfYVPBvOArLXMpODpqGX6PsmbBipp+oCw3XLSs4gYlV3Sgu+v/1YLpuqPZ4IOo95s0BTnOKEthJXXLjeFN14ohMKaM9T6hDHS21ZiRqzXOg75wHEQM14A8iPgiHjUHUcsKjus0p9AtE0f0AXCF7Sg76IJrlXeBy16G+/E4HozeBskW7B/tfg1/v/zx7WQZ/mRZKeoCNArFrZ0lcYXztp9QKOgCVluouLjkK5g5qHkBdt4OW+5o5JiM5qVxTyMd2L8zWl5Y2xSpi+y7tDe1nvyfNqsxfz9vpa5qBC02hfJaUSxpfzKaSQMCVeMAF0a6XqlYc3csdIcN3BKSmyPfBtPDcfJmfHjqtvGWbGyHvCJ7ZEQS8o4ckWNyQiZEeHvesXfqffZf+5/8M3+6CfW9bc4L8o/5yz+f+NCG</latexit>

y1
<latexit sha1_base64="c2waK0taTsWE8cNUDJ+zeI3zGo0="></latexit>

y0
<latexit sha1_base64="oCBE6CLpgO6KHGjIqqngS7IREWM="></latexit>

y1
<latexit sha1_base64="c2waK0taTsWE8cNUDJ+zeI3zGo0="></latexit>

y2
<latexit sha1_base64="yiKzsYe26+Ra8kg6AD1j9O4LsDI="></latexit>

x
0 =

r

<latexit sha1_base64="UJntvH6kM4srysJBPZjldCEdws4="></latexit>

x1 = ✓
<latexit sha1_base64="R03li+fdyfpvLqhSNEWbIhS7yHs="></latexit>

(a)
<latexit sha1_base64="gE+hptE16b2wyogREX37KLl59Bk="></latexit>

(b)
<latexit sha1_base64="YQm2685bE8LA+rivg8HyO12tHyA="></latexit>

a
<latexit sha1_base64="D+9K6decmhGtaozHRLooScpcHoY="></latexit>

b
<latexit sha1_base64="9fY4CXbwH4LOIUmMfBUs9ZZ5BhE="></latexit>

a
<latexit sha1_base64="D+9K6decmhGtaozHRLooScpcHoY="></latexit>

b
<latexit sha1_base64="9fY4CXbwH4LOIUmMfBUs9ZZ5BhE=">AAACsXicbVFNj9MwEHXC1xK+Chy5WFSR2kuV7ErABbESF46LtN1dVKfFdiatVceJbAdtFOU38Ic4ceLMjR/CHTuttLDLSNY8vzfj8cywWgpjk+RXEN66fefuvYP70YOHjx4/GT19dmaqRnOY80pW+oJRA1IomFthJVzUGmjJJJyz7Xuvn38BbUSlTm1bQ1bStRKF4NQ6ajX6EeftkpQNfotJoSnvSE21FVTige6v7pdLopoe54OPYu93aRIKu8CEwVqojmpN277jQ2CCCfE+xQRUvteIFuuNzSJfOIliYjdgaRTTZTJpp3FHSmo3rMDQr1JH+AC4tN2ETfvoSqXu4t915Xf5bDUaJ7NkMHwTpHswfvdt8vv7VzI9WY1+krziTQnKckmNWaRJbbPOd8sl9BFpDNSUb+kaFg4qWoLJumHiPY4dk+Oi0u4oiwf274yOlsa0JXOR/sfmuubJ/2mLxhZvsk6ourGg+K5Q0UhsK+zXh3OhgVvZOkC5Fu6vmG+oW5x1S47cENLrLd8EZ4ez9Gh2+DEZH79COztAL9BLNEEpeo2O0Qd0guaIB7PgNMiCZXgUfgo/h2wXGgb7nOfoHwu3fwCH+9T0</latexit>

b + r cos ✓
<latexit sha1_base64="co+SGiRVW3YLH9x7gj1DCBYZM1E="></latexit>

a
+

r
si

n
✓

<latexit sha1_base64="IpdU/+kfVhec6PbOhbRWWS0ovAk="></latexit>

(i)
<latexit sha1_base64="EZZ0ORhvPnhgRuBWndRMB14bySI="></latexit>

(ii)
<latexit sha1_base64="DLWDcuGprR5yjD0vUN2zNEaKWZk="></latexit>

FIG. 2. (a) A 2D space x overlain with a polar coordinate system. (b) The 2D space as a curved
surface embedded in a 3D flat space y.

Let us first collect up several derivatives. Mapping from the x system to the y system,
making use of Figure 2a, we have

y0 = a+ x0 sinx1, y1 = b+ x0 cosx1, and y2 =
1

2
(x0)2, (14)

the last equation being obtained by substituting the previous two into (51) and simplifying.
From these relations we obtain

y0,0 = sinx1, y0,1 = x0 cosx1, y1,0 = cosx1, y1,1 = −x0 sinx1, y2,0 = x0, y2,1 = 0. (15)

Next we determine the metric tensor relations by considering a small displacement dyn in
the 3D space. If this displacement is constrained to lie in the embedded paraboloid, then it
is completely specified by a pair of x coordinates and we may write it as

dyn =

(
∂yn

∂x0

)
dx0 +

(
∂yn

∂x1

)
dx1 = yn,µdx

µ. (16)

The squared length of this displacement is then

ds2 = dyndyn = hmndy
mdyn = hmn

(
ym,µdx

µ
)(
yn,νdx

ν
)
, (17)

where in the last step we used equation (16). Since the gµν we are seeking satisfies

ds2 = dxµdxµ = gµνdx
µdxν , (18)
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by comparison with (17) it must be

gµν = hmny
m
,µy

n
,ν = yn,νyn,µ = yn,µyn,ν . (19)

This can be written in algebraic notation as the product of three matrices. Using equations
(13) and (15), we have

gµν =

[
sinx1 cosx1 x0

x0 cosx1 −x0 sinx1 0

] 1 0 0
0 h11 0
0 0 h22

 sinx1 x0 cosx1

cosx1 −x0 sinx1

x0 0

 , (20)

or, evaluating the products,

gµν(x
0, x1) =

[
sin2 x1 + h11 cos2 x1 + h22(x

0)2 x0 cosx1 sinx1(1− h11)
x0 cosx1 sinx1(1− h11) (x0)2

(
cos2 x1 + h11 sin2 x1

) ]
=

[
sin2 θ + h11 cos2 θ + h22r

2 r cos θ sin θ(1− h11)
r cos θ sin θ(1− h11) r2

(
cos2 θ + h11 sin2 θ

) ] . (21)

Notice if the y system was chosen to be orthonormal/Cartesian, then h11 = h22 = 1,
causing both the off-diagonal terms and the θ-dependence to vanish, such that the curvature
becomes a function only of radial distance from (a, b):

gµν(x
0) =

[
1 + (x0)2 0

0 (x0)2

]
=

[
1 + r2 0

0 r2

]
. (22)

Indices of vectors in x can be lowered with this matrix, or raised with its inverse:

gµν(x0) =

[ (
1 + (x0)2

)−1
0

0 (x0)−2

]
=

[ (
1 + r2

)−1
0

0 r−2

]
. (23)

So, two different 2D spaces produce two different metric tensors

g(1)µν =

[
1 + r2 0

0 r2

]
, g(2)µν =

[
1 0
0 r2

]
, (24)

with the first corresponding to an intrinsically curved space and the other to a flat space
with coordinates that produce apparent curvature.

PARALLEL DISPLACEMENT

The general procedure for characterizing curvature, and for distinguishing between intrin-
sically flat and curved spaces is based on parallel displacement. To help visualize this
process, let us carry out a simple operation on the small vector in the x space at the posi-
tion marked (i) in Figure 2b∗. To observers in the 2D curved space x, this vector exists and
can be analyzed. Like all vectors in x, this vector is also perfectly well defined in the 3D y

∗The fact that this vector lies in the x space is reflected in the diagram by the fact that it appears as a
tangent to the paraboloid surface. Any vector with a component perpendicular to the paraboloid lies in y, but
not in x.
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system. To observers in y, whose metric tensor hnm has constant components, this vector
also exists and can be analyzed. Such observers might notice that the vector is special in
that it is constrained to lie in the paraboloid, but otherwise they would see nothing remark-
able about it. Now, suppose the y observers undertook to shift the vector along a path in the
paraboloid, starting at (i) and ending at the position (ii), keeping its components (as they
see them) constant. Afterwards, comparing the initial and final vectors, the y observers
would describe them as trivially parallel, since the components were constrained never to
change during the move. This is parallel displacement — quite a trivial operation in a space
with a constant metric (like y). To observers in x, however, the same process is not only
nontrivial, it does not even make sense. The vector at the end of the shift (see Figure 2b)
cannot be compared to the initial vector, since the final vector does not lie in x, and hence
from the x-observer point of view, it does not exist, and cannot be analyzed. So, what was
a trivial parallel displacement for y-observers does not exist for x-observers. Question: is
there any comparable process available to x beings which at least approximates parallel
displacement?

The answer is yes — but the process requires some subtle re-definition. Let us describe it
in words first:

1. We define a differential step in x, dxµ, away from (i);
2. We move the vector through this step, keeping its y components constant;
3. The result no longer lies in x, but we throw away the component orthogonal to x,

producing an approximation to the original vector.

Any desired path within x, such as the one from (i) to (ii) in Figure 2b, can then be built
up as an integral over these steps. This is parallel displacement proper. The components of
the vector at (ii) will not be the same as those at (i), in fact they will depend on the path
from (i) to (ii). If the process follows a closed path the vector upon its return will tend to
be different from the one that left. An x-observer would in fact be hard-pressed to argue
that the two were parallel. Nonetheless, all of the differences between the vectors at the
start and end of the process are the result of the curvature of the space through which the
path passes, and not of any fundamental change to the vector itself.

Mathematically, the process unfolds as follows. Consider an arbitrary vector q which lies
in x (the vector at (i) is an example). Like all vectors in x it also lies in y. It therefore has
well-defined components in the coordinate system (x0, x1), which we will denote qµ(x), or
explicitly q0(x) and q1(x), and also in the coordinates (y0, y1, y2), which we will denote
qn(y), or explicitly q0(y), q1(y), and q2(y).

Using the rule in equation (16), which holds for the contravariant components of vectors
which lie in both spaces,

qn(y) = qn
(
y(x)

)
= yn,µ(x)qµ(x). (25)

The vector on the right hand side of this equation, with contravariant components qµ(x),
and consequently with covariant components qµ(x) = gµν(x)qµ(x), is our starting point.
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Each yn,µ(x) in equation (25) can be interpreted as a vector in y which gives the contribution
to qn of the µth direction in x.† This allows us to give a definition for a vector r in y which
is orthogonal to x: such a vector must be perpendicular to every direction in x, hence every
yn,µ(x), and so it must satisfy

rn
(
y(x)

)
yn,µ(x) = 0. (26)

Next, consider a displacement of our vector through an infinitesimal distance in x, repre-
sented abstractly by dx. After the displacement, its x components will go over from qµ(x)
to qµ(x+dx), and the y components will go over from qn(y) to qn

(
y(x+dx)

)
. While doing

so, we hold all of its y components fixed, forming qn
(
y(x+dx)

)
. The components labelled

n do not change, so this is equal to qn
(
y(x)

)
, and in fact when we run into this vector later

on we will find we can simply write it as qn. However, although its y components do not
change, the vector now no longer lies in x, and so can no longer be the left-hand side of an
equation like (25). The best we can do is resolve it into two vectors, one which does lie in
x, and one which is orthogonal to every vector in x:

qn
(
y(x+ dx)

)
= pn

(
y(x+ dx)

)
+ rn

(
y(x+ dx)

)
. (27)

The p vector is in x and so it can be written like the one in equation (25),

pn
(
y(x+ dx)

)
= yn,ν(x+ dx)pν(x+ dx), (28)

and the orthogonal vector satisfies equation (26):

rn
(
y(x+ dx)

)
yn,µ(x+ dx) = 0. (29)

So, if we take the product of equation (27) with yn,µ(x + dx), the orthogonal vector drops
out, and we obtain

qn
(
y(x+ dx)

)
yn,µ(x+ dx) = pn

(
y(x+ dx)

)
yn,µ(x+ dx)

= pν(x+ dx)yn,ν(x+ dx)yn,µ(x+ dx),
(30)

or, using equation (19),

qn
(
y(x+ dx)

)
yn,µ(x+ dx) = pν(x+ dx)gµν(x+ dx). (31)

But the metric tensor simply lowers indices, and so we in fact wind up with:

pµ(x+ dx) = qn
(
y(x+ dx)

)
yn,µ(x+ dx) = qnyn,µ(x+ dx), (32)

where in the second line we recognize as mentioned earlier that the components qn do not
depend on x or y.

From our discussions, we have come to expect that the motion of the vector through dxwill
change its x components, even if its y components are held fixed. So, we expect to be able

†This contributing vector has a free index n which can be lowered using yn,µ(x) = hnmym,µ(x).
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to associate with dx a characteristic dqµ = qµ(x + dx) − qµ(x). But, the vector after the
motion through dx does not exist in x, and so we do not have the first of the terms needed
to form this difference. The pµ(x + dx) in equation (32) is the closest thing to qµ(x + dx)
have, so we will make do with this, and define:

dqµ = pµ(x+ dx)− qµ = qnyn,µ(x+ dx)− qµ. (33)

But, applying a Taylor’s series expansion,

yn,µ(x+ dx) = yn,µ(x) + yn,µσdx
σ + ..., (34)

so to leading order in dx we have

dqµ = qn
(
yn,µ(x) + yn,µσdx

σ
)
− qµ(x) = qnyn,µσdx

σ. (35)

This equality requires several lines of mathematics to produce; for details see Appendix A.
Equation (35) gives us a viable differential change in the x components of the vector after
the shift.

Our last two steps are aimed at removing all reference to the larger y space, so that we end
up characterizing the properties of parallel displacement solely in terms of the curved x
space. First, we replace qn with qνyn,ν(x):

dqµ(x) = qν(x)yn,ν(x)yn,µσ(x)dxσ. (36)

Now, the only reference to n is in the coordinate transform quantities. Next, we analyze
these. First recall from equation (19) that gµν = yn,µyn,ν . Applying to this the chain rule,
we obtain

gµν,σ(x) = yn,νσyn,µ + yn,νyn,µσ, (37)

which means, by interchanging indices, we also have

gσν,µ(x) = yn,νµyn,σ + yn,νyn,σµ and gµσ,ν(x) = yn,σνyn,µ + yn,σyn,µν . (38)

Now form

Γµνσ =
1

2

(
gµν,σ(x) + gµσ,ν(x)− gνσ,µ(x)

)
, (39)

which is found (see Appendix B) to equal

Γµνσ(x) = yn,ν(x)yn,µσ(x). (40)

So, we obtain

dqµ(x) = qν(x)Γµνσ(x)dxσ, (41)

as a definition of covariant parallel displacement of a contravariant vector without reference
to the y space. The quantity Γµνσ is called a Christoffel symbol of the first kind. It happens
not to be a tensor, but nonetheless it can legitimately have its indices raised and lowered.
Specifically, it is possible to construct from it a Christoffel symbol of the second kind:

Γµνσ(x) = gµλ(x)Γλνσ(x), (42)

and with this define contravariant parallel displacement of a contravariant vector as

dqµ(x) = −qν(x)Γµνσ(x)dxσ. (43)

8 CREWES Research Report — Volume 33 (2021)



Vectors and tensors in curved space

THE CURVATURE AND RICCI TENSORS AND THE SCALAR CURVATURE

Parallel displacement teaches us that there is no absolute way of saying or implementing a
parallel shift of vectors in curved space. We can do it approximately, with error at second
order in the step we take when moving the vector, and so if we define a path made up of
differential elements of shift, and move the vector along that path, it has in a sense been
displaced parallel to itself. However, what we give up for this is that the vector at the end
of the path depends on the path itself. So the situation in curved space is quite different
from flat space.

This is also the key however to unambiguously determining if the space you currently
inhabit is curved. If it is, then paralllel displacement along two different paths to the same
point will produce different answers. This is true even for a differential path, meaning, if
we take two spatial derivatives of the components of a vector, and then we do it again in a
different order, in a curved space we will get a different answer.

The curvature tensor is an object that measures these differences. We won’t go through all
of the calculus, but perhaps not surprisingly given the formulas for parallel displacement
and derivative-taking, it is dominated by the Christoffel symbol:

Rβ
νρσ = Γβνσ,ρ − Γβνρ,σ + ΓανσΓβαρ − ΓανρΓ

β
ασ (44)

The Ricci tensor is generated by contracting the curvature tensor by identifying β and σ:

Rνρ = Rβ
νρβ, (45)

and the scalar curvature is generated by raising one of these indices Rν
ρ = gνµRµρ and

contracting over these:

R = Rν
ν . (46)

GEODESICS

We can choose an arbitrary vector, and an arbitrary path, and carry out parallel displacement
of the one along the other. However, if we begin the process of parallel displacement with
an element of path that is fixed to be in the same direction as the vector, the rest of the
path, built up step by step, is uniquely determined. This path is called a geodesic. Again,
skipping some of the calculus, we find that the Christoffel symbol is a key piece of the
computation of a geodesic.

A curve is a continuous range of positions, and so it appears in the theory as a position
vector that is a function of a single continuously-changing scalar parameter τ , i.e., pµ(τ).
The geodesic satisfies

d2pµ

dτ 2
+ Γµνσ

dpν

dτ

dpσ

dτ
= 0. (47)
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CONCLUSIONS

We are curious to examine whether any useful possibilities for seismic inversion are in-
troduced by taking a different view of actions taken on a point in model space when in
the presence of a well-behaved objective function. This view involves considering the ob-
jective function to introduce intrinsic curvature to model space, rather than treating it as a
completely independent quantity. To examine this requires we make use of some aspects
of Riemannian geometry, thus we have been motivated to do this review. This review is
probably best read in combination with the review of vectors and tensors in non-Cartesian
space in the 2020 report.
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APPENDIX A

Starting from
dqµ = qn

(
yn,µ(x) + yn,µσdx

σ
)
− qµ(x),

we find

dqµ = qn
(
yn,µ(x) + yn,µσdx

σ
)
− qµ(x)

= qnyn,µ(x) + qnyn,µσdx
σ − qµ(x)

= qν(x)ynν (x)yn,µ(x) + qnyn,µσdx
σ − qµ(x)

= qν(x)gµν(x) + qnyn,µσdx
σ − qµ(x)

= qµ(x) + qnyn,µσdx
σ − qµ(x)

= qnyn,µσdx
σ.

(48)

APPENDIX B

We have

gµν,σ = yn,νσyn,µ + yn,νyn,µσ, (49)

and a definition of inner products such that if desired the first term can be re-written
yn,νσy

n
,µ, and the second term can if desired be re-written yn,νyn,µσ. Thus the assemblage

gµν,σ + gµσ,ν − gσν,µ becomes

yn,νσyn,µ + yn,νyn,µσ + yn,µνyn,σ + yn,µyn,σν − yn,νσyn,µ − yn,σyn,νµ. (50)

We can re-write the last term as yn,σyn,νµ, and further recognize that the order of any pair
of indices before or after a comma does not matter. We find then that (1) the first and fifth
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terms cancel, (2) the third and sixth terms cancel, (3) the second and fourth terms are equal,
and (4), in order to match to standard terminology, we can re-write gσν,µ as gνσ,µ. Thus

gµν,σ + gµσ,ν − gνσ,µ = 2 yn,µyn,σν = 2Γµνσ, (51)

as desired.
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