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ABSTRACT

Numerical solutions to the wave equations that arise in seismic imaging have been
richly developed over the last 70+ years, and typically depend on explicit time-stepping
or Fourier techniques for fast, accurate solutions. The counterpart to explicit methods are
implicit methods which have enjoy features such as unconditional stability, but typically
are computationally prohibitive in two and three spatial dimensions. We demonstrate here
a fast, stable implicit time-stepping numerical method for solving the wave equation in two
dimensions and higher, that makes use of novel operator factorization in a grid algebra.
Several computational demonstrations of the method are presented as well.

This is a summary of the main results described in the MSc thesis of the second author.

INTRODUCTION

Finding efficient numerical methods for solving systems of differential equations that
describe physical processes is a central challenge in scientific computation. In seismic
imaging, a key problem is finding numerical solutions for the various wave equation models
that describe seismic wave propagation through the earth’s subsurface. Several numerical
methods for calculating the wave propagation in space involve approximating the wavefield
on a grid of nodes or cells in space and modelling its propagation along the grid. A key
step is representing the wave operator as a linear matrix acting on the vector space of
functions evaluated at the grid points. For even modest grids used in finite-differences,
say 100×100 in 2D or 100×100×100 in 3D, the vector spaces that appear have 10,000
or 1,000,000 dimensions and the associated linear operators are represented as matrices
of size 10,000×10,000 or 1,000,000×1,000,000. Fortunately, these matrices are typically
sparse, and there exist sparse matrix methods and iterative methods that can manage the
high dimensions of the problem.

There is considerable interest in developing implicit solutions for finite-difference meth-
ods of modelling wave propagation, in order to make use of the inherent advantages of im-
plicit methods, such as unconditional stability and accuracy. Some early work on implicit
methods for multidimensional PDEs goes back to [Stone(1968)]; more recent develop-
ments focus on such things as the alternating direction implicit (ADI) schemes as seen in
[Qin(2009)]. A central challenge in the implicit method is that, somewhere along the line,
a system of linear equations has to be solved. Here, the high dimensions are a particular
problem and even general sparse matrix methods only partially alleviate the challenge.

In one dimension Claerbout demonstrated that implicit method are cheaper since the in-
creased accuracy allows the use of larger time steps. However for space dimensions higher
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than one, the implicit method becomes prohibitively costly [Claerbout(1985)]. On the plus
side, often implicit methods are unconditionally stable. [Smith and Smither(1985)].

We note, however, that there is an underlying structure in the linear systems that arises
from the fact that the organized grid of points in 2D or 3D gives additional geometric rela-
tionships between coefficients in the linear operator. The general sparse matrix techniques
do not readily take advantage of these geometric relationships, so there is an opportunity to
develop algorithm efficiencies from this extra information. As an alternative to the sparse
matrix methods, we aim to use the underlying geometric structure to perform “matrix op-
erations” directly on the structured linear system to produce more efficient linear algebraic
methods.

For a finite-difference operator expressed as a sparse matrix with the non-zero values
falling on a few diagonals, standard LU decomposition ‘fills in’ a very large number of ze-
ros between the diagonals [Smith and Smither(1985)]. The same issue arises with Cholesky
factorization.

The focus of the research to find factorizations similar to LU decomposition of such
a linear system, that preserve the local structure. There has long been hope for such an
approach: “It seems fortunate that the table contains many zeroes, and we are led to hope
for a rapid solution method for the simultaneous equations." [Claerbout(1985)]

In this work, we demonstrate a representation of these linear operators via a graph of
arrows and nodes. The nodes represent grid points, arrows represent non-zero entries in
the associated linear operator connecting one node to another, with weights on the arrows
representing the value of the coefficient in the associated linear term. We then show how
elementary row operations are performed on this grid representation, and show how back-
substitution can quickly solve the linear system for operators with certain restrictions on
the arrows that appear. We demonstrate a factorization of linear operators, similar to the LU
factorization for regular matrices, but making use of the structure of the grid representation.
In factored form, we can then solve the system of linear equations in O(N) steps.

We then apply this factorization to the Laplace operator as it arises in the implicit
method for solving the wave equation in 2D and 3D .

Some initial steps in this research were started by the first author some five years
ago. [Lamoureux and Hardeman-Vooys(2016)] The results reported here are contained in
more detail in the MSc thesis of the second author. [Vestrum(2021)]

TIME STEPPING SOLUTION TO WAVE EQUATION

Explicit methods

The acoustic wave equation in three dimensions can be expressed in the form

∂2u

∂t2
= c2∇2u(x, y, z, t). (1)

2 CREWES Research Report — Volume 33 (2021)



Wave factoring

where∇2 represents the Laplace operator and c the velocity of propagation [Selvadurai(2000)].
An explicit time stepping method of numerical solution is obtained by representing the
wave function u as a collection of time samples uk = u(x, y, z, tk) at time step tk, sampled
on a spatial grid of Nx × Ny × Nz points. The differential operators in the wave equation
are replaced with discrete difference operators,

uk+1 − 2uk + uk−1

∆t2
=

c2

∆x2
Luk, (2)

where ∆t,∆x are the time and space step sizes, and L is a discrete difference operator that
approximates the Laplacian.2 Rearranging the equation gives the explicit time stepping
method,

uk+1 = (2 + εL)uk − uk−1, (3)

which tells us how to compute the wave function u at time step k + 1 in terms of the
function values at previous time steps k and k − 1. Here. we have defined ε = c2∆t2

∆x2
as the

CFL parameter. For an explicit method to be stable, this parameter ε must be small, which
requires our time step to be sufficient small for a given velocity c and spatial sampling
∆x. [Myint-U. and Debnath(2006)].

Implicit methods

To obtain an implicit method which is unconditionally stable, we replace the uk on the
RHS of Eqn 2 by uk+1, to obtain

uk+1 − 2uk + uk−1

∆t2
=

c2

∆x2
Luk+1, (4)

which we now rewrite as

(1− εL)uk+1 = 2uk − uk−1, (5)

where again we define ε = c2∆t2

∆x2
. This last equation is a linear system of the form Au = v,

which in principle is very challenging to solve as it represents NxNyNz linear equations in
NxNyNz unknowns. In other words, matrix A = 1 − εL is a large N × N matrix, where
N = NxNyNz is the number of points in the spatial grid.

In the next sections, we will see that grid algebras can be used to rapidly solve this
system, in only O(N) steps, making the new method comparable to the explicit methods
while adding unconditional stability.

Augmented implicit methods

We note there is considerable freedom in selecting an implicit method, as there are
several ways to introduce the sample uk+1 to the RHS of Eqn 2. For instance, similar

2A popular choice is the the standard 7-point discrete Laplacian Lu(x, y, z) = u(x±∆x, y, z)+u(x, y±
∆x, z) + u(x, y, z ±∆x)− 6u(x, y, z).
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to a Crank-Nicolson method [Myint-U. and Debnath(2006)], we may replace uk with the
average of uk and uk+1 to obtain the formula

uk+1 − 2uk + uk−1

∆t2
=

c2

∆x2
L
(
uk + uk+1

2

)
. (6)

Rearranging gives

(1− ε

2
L)uk+1 = 3uk − uk−1 − (1− ε

2
L)uk, (7)

or equivalently
uk+1 = (1− ε

2
L)−1(3uk − uk−1)− uk, (8)

which again involves solving a large linear system of the form Au = v.

The fast computational methods in the next sections will also work for linear systems
of this form, for the augmented implicit solution.

GRID REPRESENTATION OF LINEAR OPERATORS

Since the size of matrix A is N × N , where N = NxNyNz is the number of points in
the grid, the number of coefficients in A is N2, and the computations required to solve the
system Au = v is going to grow on the order of N2. To avoid this scaling cost, we are
going to take advantage of the geometry of the problem and create a grid representation of
our linear operators.

First, in the simple case where we have a one dimension grid with four points, the
matrix equation Au = v such as

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2



u1

u2

u3

u4

 =


v1

v2

v3

v4

 (9)

can be represented as a bipartite graph, with inputs uj on the left side of the graph (see
Figure 1) and outputs vk on the right, along with arrows with weights connecting the inputs
to outputs.

It is convenient to collapse the inputs and outputs to shared nodes, giving a representa-
tion as a direction multigraph, as shown in Figure 2 (left). The linear operator by itself is
then succinctly described as a multigraph with weights, shown in Figure 2 (right), where
the weight for each off-diagonal element in the matrix is shown with an arrow, while the
diagonal weight is written inside the node.

It is elementary to extend this representation to two and three dimensions, expressing
a linear operator on a 2D or 3D grid as a collection of nodes and arrows, with weights
encoding the coefficients of the given linear operator. For example, on a 2D 4x4 grid, we
express the usual discrete Laplacian (approximating∇2) as the weighted multigraph shown
in Figure 3.
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u1

u2

u3

u4

v1

v2

v3

v4

−2

1

1

−2

1

1

−2
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FIG. 1. Bipartite graph representation of a 4× 4 linear operator.

Note that this is a relatively compact representation of a 16x16 linear operator with 64
non-zero coefficients. With inputs uij and outputs vij , this linear operator can be expressed
in the usual indexed form

vij = −4uij + ui−1,j + ui+1,j + ui,j−1 + ui,j+1, (10)

for all indices 1 ≤ i, j ≤ 4.

The representation in Figure 3 makes it clear there is a nearest-neighbour structure to
the Laplace operator, which is not immediately obvious in the usual 16x16 sparse matrix
representation of the linear operator. Any linear operator A acting on a 2D grid of data
points uij can be represented in this manner, with arrows and weights, provided we allow
for arrows that can point between any two nodes in the grid. The point is, the nearest-
neighbour and other topological relations in the 2D grid that are encoded in the linear
operator can be more readily apparent in this grid representation.

In three dimensions, the approach is the same. We begin with a three dimensional grid
with dimensions Nx × Ny × Nz, which contains N = NxNyNz nodes. A linear operator
on this grid is a matrix of dimension N × N which can be represented as a collection of
nodes and arrows, with weights attached to arrows and nodes. While it would be difficult
to draw such a 3D graph for a large grid, it is illustrative to demonstrate show how a linear
operator applies to a single node. In Figure 4, we see the 3D cube with the three standard
directions X, Y, Z. It is useful to think of these “directions" as shift operators on the grid,
corresponding to an arrow that connects an output to an input via a shift in one direction.

In our diagrams, a single shift in the directions x, y, z is represented by an arrow from
the centre point along the axis of the shift, giving a linear operator denoted as X, Y , or Z
respectively. A shift in the opposite direction is labeled X∗, Y ∗ or Z∗ as these correspond
to the adjoint linear operator (matrix transpose). We can compose operators, and represent
as a product of arrows. For instance in Figure 5 the black arrow representing a shift of
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FIG. 2. Multigraph representation of a 4× 4 linear operator, with and without inputs/outputs.

X∗Y ∗Z is shown from the centre, with the coloured arrows added to show each of these
shifts applied one at time.

With this method of drawing 3D linear operators, we can show a representation of the
3D discrete Laplacian that is built on the diagonals of the stencil’s cube. Figure 6 shows
a representation of the 3D discrete Laplacian built on the diagonals of the stencil’s cube.
This represents the linear operator given by the formulas

vijk = −8uijk + ui−1,j−1,k−1 + ui−1,j−1,k+1 + ui−1,j+1,k−1 + ui−1,j+1,k+1 (11)
+ ui+1,j−1,k−1 + ui+1,j−1,k+1 + ui+1,j+1,k−1 + ui+1,j+1,k+1,

for all indices1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.

As in the 2D case, the point is that certain linear operators, such as those with only
nearest neighbour dependence, will have very simple grid structures in this representa-
tion. By comparison, the corresponding matrix representation will be sparse and structured
(banded), but the structure would not easily reveal the nearest neighbour property. We
can see structures in the grid representation which will not be obvious in the usual matrix
representation of the linear operator.

By using the grid representations for the linear operators, the next sections shows how
to use this structure for find computationally fast algorithms for inverting systems of linear
operators defined on these grid.

SOLVING Au = v BY BACK-SUBSTITUTION

As with triangular matrices, when a grid operator has a certain form, it is easy to solve
the related system Au = v using back substitution. For triangular matrices this requires the
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FIG. 3. Linear operator by itself, with weights and nodes.

matrix to be upper triangular, with every entry below the diagonal being zero. For instance
a grid operator with all the arrows going down and/or to the right, can be expressed as an
upper triangular matrix, and it is in a form that is quickly solved via back-substitution.

More generally, suppose a 2D grid representation has non-zero arrows contained to an
open half plane. In this case, it is then possible to express this in a corresponding linear
(grid) system Au = v in which the matrix A is upper triangular. Thus the system can be
solved that the system can be solved by back-substitution.

As a particular example, suppose we have a 2D grid operator that only has down and
right pointing arrows, with only nearest neighbour arrows non-zero. For instance, suppose
our linear system of equations is expressed as

vi,j = aui,j + bui−1,j + cui,j−1 (12)

for all indices 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and some fixed coefficients a, b, c.3 In this case,
we can invert the linear system Au = v by rearranging Eqn 12 in the form

ui,j = (vi,j − bui−1,j − cui,j−1)/a (13)

and solving recursively from this formula for ui,j , where we let the indices i, j run in in-
creasing order from 1 to Nx and to Ny, respectively. The point is, by the time the algorithm
is trying to compute ui,j in Eqn 13, it has already solved for the unknowns ui−1,j and ui,j−1

on the RHS of this formula, so indeed the RHS is known. This is the heart of back substi-
tution.

Notice that in Eqn 13 there are only 5 floating point operations (two multiplications, two
subtractions and one division) per coefficient ui,j , so the inversion takes only 5N FLOPS

3The non-constant coefficient case can be handled easily as well.

CREWES Research Report — Volume 33 (2021) 7



Lamoureux et al.

FIG. 4. The 3x3x3 grid and standard shift operators.

to compute. These is how we are able to achieve an inverse in O(N) operations, instead of
the typical O(N2) for a general linear system.

A similar result is true for 3D grid. If a grid operator can be expressed as shifts where
all the shifts are in the same one direction along each axes, then this can be expressed as an
upper triangular matrix and can be solved easily by back substitution. Therefore any shift
with all the arrows in the same half space can be solved by back substitution.

FACTORING IN THE GRID ALGEBRA

We want to find a fast way to solve the linear system of equations that arise in the im-
plicit methods for the wave equation. There is a specific linear operator, or matrix, that
comes up in the implicit method, which is just the identity operator minus a multiple of the
Laplacian, I − εL. This is a sparse, positive definite symmetric matrix, so in principle it
can be factored using standard methods in linear algebra, such as the Cholesky factoriza-
tion. [Press(2009)] However, these standard methods typically ignore the sparse structure
of the matrix, and lead to fill-in, which will result in slow methods to invert the linear sys-
tem. Our goal is to find a factorization that somehow respect the simple, nearest neighbour
structure on the computational grid.

As a motivating example, consider factoring the shifted Laplacian I − εL on a 2D,
uniformly spaced grid. Define the shift operators X, Y by the formulas

(Xu)(x, y) = u(x− h, y), (Y u)(x, y) = u(x, y − h), (14)

where here the grid spacing ∆x = ∆y = h is the same in each spatial direction. The
adjoints of these operator are shifts in the opposite direction, so

(X∗u)(x, y) = u(x+ h, y), (Y ∗u)(x, y) = u(x, y + h). (15)

8 CREWES Research Report — Volume 33 (2021)
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FIG. 5. A linear operator X∗Y ∗Z represented as a composition of three shifts.

With this notation, the standard discrete Laplacian is defined as the linear operator given
by a sum of shifts L0 = X +X∗ + Y + Y ∗ − 4I, where I is the identity operator (identity
matrix).

A more general Laplacian takes an affine combination of the standard Laplacian L0 and
the diagonal Laplacian L1 = (XY +X∗Y +XY ∗ +X∗Y ∗ − 4I)/2, to yield the formula

Lγ = (1− γ)L0 + γL1. (16)

To factor the shifted Laplacian, we look for a solution to the equation

I − εLγ = (aI + bX + cY + dXY )(aI + bX∗ + cY ∗ + dX∗Y ∗), (17)

for a given ε > 0 and unknowns a, b, c, d and γ. Expanding the product on the RHS and
equating coefficients of the terms I,X, Y,XY,X∗Y gives a system of five equations in five
unknowns. A solution is given as

a = (1 +
√

1 + 4ε)2/4

b = −ε
c = −ε
d = (1−

√
1 + 4ε)2/4

γ = −2ε

(18)

It is useful to look at this solution in the grid algebra formulation, which is presented
in Figure 7. On the left of the figure is the arrow diagram for the shifted 9 point Laplacian,
I − εL. On the right are the arrow diagrams for the factor F = aI + bX + cY + dXY and
its adjoint F ∗ = aI + bX∗ + cY ∗ + dX∗Y ∗. Notice that one factor has all the arrows going
right and up, so the related inverse problem can be solved quickly by back-substitution.
The adjoint factor F ∗ has arrows in the opposite direction, so it is also quickly inverted.
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FIG. 6. The 9-point Laplacian stencil on a 3D grid, with weights indicated.

1 + 4ε9ε
9ε

9ε

9ε

.

aI
bX

cY
d..

aI
bX∗

cY ∗ d..

FIG. 7. Arrows for the shifted 2D Laplacian, and factors F = aI + bX + cY + dXY and F ∗.

There are a few features to note about this solution. First, the extra parameter γ is
really needed in order to solve the system of five equations. Second, the solution obtains
γ as a negative number, so the resulting discrete approximation to the Laplacian is not a
usual convex combination of L0 and L1, but simply affine. Since ε is typically small, this
approximation is close to L0, the standard discrete Laplacian. Third, the solution is not
unique – for instance, the roles of a and d can be reversed. However, there are numerical
advantages in keep the matrix diagonal element a large (close to one) and off-diagonal d
small (close to ε2).

Finally, this is a special case of a Cholesky factorization of the operator I − εLγ since
the factor aI + bX + cY + dXY is represented by a lower triangular matrix, and the other
factor is its transpose. By a judicious choice of parameter γ, we are able to make these
factors limited to nearest neighbour arrows only, in a restricted set of directions (e.g. right,
up, and right-up), allowing for fast inversion by back-substitution.
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It is worth highlighting this fact: by including the free parameter γ, we are able to
“fix” the fill-in problem with the usual Cholesky factorization, and end up with a nearest
neighbour factor. This is an unexpected and highly useful mathematical result that results
in the speed up of the implicit solution to the PDE problem.

Our initial attempts to factor the operator used numerical methods to find an approx-
imate solution to the factoring problem, since the resulting system of equations involves
five quadratics in five unknowns. Such a complex system is not typically solvable in ex-
act formula, and there were no obvious simplifications. However, over the course of an
MSc thesis [Vestrum(2021)], this research led to the exact, algebraic solution shown above,
which also guided our search for a solution in higher dimensions, on non-uniform grids.

2D RECTANGULAR GRID SOLUTION

In this section we demonstrate a solution to the factorization of the shifted Laplacian in
the general case of a rectangular grid in two dimensions.

A rectangular grid in 2D has different spatial steps sizes ∆x, ∆y in the x and y direc-
tions. In this case, we redefine the shift operators X, Y by the formulas

(Xu)(x, y) = u(x−∆x, y), (Y u)(x, y) = u(x, y −∆y), (19)

and the adjoints of these operator are shifts in the opposite direction, so

(X∗u)(x, y) = u(x+ ∆x, y), (Y ∗u)(x, y) = u(x, y + ∆y). (20)

For a non-square grid, the discrete Laplacians need to be normalized in order to get a
proper approximation to the continuous Laplacian. It is convenient to define two scaling
parameters

λx = (h/∆x)2 , λy = (h/∆y)2 ,

that relate the different step sizes to a uniform step h.4 With this notation, the normalized
standard discrete Laplacian is given as

L0 = λx(X +X∗) + λy(Y + Y ∗)− 2(λx + λy)I (21)

and the diagonal Laplacian is

L1 =
λx + λy

4
(XY +X∗Y +XY ∗ +X∗Y ∗ − 4I) (22)

+
λx − λy

2
(X − Y +X∗ − Y ∗). (23)

We have normalized the standard and diagonal Laplacians so they agree with the def-
inition for a uniform square lattice, as in the previous section, where λx = λy = 1. A
computation with Taylor series verifies that the interpolated Laplacian

Lγ = (1− γ)L0 + γL1 (24)

4We could set h = ∆x but it is convenient to use this general form.
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is a second order approximate to the continuous Laplacian, for all values of the free param-
eter γ. That is,

Lγu = h2∇2u+O(h4). (25)

We can factor as in the previous section, and obtain the following result:

Theorem 1 Fix ε > 0. A necessary and sufficient condition for a local grid factorization
of the shifted 9-point Laplacian 1− εLγ on a 2D rectangular lattice in the form

1− εLγ = (aI + bX + cY + dXY )(aI + bX∗ + cY ∗ + dX∗Y ∗)

is that
γ = − 4ελxλy

λx + λy
. (26)

In this case, the coefficients for operator F = aI + bX + cY + dXY are given as

a = (1 +
√

1 + 4ελx)(1 +
√

1 + 4ελy)/4

b = (1−
√

1 + 4ελx)(1 +
√

1 + 4ελy)/4

c = (1 +
√

1 + 4ελx)(1−
√

1 + 4ελy)/4

d = (1−
√

1 + 4ελx)(1−
√

1 + 4ελy)/4.

(27)

The proof of the theorem is a careful algebraic computation, involved five quadratic
equations in the five unknowns a, b, c, d, γ. The details are contained in the MSc thesis of
the second author [Vestrum(2021)].

Consequently, the operator 1 − εLγ = FF ∗ can be quickly inverted, by first inverting
the first factor operator F = aI + bX + cY + dXY using back-substitution, and then
inverting the second factor F ∗ using forward-substition. The result is an implicit method
of speed O(N), where N is the number of points in the 2D grid. This is as fast as the usual
explicit methods.

Some numerical examples are given at later sections in this article.

3D AND HIGHER D SOLUTIONS

In this section we demonstrate a solution to the factorization of the shifted Laplacian
in the general case of a rectangular grid in three dimensions. That is, where the steps in
the x, y and z directions can be different sizes. We also present the solution in bigger than
three dimensions, which is of mathematical interest.

With many numerical experiments during the course of this research, it became clear
that a solution to the factor problem in 3D should be possible. However, one must be
flexible in the choice of the discrete difference operator that is used to approximate the
Laplacian. In two dimensions, there are two linearly independent for the discrete Lapla-
cian – for instance the standard Laplacian with the 4 edges, and the diagonal Laplacian.
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Interpolating between the two introduces one free parameter, which we called γ in the last
section.

In three dimensions, it turns out there are eleven linearly independent choices for the
discrete Laplacian, although in most applications one usually only sees three standard ones,
the 7, 9, and 13 point stencils. By using all eleven choices, one obtains ten degrees of
freedom in the choice of a (normalized) Laplacian, which is enough freedom to solve the
factorization problem. The result is the following theorem.

Theorem 2 Fix ε > 0. A solution to the local grid factorization of the shifted affine com-
bination of Laplacians 1− εL♦ on a 3D rectangular lattice in the form

1− εL♦ = FF ∗ (28)

with factor

F = a000I + a100X + a010Y + a001Z + a110XY + a101XZ + a011Y Z + a111XY Z (29)

is obtained by choosing the coefficients for the factored operator F as

a000 = (1 + Λx)(1 + Λy)(1 + Λz)/8

a100 = (1− Λx)(1 + Λy)(1 + Λz)/8

a010 = (1 + Λx)(1− Λy)(1 + Λz)/8

a001 = (1 + Λx)(1 + Λy)(1− Λz)/8

a110 = (1− Λx)(1− Λy)(1 + Λz)/8

a101 = (1− Λx)(1 + Λy)(1− Λz)/8

a011 = (1 + Λx)(1− Λy)(1− Λz)/8

a111 = (1− Λx)(1− Λy)(1− Λz)/8.

(30)

Here, parameters Λx,Λy,Λz specify constants defined by the grid spacing and ε,

Λx =
√

1 + 4ελx Λy =
√

1 + 4ελy Λz =
√

1 + 4ελz.

The difference operator L♦ = (1 − FF ∗)/ε is a second order accurate approximation to
the continuous Laplacian. That is,

L♦u = h2∇2u+O(h4). (31)

The proof of this result is contained in the thesis of the second author. [Vestrum(2021)]

For simplicity in stating the theorem, we are breezing over a few obvious extensions
from 2D to 3D. The linear operators X, Y, Z are shifts on the 3D grid, by step sizes
∆x,∆y,∆z in the x, y and z directions, respectively. The parameters λx, λy, λz specify
the relative spacing of the 3D rectangular grid to a common spacing of h

λx = (h/∆x)2 , λy = (h/∆y)2 , λz = (h/∆z)2 , (32)
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and the linear operation L♦ is an affine combination of 11 independent discrete Laplacians,

L11 = (1−
10∑
i=1

γi)Lγ0 +
10∑
i=1

γiLγi (33)

whose coefficients can be calculated from the formulas above. However, it is easier just to
write L♦ = (1− FF ∗)/ε.

It is worth noting that for ε > 0 small, the coefficient that appear in factor F have
specific sizes. The coefficient of the identity, a000, is close to one, the coefficients for
X, Y, Z are of order ε, the coefficients of XY,XZ, Y Z are of order ε2 and the coefficient
of XY Z is of order ε3.

Higher dimensions > 3D

From the 3D example, we can deduce the form of the result in N > 3 dimensions.5 We
write the factor F as a linear combination of products of shift operators X1, X2, . . . XN ,
with

F =
∑

i1i2...iN

ai1i2...inX
i1
1 X

i2
2 · · ·X

iN
N (34)

where the indices ik take values 0 and 1 only. The formula for the coefficients are then
given as products

ai1i2...iN = (1 + (−1)i1Λ1)(1 + (−1)i2Λ2) · · · (1 + (−1)iN ΛN) (35)

where the constants Λk =
√

1 + 4ελk are related to the relative grid spacings λk = (h/∆xk)
2

and the parameter ε.

The proof that F results in the factorization of the shifted Laplacian, I − εL♦ = FF ∗

follows the 3D proof in the thesis, as an extended exercise in algebra and multidimensional
Taylor series formulas. A clever use of multi-index notation as found in multidimensional
PDE texts is helpful here. [Folland(2020)]

COMPUTATIONAL EXAMPLES

To verify that the factorization is correct and that the implicit method is indeed fast, of
O(N) in computation, we implemented the method in Python on a number of test cases.
The code is available on our Github repositories.

2D example

The first example is in two dimensions, representing an acoustic wave travelling at 3000
meter per second, in a region of size 2000 meters by 2000 meters. The initial waveform is
a Gaussian impulse centred in the middle of the computational region. Three examples are

5Although this is not necessary in seismic imaging, it is a very elegant mathematical result worth high-
lighting.
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given, with grids sizes of 151 by 151 grid points, 151 by 85 points, and 151 by 76 points.
This corresponds to a spatial step size of 13.3 meters in the x direction, and 13.3, 23.8 and
26.7 meters in the y direction, respectively. With a time step size of 1 millisecond, we time
step through a total of 300 milliseconds of elapsed time, or 300 times steps per simulation.

The results of the calculation are shown in Figure 8, for the square grid (left column),
and two rectangular grids (middle and right column). Observe that even though the grid
spacing has changed, the computation shows the correct spherical propagation of the wave-
form in each case. The velocity of the waveform is also correct, as we see the wavefront
moving at about 300 meters per 100 millisecond, which is 3000 meters per second. Some
artefacts of the numerical approach appear in the rectangular grid examples: for instance,
in the bottom right image of Figure 8, corresponding to a step size of 26.7 meters in the y
direction at 300 milliseconds into the simulation, we see a shadow near the trailing edge of
the wavefront, at the top and bottom of the waveform. This could be the result of the wide
spatial sampling in the y direction.

3D examples

The next two examples are in three dimensions, similar to the two dimension example
in the previous section. The first represents an acoustic wave travelling at 3000 meter per
second, in a region of size 2000 meters along each of the three dimensions. The initial
waveform is a Gaussian impulse centred in the middle of the computational region. Three
examples are given, with grids sizes of 151× 151× 151 grid points, then 151× 85× 151
points, and 151 × 76 × 151 points. This corresponds to a spatial step size of 13.3 meters
in the x and z directions, and 13.3, 23.8 and 26.7 meters in the y direction, respectively.
With a time step size of 1 millisecond, we time step through a total of 300 milliseconds
of elapsed time, or 300 times steps per simulation. We are using the augmented implicit
method in this example, to verify its performance.

The results of the calculation are shown in Figure 9, for the uniform cubic grid (left
column), and two rectangular grids (middle and right column). We present the 2D section
through the z = 0 plane. Observe that even though the grid spacing has changed, the
computation shows the correct spherical propagation of the waveform in each case. The
velocity of the waveform is also correct, as we see the wavefront moving at about 300 me-
ters per 100 millisecond, which is 3000 meters per second. Some artefacts of the numerical
approach appear in the rectangular grid examples: for instance, in the bottom right image
of Figure 9, corresponding to a step size of 26.7 meters in the y direction at 300 millisec-
onds into the simulation, we see a shadow near the trailing edge of the wavefront, at the top
and bottom of the waveform. This could be the result of the wide spatial sampling in the y
direction.

Notice that the grid size corresponds to a linear problem size of N ≈ 3.5 million data
points, for which a standard matrix inversion would be computationally prohibitive. The
implicit methods described in this article are of speed O(N), as verified in these numerical
experiments.

For the final 3D example, shown in Figure 10, we use two sources slightly displaced
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from the centre of the computational region, of opposite polarity. Again, the computation
region is 2000 meters along each dimension, velocity is 3000 meters per second, and time
step is 1 millisecond, for a total time of 250 milliseconds. We use a coarser rectangular
grid of 101 × 101 × 51 grid points, for a problem size of N ≈ 500, 000 data points. In
Figure 10 we see the waveforms advancing in spherical wavefronts as expected, with the
proper physical interference correctly represented when the wavefronts pass through each
other.

FURTHER WORK

This paper reports on the work for factorization of the shifted Laplacian on square,
cubic and rectangular grids in 2D and 3D. The factorization also extends to higher dimen-
sions. We have verified that a similar factorization approach works for triangular grids as
well. It is also possible to create factors with “arrows to the right” only, that is factors of the
form F = aI+bX+cXY +dXY ∗. This form is particularly suited for GPU computations,
as the back-substitution steps can be performed on one column in parallel. GPU implemen-
tations with the standard factorization are also possible, using parallel computations along
diagonals.

The variable velocity case, for horizontally stacked layers, can be approached by ad-
justing the factors Λx,Λy,Λz to implement a change of velocity across layers. The general
variable velocity case appears to need a more general approach, where the coefficients
a, b, c, d in the factorization (2D case) are replaced by functions of grid position, for in-
stance a = a(x, y).

We observe that there are some similarities between the grid algebra method and the al-
ternating direction implicit (ADI) schemes developed by other authors (eg see [Qin(2009)]).
These methods involve addition of perturbation terms to permit operator splitting and re-
sults in something similar to a factoring. This is worth investigating further. ADI method
are also useful for dealing with boundary conditions, which would be helpful for the grid
algebra work.

We are exploring how to best use the implicit method, now that we have a computa-
tionally efficient version. The unconditional stability of the implicit method allows one to
take large step sizes in the numerical computations, which should be advantageous when
stepping through a low frequency waveform in the initial phases of full waveform inversion

SUMMARY

We have shown a factorization of the wave equation on computation grids, which per-
mits a fast and accurate implicit method for a finite difference solution to the acoustic (seis-
mic) wave equation. Numerical demonstrations in 2D and 3D were presented, to demon-
strate the utility of the method and to verify the fast, O(N) computational speed.
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FIG. 8. 2D implicit method, three different grid spacings, t = 0, 100, 200, 300 msec
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FIG. 9. 3D implicit, three grid spacings, z = 0 slice, t = 0, 100, 200, 300 msec.
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FIG. 10. 3D implicit with two sources, t = 0, 50, 100, 150, 200, 250 msec.
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