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ABSTRACT

Linearized AVO inversion methods, such as the weighted stacking approach, are based
on approximations of the Zoeppritz equations subject to several assumptions, including the
limitation of incidence angles to 35-40°, typically smaller than the critical one. Thus, in
long-offset acquisitions these approaches fail. This study focuses on developing a nonlin-
ear inversion appropriate under these circumstances, based on re-parameterized Zoeppritz
equations in terms of the fractional density and compressional and shear impedances. To
achieve this, P-P and P-S datasets with different characteristics of noise and frequency are
considered. In general, conditioned to a good initial model, three different local optimiza-
tion algorithms demonstrate a superior performance respect to the simultaneous weighted
stacking inversion, producing more accurate results for most elastic parameters, and the in-
clusion of noise information during the inversion improves the fractional shear impedance
and the fractional Vp/Vs ratio, promising a better rock properties estimation.

INTRODUCTION

Amplitude versus offset (AVO) is an interpretation tool relevant for reservoir descrip-
tion, which provides complementary information to the conventional stacked seismic (Down-
ton et al., 2000). The inverse problem consists in determining elastic parameters, assuming
that the data can be reasonably forward modeled by elasticity theory. Conventional ap-
proaches to invert pre-stack data seek linearized approximations of the Zoeppritz equations
(Grossman, 2003). One successful method is the weighted stacking technique, proposed
by Smith and Gidlow (1987) and expanded by Stewart (1990) and Larsen (1999). This is
based on the minimization of the misfit between the observed data and its theoretical de-
scription using the Aki-Richards approximations; then, the resulting pair of linear equations
is solved, obtaining expressions for the fractional compressional and shear impedances,
encompassing the multiplication of P-P and P-S reflectivities and time and angle-variant
weights (Larsen, 1999). This method produces accurate estimates as long as its underly-
ing assumptions are met, i.e., weak contrast of elastic parameters, incidence angles smaller
than the critical one, incidence angles smaller than 35° thus very small values of ∆ρ/ρ
are assumed, and values of the Vp/Vs ratio between 1.5 and 2 (Smith and Gidlow, 1987;
Larsen, 1999).

The traditional procedure for angles larger than the critical one is to limit them, but this
compromises the reliability of the estimates since they depend on the range of angles, and
in some cases the critical angle may be as low as 25° (Downton and Ursenbach, 2005).
Additionally, there is a growing interest in seismic acquisitions with long-offset ranges for
different industry purposes, such as studying reservoirs with strong contrast interfaces or
using streamer recordings to analyze the missing converted S-waves energy, occurring at
wider angles of incidence (Skopintseva et al., 2011; Williams et al., 2001).
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Since the linearized inversion would not produce accurate estimations if the available
angles are higher than 35-40°, this study aims for developing an inversion strategy appropri-
ate for scenarios with long-offsets/large incidence angles. The Zoeppritz equations are not
mathematically conditioned to any particular range of angles, hence the proposed approach
is based on their re-parameterization in terms of the fractional impedances and density.
However, in reality a plane wave approximation would be made, since seismic data is not
produced by plane but spherical waves. In order to gain general insights, the nonlinear
inversion is evaluated against the weighted stacking approach, after considering synthetic
P-P and P-S reflectivities generated from a two-layer model which does not produce a crit-
ical angle; thus, only effects of increasing the incidence angles will be accounted for. To
achieve this, three local optimization methods are tested, namely the Pure Gauss-Newton,
Steepest Descent, and Levenberg-Marquardt and it is also studied how the selection of the
initial model affects the nonlinear inversion.

FORWARD MODELING

To perform the forward problem, plane wave Zoeppritz equations are considered:
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here, α, β and ρ are the P-wave velocity, S-wave velocity and density, respectively.

Equation 1 is re-parameterized in terms of the upper medium properties and jumps in
the impedances and density, which is familiar from AVO analysis. To accomplish this,
terms A, C, and D are modified according to equation 2 commonly used when linearizing
problems.
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Since C and D depend on α and β, respectively, these expressions are altered in terms
of the impedances I=αρ and J=βρ:
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(3)

Applying equation 2 to term A and to terms C and D of equation 3 produces:
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Now, each element of P is a nonlinear function of ∆I/I , ∆J/J , and ∆ρ/ρ.

By inverting P and multiplying it on both sides of equation 1, the solution of the four
reflection coefficients is obtained for a chosen P-wave incidence angle θ1. To work with P-
P and P-S data simultaneously, the raytracing methodology applied by Larsen (1999) was
followed in this study, i.e., different incident angles for P-P and P-S mode energy conver-
sions were computed, in order each pair of plane waves reach the same receiver (offset).
Hence, the forward problem needs to be performed twice, one using the P-P incidence an-
gles and another using the P-S incidence angles. Subsequently, the first coefficient from
the P-P forward problem corresponds to Rpp, while the second one from the P-S forward
problem corresponds to Rps.

ITERATIVE NONLINEAR SIMULTANEOUS INVERSION

The vector of coefficients u contains four elements per incidence angle, but a sampling
operator S can be used to only extract the P-P and P-S data:

dpred = Su =

[
1 0 0 0
0 1 0 0

]
Rpp

Rps

Tpp
Tps

 =

[
Rpp

Rps

]
(7)

Counterpart to the predicted data are real or observed data, dobs, which are elements
of the same space that can be compared through subtraction. When performing an un-
constrained optimization, an objective function (without restrictions on the values that the
variables can take) is minimized (Nocedal and Wright, 2006). This objective function is
constructed measuring the difference between predicted and observed data vectors, i.e.,
from the L2 norm:
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where m corresponds to the model parameter vector:
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and W is a diagonal matrix with form:

W =

[
1/σpp 0

0 1/σps

]
(10)

where σ is the standard deviation of the dataset. In this case, WᵀW is the inverse of the data
covariance matrix. The elements of this matrix act as weighting factors and this is applied
because in practice some measurements are made with more accuracy than others, then it
is desirable to assign greater weights to the more accurate ones (Zhdanov, 2002). If W is
not known it can be replaced by the identity matrix.

The iterative approach involves derivatives of the objective function with respect to all
the model parameters. The gradient is a vector in model space pointing in the direction of
most rapid ascent in the objective function:
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and:
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)
(12)

J is the 2x3 Jacobian matrix; it is formed by derivatives of the predicted data with respect
to each model parameter. The elements of the Jacobian matrix, per incidence angle, can be
expressed as:

J iµ = SiK
∂uK

∂mµ
; i = 1, 2; µ = 1, 2, 3; K = 1, 2, 3, 4 (13)

After differentiating both sides of equation 1 with respect to each model parameter and
inverting the matrix P, it is obtained:

∂uK

∂mµ
= −(P−1)KL

∂PL
M

∂mµ
uM ; M = L = 1, 2, 3, 4 (14)

When computing J, the main new task is to determine all 48 elements of ∂PL
M/∂m

µ in
equation 14, which is a straightforward, yet laborious process.
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The Jacobian takes this matrix form:

J =

[
Jm1
pp Jm2

pp Jm3
pp

Jm1
ps Jm2

ps Jm3
ps

]
(15)

but there are some factors that need to be applied to equation 14 to consider the raytracing
approach: (1) ∂uK/∂mµ is a 4x3 matrix. Its rows are formed by the derivative of a coef-
ficient with respect to each model parameter. (2) To construct this matrix, u is computed
twice, one per each type of incidence angle, in order to use upp and Ppp to calculate the first
and third rows of ∂uK/∂mµ and ups and Pps for the second and fourth rows. (3) The con-
struction of ∂uK/∂mµ is repeated per each pair of incidence angles, forming N Jacobian
matrices.

On the other hand, the Hessian is a symmetric and orthogonal matrix of second deriva-
tives of the objective function which can be computed through:

H =
N∑
j=1

Jj
ᵀWᵀWJj (16)

The resulting 3x3 Hessian matrices per incidence angle are summed between each
other.

Features of local optimization methods

A local minimization requires a reasonable starting point, thus the algorithm iterates
many times, lowering the cost function, until either no more progress is made or the solution
is approximated with a given accuracy (Nocedal and Wright, 2006). To approach the local
minimum, the algorithm fixes a direction ∆m and a distance α to move. This distance,
namely step length, can be found after solving:

min
α>0

f(mk + α∆mk) (17)

However, this is an expensive process and a one-dimensional inexact minimization can
be carried out, sacrificing accuracy but conserving computation time (Luenberger and Ye,
2008). For this, a number of candidate steps lengths are generated until finding one that
approximates the minimum of expression 17, while enforcing the sufficient decrease and
curvature conditions (Nocedal and Wright, 2006).

The local gradient and/or curvature of the objective function is used to compute an
update of the model parameters (Sen and Stoffa, 2020). The search direction or model
update can be computed with:

∆m = −B−1g (18)
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where B is adapted depending on the applied method:

• B= I→ Steepest Descent

• B= H→ Gauss-Newton

• B= H + λdiag(H)→ Levenberg-Marquardt modification

Steepest Descent methods always guarantee a descent direction, linear convergence rate
with zigzag movements, and robustness; thus, they are computationally inexpensive, but
their convergence is slow. On the other hand, for Newton’s methods, the convergence rate
is quadratic, but there is a lack of robustness and the Hessian could be indefinite far away
from the solution; in addition, since the inverse Hessian is needed, the computational cost is
higher (Eriksson, 1996; Zou, 2020). The Levenberg-Marquardt method is a regularization
of the Gauss-Newton’s expression, which is useful when the Hessian is ill-conditioned; the
Hessian is damped by a diagonal cut off, ensuring a descent direction and global conver-
gence (Eriksson, 1996; Lu et al., 2018). The value of the damping parameter λ is adjusted
per iteration and it is equivalent to selecting a step size; when the solutions are far away
from the optimal values, λ is large and the optimization behaves as Steepest Descent, and
as they get closer, λ is small and the optimization behaves as the Gauss-Newton’s method
(Tolle, 2003).

After computing the model updates, values of the model parameters will be modified
per iteration (k) according to:

mk+1 = mk + α∆mk (19)

COMPARISON BETWEEN OPTIMIZATION METHODS

A two-layer model of solid units in welded contact was designed with elastic prop-
erties that do not produce a critical angle. A range of offsets was assumed from 0m to
4000m with intervals of 80m and incidence angles were determined through raytracing.
This model meets most of the assumptions underlying the accurate performance of the
weighted stacking inversion, i.e., small contrasts across the interface and a value of Vp/Vs
ratio of 1.9. However, this linearized inversion is well-suited only for angles smaller than
35°, but the reflectivities of Figure 1 have a maximum incidence angle of approximately
53° for the P-P dataset and 65° for the P-S data. Therefore, it is expected that the weighted
stacking approach does not produce as good estimates as the nonlinear inversion.

For the nonlinear approach, the initial model was constructed from weak perturbations
of the true values of α, β, and ρ. However, since the fractional impedances result from mul-
tiplying values of velocities and densities, the initial perturbations of the model parameters
were not that small. Figure 2 compares the true and the initial model.

Each set of reflectivities was inverted with the Gauss-Newton, Steepest Descent, and
Levenberg-Marquardt methods. For the Gauss-Newton optimization, a fixed step length
α=1 was considered and since it took the unit value, the method is called “Pure Gauss-
Newton”. For the Steepest Descent, a backtracking line search was applied to compute
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FIG. 1. P-P and P-S reflection coefficients.

FIG. 2. True (continuous lines) and initial model (dashed lines) used for the nonlinear pre-stack
inversion.

the appropriate step length per iteration, starting with α=1. Moreover, for the Levenberg-
Marquardt method, the initial value of the damping parameter λ was set equal to 40. The
performance of the optimization problems was evaluated through plots of the model val-
ues and data misfits per iteration. As applied by Liu and Liu (2016), the data misfit was
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computed from the RMS error between the observed and predicted reflectivities:

E =

√√√√ 1

N

N∑
j=1

(
dpred(θj)− dobs(θj)

)2

(20)

Additionally, the weighted stacking inversion was performed to estimate values of
∆I/I and ∆J/J . However, for both types of inversion, values of the fractional Vp/Vs
ratio (∆q/q) were computed through:

∆q

q
=

∆I

I
− ∆J

J
(21)

Estimations were evaluated with accuracy tests, applying:

% error =

∆(I,J,q or ρ)
(I,J,q or ρ)

∣∣∣
CALCULATED

− ∆(I,J,q or ρ)
(I,J,q or ρ)

∣∣∣
TRUE

∆(I,J,q or ρ)
(I,J,q or ρ)

∣∣∣
TRUE

× 100 (22)

Broadband and noise free reflectivities

When inverting these reflectivity sets, all the optimization methods reached conver-
gence at a different iteration number, as can be seen in Figure 3. Pure Gauss-Newton had
the fastest convergence rate, finding invariable values at the second iteration. However,
Steepest Descent and Levenberg-Marquardt had a slower performance, finding the mini-
mum point at the 17 and 10 iteration, respectively. In addition, the estimated parameters
were very close to the true values with almost zero data residuals. Particularly for Steepest
Descent, the RMS error of P-P reflectivities increased in early iterations, demonstrating to
be somewhat more unstable than the other methods. Nonlinear and linearized inversions
are compared in Figure 4. Results from all the nonlinear algorithms got trapped into the
same local minimum. The fractional impedances, as well as the fractional Vp/Vs ratio were
more accurately estimated than the fractional density. Furthermore, the performance of the
optimization methods was significantly superior than the weighted stacking inversion, evi-
dencing differences of around 2.5% between both approaches and allowing the estimation
of density values.

Broadband and noisy reflectivities

Identical and independently distributed (IID) noise was randomly generated from a
Gaussian distribution about zero with a standard deviation computed according to an indi-
cated signal-to-noise ratio (SNR) and the RMS power of the reflection coefficients. Sub-
sequently, this noise was added to the synthetic reflectivities, with a SNR of 8 for the P-P
dataset and 4 for the P-S dataset. Since the observed data can be treated as a random
variable, because measurements always contain random noise (Zhdanov, 2002), each non-
linear and linearized inversion was repeated 5000 times to analyze the results statistically,
comparing the maximum likelihood solutions of both types of inversion. Moreover, each
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FIG. 3. Convergence of optimization problems after inverting broadband and noise free reflectivi-
ties. In Figure (a) dashed lines are the true values.

FIG. 4. Comparisons between nonlinear and linearized inversion results after using broadband and
noise free reflectivities.
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optimization was done with and without the data covariance matrix in order to understand
the effects after considering noise information.

Particularly, the WᵀW matrix assigned more importance to the P-S reflectivities, be-
cause although both standard deviations were of the order of magnitude 10−3, σps was
smaller than σpp. However, these variances actually indicated that the P-S data was noisier
than the P-P data, because the order of magnitude of both synthetic measurements was dif-
ferent (10−2 for P-P data and 10−3 to 10−5 for P-S data). Hence, it is expected that these
values of quality help to improve the estimation of those parameters mainly affected by
Rps.

The accuracy of the maximum likelihood solutions is studied in Figure 5. In general,
results from each optimization were almost identical, estimations resembled to those of the
noise free case, and the fractional density had the highest percent error of the entire set.
Although the linearized inversion helps to suppress noise due the nature of the stacking
procedure (Larsen, 1999), the nonlinear approach did a better estimation with and without
using the data covariance matrix. On the other hand, when including noise information, the
error of ∆I/I and ∆ρ/ρ slightly increased, while the error of ∆J/J and ∆q/q had a subtle
decrease, showing that, effectively, the improved parameters were those mainly influenced
by the P-S reflectivities. Thus, noise information positively impacts the estimation of some
model parameters, promising a more accurate reservoir characterization.

Band-limited and noisy reflectivities

Both synthetic noise free P-P and P-S datasets were filtered using an Ormsby wavelet
but applying a different range of frequencies depending on the type of data. For the P-P
reflectivities the set of frequencies used was 5-10-60-75 Hz, and for the P-S dataset 5-
10-40-55 Hz. The NMO corrected synthetic CMP/CCP gathers are shown in Figure 6.
Later, each band-limited dataset was contaminated with IID random noise assigning the
same characteristics of the previous section. Each optimization was statistically performed
with 5000 samples and the evaluation of the estimates was done using equation 22 and
considering the band-limited true values. Figure 7 illustrates the accuracy tests related
to each maximum likelihood solution. Once more, the nonlinear inversion did a better
estimation than the linearized approach for most model parameters. Nevertheless, only for
∆I/I the optimization methods yielded to a slightly more erroneous solution.

Additionally, it was observed similar results between optimization methods and im-
provements brought by the WᵀW matrix over ∆J/J and ∆q/q. These enhancements were
more notorious than those of the previous section, passing from errors of around 9% to
5.5% for ∆J/J and from 4.5% to 3.5% for ∆q/q. On the other hand, the accuracy of all
estimates was smaller than the corresponding to the broadband reflectivities, but for most
elastic parameters, the errors stayed within an acceptable range. For instance, when the
WᵀW matrix was not included, errors were smaller than 10% and smaller than 6% when it
was. Nevertheless, density exhibited a dramatic percent error, reaching a value of around
57% when the data covariance matrix was not considered, and approximately 67% when
it was. Therefore, P-P and P-S datasets have little sensitivity to the density, not doing a
proper constraint of its band-limited true value.
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FIG. 5. Nonlinear and linearized inversion results after using broadband and noisy reflectivities.

FIG. 6. Syntethic seismograms for the a) P-P dataset and b) P-S dataset.

CREWES Research Report — Volume 33 (2021) 11



Lume and Innanen

FIG. 7. Nonlinear and linearized inversion results after using band-limited and noisy reflectivities.

EFFECTS OF THE INITIAL MODEL

To recognize the impact of initial models in the results, only one initial parameter was
strongly perturbed and the others were left invariable respect the initial model of Figure
2. The magnitude of the perturbations was comparable between model parameters. These
effects were studied with the Pure Gauss-Newton method on broadband and noise free
data and results were contrasted to those of Figure 4a. Figure 8a indicates that after only
modifying the initial α, errors increased around 0.75% for ∆I/I , 4.3% for ∆J/J and
10.8% for ∆ρ/ρ. Figure 8b shows the effects after changing the initial β; all percent errors
increased by almost 1.5 times the result from Figure 8a. However, after varying the initial
ρ, no difference was observed between Figure 8c and Figure 4a. This suggests that initial
values of α and β mainly affect the estimations, and higher discrepancies of the initial β
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respect the true model produce less accurate results.

FIG. 8. Accuracy tests after changing only one initial model parameter for the Pure Gauss-Newton
method.

A good initial model is necessary in order the nonlinear inversion outperforms the lin-
earized approach. This finding is supported in the study presented by Liu and Liu (2016),
where numerical tests of P-P inversion based on Zoeppritz equations demonstrated that ef-
fectively the perturbation level of the initial models as well as the noise level in the observed
data strongly impact the convergence of the local optimization algorithm. To understand
how good the initial model needs to be so the outperformance of the nonlinear inversion
could be guaranteed, several initial models were constructed with different relationships
between the P-wave and S-wave velocity perturbations, as well as features of the elastic
contrasts. Figure 9 shows that one of the most important characteristics to be met is the
closeness of the initial elastic contrasts to the true contrasts to obtain remarkably low or
adequate percent errors. These contrasts need to be the closest possible to reality, since
differences of even 100 units could yield to failure of the method respect the linearized
inversion for some model parameters, as illustrated in Figure 9f. However, establishing an
appropriate initial model is complex since it has to satisfy some relationships between the
initial perturbations of α and especially β.

Figure 9a and Figure 9b demonstrate that if the perturbation of α doubled the pertur-
bation of β, the percent errors for all the model parameters were almost zero. Moreover,
other acceptable relations for α:β were 1.5:1 and 3:1, as observed in Figures 9c and 9d.
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However, Figure 9e indicates that if the perturbation of α is 6 times the perturbation of
β, the percent errors of the fractional shear impedance and fractional density significantly
increase. Hence, the initial value of β and its relationship with α has a strong influence
in the converge of the algorithm. Moreover, the compliance of these relationships allowed
to supply initial values for α and ρ with even 300 units of perturbation respect their true
values, as seen in Figure 9a. Finally, if α and ρ are close to the true values but β is strongly
perturbated, then the estimations would not be very accurate.

FIG. 9. Different initial models and the resulting accuracy tests. Elastic contrasts close to reality
along with an α:β relation of (a) 2:1, (b) 2:1, (c) 1.5:1, (d) 3:1, (e) 6:1. Figure (f) shows elastic
contrasts with 100 units of difference respect the true value.

ADVANTAGES OF THE SIMULTANEOUS NONLINEAR INVERSION

The benefits of incorporating the P-S reflectivities in the inversion process can be un-
derstood after comparing the joint P-P and P-S inversion results against the ones obtained
with the conventional P-P inversion. To achieve this, the Pure Gauss-Newton algorithm
was used for the P-P inversion, considering only the P-P incidence angles for the compu-
tation of the forward model and Jacobian matrix, and modifying the sampling operator S
according to:

dpred = Su =
[
1 0 0 0

] 
Rpp

Rps

Tpp
Tps

 = Rpp (23)
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In this case, the condition number of the Hessian matrix was approximately 300, while
the condition number calculated for the simultaneous technique was approximately 24.
Thus, similar to the analysis shown by Larsen (1999), including P-S reflectivities helped to
stabilize the inversion. Moreover, Figure 10 illustrates that the conventional P-P approach
had an extraordinary performance for ∆I/I and ∆ρ/ρ when inverting a broadband and
noise free dataset, estimating these parameters with an almost perfect accuracy. However,
the estimation of ∆J/J and ∆q/q had higher percent errors than the simultaneous inver-
sion. In addition, as noise and band-limitations were included, the method had a worse
behavior than the simultaneous technique, exhibiting errors higher than 50% for ∆J/J and
∆ρ/ρ in Figure 10c, but always producing a very accurate result for ∆I/I .

FIG. 10. Comparison of accuracy tests obtained from reflectivities with different characteristics of
noise and frequency content.

Figure 11 shows normalized histograms constructed with model estimates obtained af-
ter statistically inverting band-limited and noisy datasets with the conventional P-P and the
simultaneous inversion. It is observed that although the P-P inversion generated an almost
perfect maximum likelihood solution for ∆I/I , this method did not have an adequate per-
formance for the remaining model parameters, exhibiting a lack of accuracy and precision.
Nevertheless, the simultaneous inversion did a better job overall because although it sac-
rificed a bit of accuracy for ∆I/I , the maximum likelihood solution of ∆J/J and ∆q/q
had a much smaller percent error, and estimations of all the model parameters were much
more precise, hence there is more probability to compute better estimates applying this ap-
proach. Unfortunately, in this scenario, both types of inversions could not generate a good
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maximum likelihood solution for the fractional density, but statistically the joint P-P and
P-S inversion produced a more precise result.

FIG. 11. Posterior uncertainty distributions of each estimate obtained from band-limited and noisy
reflectivities; “mt” corresponds to the band-limited true fractional value.

CONCLUSIONS

Synthetic data allowed to confirm the outperformance of the simultaneous nonlinear
AVO inversion over the weighted stacking approach under scenarios of long-offsets. Con-
ditioned to a sufficiently good initial model, estimations of the fractional compressional
and shear impedances, as well as the fractional Vp/Vs ratio, from local optimizations,
were very accurate with remarkably smaller percent errors. Additionally, regardless the
optimization algorithm applied, convergence was reached to the same minimum point, but
exhibiting different convergence features, being Pure Gauss-Newton the fastest method.
On the other hand, the inclusion of noise information through a data covariance matrix led
to improve the estimation of the parameters ∆J/J and ∆q/q, especially when the datasets
were band-limited, which is beneficial for reservoir characterization. Moreover, advan-
tages of applying a simultaneous nonlinear inversion over a conventional P-P technique
were demonstrated by the high accuracy and precision of the results. Finally, the nonlinear
inversion had a negative impact when estimating ∆ρ/ρ from band-limited reflectivities, in-
dicating the inadequacy of the dataset to produce a proper constraint to the right answer.
Hence, in future work, it is important to determine improvements for a better inversion of
this elastic parameter.
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