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ABSTRACT

Seismic data collected in field are mostly elastic data including body waves, surface
waves, and unwanted noises from various sources. Compared with acoustic FWI, noise
suppression or estimation in elastic engine are of more practical significance. Various types
of noise may exert different influences on the multi-parameter estimation in elastic FWI. In
this study, we analyzed the influence of random and correlated noises on the estimation of
model parameter V p, V s, and density. To mitigate the influence of the noises, we adopted
the modified FWI misfit, in which the data covariance matrix is incorporated, to invert for
the elastic model parameters while estimate the noises in seismic data. The data covariance
matrices calculated from the data residuals, which were obtained from a first round of
FWI, were generated and applied in an following iterative inversion. As the elastic FWI
was conducted in frequency domain, the dimension size of the data covariance matrix is
calculated by each frequency, and not likely to cause out-of-memory problem. Two types of
noises including random noises and correlated noises were added to the true spectra and
estimated in the modified FWI. The inversion results were compared with the results of the
conventional FWI with the same iteration number.

INTRODUCTION

Noise, which refers to any undesirable elements in the data, is commonly present in
seismic data. The undesired "noise" can be background noises or signals for other targets,
such as surface waves and multiple waves. They are usually excluded from the forward
simulation, and more frequently referred to as correlated noise, providing little information
about the subsurface. As noises have multiple sources and possess various features. In the
processing of seismic data, various types of noises are usually recognized and suppressed
individually based on their features so as to retain the maximum signals. Obvious noises with
distinctive features can be well suppressed, while some noises with insignificant features or
small magnitude may be ignored. In this study, we developed a method to estimate both
random and correlated noises in the seismic data regardless of their features. To date, this
study is mainly focused on the synthetic tests.

In synthetic simulations, to generate noisy data, we may need to add noises in time or
frequency domain. They should be equal as Fourier transform is a unitary transform. Since
Fourier transform is linear, the signal-to-noise (SNR) level in time domain and frequency
domain should be the same. To add noise directly in frequency domain, the noises should
be complex including real and imaginary parts. The real part and imaginary part can be
manipulated separately with the half variance of the total.

As the seismic data have different sensitivities with respect to various model parameters
V p, V s, and density, adding various noises to seismic data may cause influences on these
parameters to different degrees. For examples, S waves have larger amplitudes than P waves,
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thus adding the white noises to the seismic data may of different noise levels to them. P
waves have larger wavelengths than S waves, while the slope of former is smaller than the
latter one, thus, adding coherent noises which correlates along the time series may exert
interference of varying degrees. Through comparing with the inverted model with the true
model we can analyze the influence of these noises.

The covariance matrix characterizes the difference of each pair of elements of a provided
vector. It not only includes the variances on the diagonal but also contains the correlation
relationship between elements on the off-diagonal. As covariance matrix extends the
variance with an additional dimension, the calculation of misfit with covariance matrix
includes extra information of data residuals.

The least squares (L2) norm of the misfit between the observed and predicted data is the
most commonly used penalty function for FWI (Tarantola, 2005). In this misfit function,
the observing data, containing remnant noises after denoising, are treated as the true data.
During the iterations, penalty function is minimized to obtain subsurface model parameters
which contribute to the observing data. When the real data are seriously contaminated by
noises, that noise will tend to produce model artifacts, or false structures added to the model
in order to explain the noise. This has motivated us to include the noise estimation in FWI
by incorporating the data covariance matrix into the misfit function(Cai and Zelt, 2019). The
various types of remnant noises can be estimated through the data covariance matrix and
updated during the inversion. As implemented in frequency domain, the data covariance can
be calculated frequency by frequency. As long as the source number and receiver number
are not too large, the out-of-memory problem will not be likely to happen.

MODIFYING THE MISFIT FUNCTION TO INCLUDE DATA COVARIANCE

The methodology part is similar with the acoustic case, except that no Fourier transform
is needed.

In Bayesian inversion(e.g., Dettmer et al., 2007), the likelihood formulation includes
the data uncertainty distribution, which embodies both modeling errors and measurement
errors. In theory, the likelihood can be formulated and applied with arbitrary uncertainty
distributions. However, in practice, the error distribution is unknown in advance. Therefore,
a mathematically simple distribution (e.g., Gaussian) is usually assumed initially.

Different approaches can be adopted to estimate the covariance matrices. If the error
is assumed to be random, the data covariance matrix can be approximated as diagonal,
C−1

D = σ2I, where I is the identity matrix and σ is the standard deviation of the random
error. In this case, as σ is a scalar, the negative log likelihood is similar to the conventional
L2 norm misfit function. A more sophisticated approach, beyond assuming that the statistics
are simple, or known, is to analyze the data residuals to incorporate error correlations into
the inversion. The data covariance matrix is estimated from the data residuals in a first past
through FWI, assuming uncorrelated errors. The data covariance matrix can be estimated
from the autocovariance of the data residual after some fixed number of iterations:

cj =
1

N

N−j−1∑
k=0

(
dj+k

obs − d̄
) (

dk
obs − d̄

)
, (1)
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for the jth datum, where d̄ is the mean of the samples. As we do not have many observing
data samples, the synthetic data generated using the conventional FWI result were utilized
to approximate the sample mean. These values are arranged in the covariance matrix CD.
The FWI misfit function incorporating the data covariance matrix CD is

E =
1

2N

[
(dpre − dobs )T C−1

D (dpre − dobs )
]
, (2)

where N is the number of data, and dpre and dobs are the predicted and observing seismic
data, respectively.

For each frequency, the dimension pf covariance matrix is (Ns×Nr)2. In most cases,
this size is within the tolerance of the computer memory capacity.

Assuming the errors to be independent of model parameters, the gradient of the misfit
function with respect to the ith model parameter is

∂E(m)

∂mi

=
1

N

(
∂dpre

∂mi

)T

C−1
D (dpre − dobs) , (3)

where ∂dpre /∂mi is the Fréchet derivative, and we observe that the wavefield residuals
have been weighted by the data covariances before back propagation. Data residual regions
which, through the iterative estimation, appear to contain large errors, are in this calculation
down-weighted and contribute less to the inversion results.

FIG. 1. Noise-free synthetic data and noisy data. (a) True data (real part), (b) noisy data with a SNR
equals 20 (real part), (c) synthetic data of the inverted model (real part), (d) true data (imaginary
part), (e) noisy data with a SNR equals 20 (imaginary part), (f) synthetic data of the inverted model
(imaginary part).
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FIG. 2. True models and inverted model without noise. (a) true Vp , (b) true Vs, (c) true density, (d)
inverted Vp, (e) inverted Vs, (f) inverted density.

SYNTHETIC EXAMPLES

We first applied the algorithm described above to a toy model with two circle anomalies.
The model spatial interval is 10 m. For the first test, two source lines and two receiver lines
were evenly placed on the top and bottom of the model. In order to check how the noises
can affect the inversion results, we added Gaussian distributed random noises with the SNR
equals to 10 dB, 20 dB, 30 dB, respectively, to the noise-free complex spectra in frequency
domain shown in Fig.1. The noise-free inversion results were shown in Fig.2 for reference.
The initial models were the background model without velocity anomalies. The inverted
models of noisy data after 20 iterations with truncated newton inversion method were shown
in the Fig.3.

From our inversion results, we found with different scaled random noises, the imaging
quality of accuracy of inverted model parameters were influenced. When the SNR is equal
to or smaller than 20 dB (Fig.2d-f), there are obvious artifacts in the inverted models. When
the SNR is equal to 10 dB, the outline of the circle anomalies is not clear. The imaging
quality is seriously influenced by the noises in data. From the comparison with the noise-free
inversion results (Fig.2), these figures (Fig.3) illustrate the random noises in large magnitude
have impacts on the accuracy of inversion results.

In the test above, we found the geometry of the acquisition is a bit ideal. Therefore, we
reduced the model size, and only adopted the surface excitation and reception geometry
in the following tests. We added the random noises with SNR equals to 16 dB to the
data simulated from the new model shown in Fig.4 a-c. The true synthetic data and noisy
data are shown in Fig.5. In Fig.4, d-f are inverted models of the noise-free data after 20
iterations using the truncated newton method, and g-i figures are inverted models of the
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FIG. 3. Inversion results of seismic data with SNR equals to 10 dB, 20 dB, 30 dB. (a) inverted Vp
with SNR equals 10 dB, (b) inverted Vs with SNR equals 10 dB, (c) inverted density with SNR equals
10 dB, (d) inverted Vp with SNR equals 20 dB, (e) inverted Vs with SNR equals 20 dB, (f) inverted
density with SNR equals 20 dB, (g) inverted Vp with SNR equals 30 dB, (h) inverted Vs with SNR
equals 30 dB, (i) inverted density with SNR equals 30 dB.

noisy data after 20 iterations. In d-f figures, we found the inverted models are close to the
true models, though slight cross-talk artifacts exist. By contrast, in g-i figures, there are
more ripple-shaped artifacts in the background and Mosaic-like artifacts at the top boundary.
It is conceivable to obtain these results with the mottled noisy data in Fig.5 b and e. Besides,
we can find the density inversion result is not as good as the Vp and Vs both with or without
noises. We generated the synthetic data using the inverted model in Fig.4 g-i. The obtained
spectra are displayed in Fig.5 c and f. The synthetic spectra are similar with the true spectra
in figures a and d.

Based on the inversion results above, we implemented the second time FWI with the
modified misfit function. The first step is to calculate the data covariance matrix which
would be incorporated in the penalty for the first iteration of the second FWI. This matrix is
estimated using the data residual of the first FWI. The histogram distribution of the real and
imaginary part of the data residual were plotted in Fig.6 a and b. The Kstest results for both
real and imaginary part residuals are equal to one, which means the data residuals follow
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FIG. 4. True models and inverted models. (a) True Vp, (b) true Vs, (c) true density, (d) inverted
Vp of noise-free data, (e) inverted Vs of noise-free data, (f) inverted density of noise-free data, (g)
inverted Vp of noisy data with SNR equals 16 dB, (h) inverted Vs of noisy data with SNR equals
16 dB, (i)inverted density of noisy data with SNR equals 16 dB.

FIG. 5. The spectra of true data, noisy data, and synthetic data. (a) True spectra of the real part, (b)
noisy spectra of the real part, (c) synthetic spectra of the real part generated by the inverted model,
(d) true spectra of the imaginary part, (e) noisy spectra of the imaginary part, (f) synthetic spectra of
the imaginary part generated by the inverted model.
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Gaussian distribution as what we defined. Then, the data residuals were auto-covarianced
and toeplitzed to generate the covariance matrix. From the autocovariance (Fig.6 c), we can
find the diagonal line has a large value while the values of other points are close to zero.
This also further proves the data residuals are mainly independent Gaussian noises.

FIG. 6. The histogram and autocovariance of data residuals. (a) Histogram of real part data residual
, (b) histogram of imaginary part data residual, (c) autocovariance of the data residual in real.

FIG. 7. The covariance matrices of 32 frequency bands. (a) to (f) are the matrices of the first 6
bands.
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As the elastic FWI were conducted in frequency domain, the misfit were calculated each
frequency by each frequency with a total number of 32. Thus, 32 data covariance matrices
were generated, as shown in Fig.7. The non-diagonal values in the matrices are close to
zero.

FIG. 8. Inversion results. (a) Inverted Vp model of the first FWI, (b) Inverted Vs model of the first
FWI, (c) Inverted density model of the first model, (d) the misfit change of the first FWI, (e) inverted
Vp model of the conventional FWI using 40 iterations, (f) inverted Vs model of the conventional FWI
using 40 iterations, (g) inverted density model of the conventional FWI using 40 iterations, (h) the
misfit change of the conventional FWI with 40 iterations, (i) inverted Vp model of the second FWI
with the modified misfit, (j) inverted Vs model of the second FWI with the modified misfit, (k) inverted
density model of the second FWI with the modified misfit, (l) the misfit change of the second FWI
with modified misfit.

Then, we conducted the second FWI with the modified misfit function for 20 iterations
and compared the results with conventional method using totally 40 iterations. The inversion
results are displayed in Fig.8. The first row are the first-time conventional FWI results, the
second row are the conventional FWI results using totally 40 iterations, and the third row
are the second FWI results using modified misfit. From the comparison of the first two rows,
we found though with more iterations, the results of 40 iterations seem no better than the
results of 20 iterations. More rippled artifacts appear in the background model, especially in
the inverted density model. When compare the third row with the first two rows, the results
of the new method are better than the first FWI results or conventional method results after
the same iteration number. The improvements are mainly reflected by the clear outline of
anomalies of less artifacts in the background model.

Next, we added a more complex type of noise onto the synthetic data, which is a
combination of random noise with correlated noise. Correlated data error was generated by
multiplying an Gaussian random array with the Cholesky decomposition of a constructed
data error covariance matrix with non-zero decaying off-diagonal terms. We combined
another random noise with this correlated noise to obtain the complex noise. The generated
noisy data spectra were plotted in Fig.9(b) and (e). Their differences compared with the true
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FIG. 9. The spectra of true data, noisy data, and synthetic data. (a) True spectra of the real part, (b)
noisy spectra of the real part, (c) synthetic spectra of the real part generated by the inverted model,
(d) true spectra of the imaginary part, (e) noisy spectra of the imaginary part, (f) synthetic spectra of
the imaginary part generated by the inverted model.

spectra can be observed from the edges and top faces of the cubes.

FIG. 10. Histogram of data residuals and covariance matrix. (a) histogram of the real part data
residual, (b) histogram of the imaginary part data residual, (c) autocovariance of the data residual,
(d) the toeplitzed data covariance matrix.

Next we estimated the data covariance matrices using the same procedure above. From
the histogram of data residuals in real and imaginary (Fig.10 a and b), we can find the data
residuals do not follow a Gaussian random distribution. In the autocovariance figure (Fig.10
c), there are some small spikes in both sides, which are non-zero. This means the values
at different points in the data residuals are correlated to some degree, which can also be
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reflected by the non-zero values of the non-diagonal points in the covariance matrix (Fig.10
d).

FIG. 11. Inversion results. (a) Inverted Vp model of the first FWI, (b) Inverted Vs model of the first
FWI, (c) Inverted density model of the first model, (d) the misfit change of the first FWI, (e) inverted
Vp model of the conventional FWI using 40 iterations, (f) inverted Vs model of the conventional FWI
using 40 iterations, (g) inverted density model of the conventional FWI using 40 iterations, (h) the
misfit change of the conventional FWI with 40 iterations, (i) inverted Vp model of the second FWI
with the modified misfit, (j) inverted Vs model of the second FWI with the modified misfit, (k) inverted
density model of the second FWI with the modified misfit, (l) the misfit change of the second FWI
with modified misfit.

The inversion results are shown in Fig.11. As explained for Fig.8, the first row are the
first-time conventional FWI results, the second row are the conventional FWI results using
totally 40 iterations, and the third row are the second FWI results using modified misfit.
Same as above, the results after 40 iterations seem have more artifacts than results after
20 iterations. The results of the modified FWI results have less artifacts than the results of
conventional method.

Comparing the spectra cubes of the synthetic data generated from the first FWI and
modified FWI, it is hard to observe the difference with naked eyes. Therefore, these figure
are not shown here. From the inversion results comparison above, improvements in imaging
have been found already.

CONCLUSIONS

In this study, we develop a new methodology to deal with the remnant noises especially
the correlated noise in seismic data. This is implemented through incorporating the data
covariance matrix, which is estimated from a conventional FWI result, into the misfit
function. Based on the experiments, we found the random noises in large scale have impacts
on the accuracy of inversion results. Generally, seismic data with random noises are more
resistant to the influence of noises than the seismic data with correlated noises. Through
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estimating the noises using the data covariance matrix, difference types of errors can be well
estimated and suppressed in the signal during inversion. Compared with the conventional
method, the new methods yield better imaging with less artifacts.

DISCUSSION

As this method is targeted for solving problems in real condition, an extension to real
data applications are required. The covariance matrix is large in size. Some sparsification
methods can be adopted to reduce the storage demand. Another issue we have been
concerned is the local minimum problem. With the incorporation of the data covariance
matrix, the points with large data residual values will be down-weighted in the following
iterations. The differences between the seismic data generated by true model and inverted
model will be diminished. This means the inversion is more likely to converge to the
previous model. When trapped in a region, it has smaller possibility to jump out of the local
minimum. A global optimization method may mitigate this problem to some extent, but for
a gradient based inversion method like the truncated newton, this can be a problem. This can
also be discussed from another respective. For the first time FWI, the inverted models are not
exactly true models, and the data residuals are not exactly noises. The second time FWI with
modified misfit functions in essence diminished the contribution of the data residuals rather
than true noises, this may lead to erroneous inverted models due to solution nonuniqueness.
Therefore, it is necessary to figure out solutions to deal with the local minimum problem of
this method.
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