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ABSTRACT

Diagnostic Fracture Injection Tests (DFIT), are commonly used to derive key parame-
ters and other parameters for hydraulic fracture design and modeling. Although this process
can identify properties needed for well optimization, it is also time intensive and affected
by human interpretation bias. In this report, we address this adversity by applying unsu-
pervised clustering methods: K-Means, DB-Scan, Hierarchical modeling, and Gaussian
mixture models to identify point density variation that correlates to key parameters on a
DFIT curve. A R-Studio Shiny Web App® is developed to apply these methods and provide
a user-friendly platform for adjusting input variables and hyperparameters. Exploring the
clustering approach emphasizes the importance of different variable combinations as well
as noise considerations when interpreting a DFIT curve with clustering methods. Principle
Component Analysis (PCA) further demonstrates why clusters occur where they do along a
DFIT curve. Unsupervised clustering applied to DFIT data achieves an unbiased and quick
workflow for event identification that can be scalable to large datasets.

INTRODUCTION

To ensure successful and economic development of low permeability, hydrocarbon bar-
ing organic-rich shales, a fracture stimulation design must be implemented to effectively
liberate the hydrocarbons and optimize drilling programs. The process of designing and
modeling a fracture program is a computationally intensive and iterative process that re-
quires the estimation of multiple geologic and mechanical properties. These include per-
meability, formation pressure, fracture half-length, minimum horizontal stress (Shmin),
instantaneous shut-in pressure (ISIP), breakdown pressure, fracture extension pressure,
reservoir permeability, and fluid content (Clarkson et al., 2012). Although some of these
parameters can be directly measured from core samples, many studies have identified the
challenges of replicating in-situ conditions to produce accurate results (Clarkson et al.,
2012; Venieri et al., 2020). To address this challenge, innovative technologies such as
DFITs have been designed to measure key parameters such as ISIP, Shmin, and reservoir
pressure in the borehole of a well (Jung et al., 2016). This is achieved by injecting a small
volume of fluids into the target formation to create a hydraulic fracture. By measuring the
downhole or surface pressure change over time (pressure-time series) and observing the
pressure decline after the hydraulic fracture is created these key parameters can be derived
(Figure 1).
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FIG. 1. ResFrac® history matched pressure falloff data obtained from simulation of a DFIT per-
formed in the 31-layer Duvernay Formation model. Interpreted events along the curve are super-
imposed and color coded. Approximations of the Sh-min are made using both the compliance
(McClure et al., 2016) and tangent line method (Barree et al., 2009).

Inspection of Figure 1 reveals that the interpretation of these key parameters directly
from a pressure decline curve is non-trivial. Current methods of visualizing these hidden
non-linear property relationships involve manual interpretation of derivative curves such
as G-function, Bourdet derivatives, first-order derivatives, and Agarwal time (Zanganeh
et al., 2018; Liu and Ehlig-Economides, 2018). The analytical nature of these methods
has the unintended result of introducing human bias and error, coupled with the time-
consuming prospect of defining these interpretations for multiple DFIT curves that exist
for large datasets. This provides the opportunity to test and evaluate the ability of machine
learning methods to resolve such adversities.

Despite the recent rise in machine learning applications to large datasets, little litera-
ture exists applying these methods for DFIT curve interpretation. Instead, current studies
address interpolating missing DFIT pseudoradial flow data using Gradient Boosting (GB)
and Random Forest (RF) regression methods (Mohamed et al., 2020) and the integration
of real-time well stimulation datasets (injected proppant volumes, downhole pressures, and
microseismic events) to identify stimulation related events using CNN, Autoencoders (AE)
and Support Vector Regression (SVR) (Shen et al., 2020; Alatrach et al., 2020; Wang and
Chen, 2019). This study aims to fill this gap and develop a workflow to identify reservoir
parameters ISIP, Shmin, and reservoir pressure) from DFIT’s with the aid of unsupervised
clustering algorithms: K-Means, DB-Scan, Hierarchical modeling, and Gaussian mixture
models. The application of this method intends to speed up interpretation times for datasets
consisting of many DFIT curves and to eliminate human bias. Implementation and visual-
ization of these clustering methods are complemented by the development of the CREWES
DFIT Clustering App using Shiny Web Apps from Rstudio.
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Methods

This study evaluates the ability of unsupervised clustering methods K-Means (Mac-
Queen, 1967), DB-Scan (Ester et al., 1996), Hierarchical modeling (Ward, 1963), and
Gaussian mixture models (Redner and Walker, 1984) to identify key parameters: ISIP,
Shmin, and reservoir pressure in multivariate data. K-Means was selected as the baseline
method for defining hyper-parameters; DB-scan is tested for handling noisy data; Hierar-
chical modeling offers cluster visualizations for hyper-parameter selection, and Gaussian
mixture models offers the ability to fit model shape distributions in the form of probabilities.

The choice of applying unsupervised learning methods was influenced by its ability
to eliminate bias that might otherwise exist in training datasets for supervised learning
methods. Mathematically, it is hypothesized that the clustering algorithms will be purely
segmenting the pressure decline curves based on the density of point distributions along
original and derivative of pressure decline curves. The observations of these clusters will
later allow for mathematical inferences to be made about why the clusters appear where they
do. This approach follows a similar concept to the study by Ippolito et al. (2021) where
well log facies identification is performed using unsupervised learning in conjunction with
supervised learning to reduce bias. Although supervised learning will not be applied in this
study, the developed method could be used to create training datasets for supervised learn-
ing applications. The application of unsupervised clustering methods also recreates a real
life scenario where catalogues of events may be incomplete, or inaccurate making super-
vised learning unfeasible. Other studies by Li et al. (2021) use clustering more generally to
identify anomalies in multivariate datasets. This idea closely parallels this study’s method
of identifying key-parameters ("anomalies") in a multivariate set of DFIT and pressure and
pressure derivative curves.

To evaluate this method, three DFIT curves were clustered and compared to results
from manual interpretation. These curves include history matched pressure decline models
generated from a "simple" 3-layer Duvernay system, and a "complex" 31-layer Duver-
nay system. ResFrac® simulator was used to generate synthetic pump-in/shut-in response.
ResFrac® is a fully coupled hydraulic fracturing, reservoir and wellbore simulator that
models rigorously the key physical process involved in DFITs. The detail of ResFrac®

conceptual model and numerical approach is described in McClure et al. (2021) . The use
of modeled curves allows for key parameters (ISIP, Shmin, and reservoir pressure) to be
known as simulation inputs eliminating any interpretation bias. Field data from a DFIT ac-
quired in the Duvernay near Fox Creek, Alberta, Canada is lastly tested using the optimized
hyperparameters from the model cases. In this example, key parameters are manually in-
terpreted from the field DFIT in time (t), G-time, Agarwal time domains as well as their
corresponding derivatives. Downsampling of this data was required to speed computation
times in the clustering app.

Variables used for interpretation and multivariate analysis in the clustering application
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are displayed in a correlation matrix in Figure 2. In this figure, there are fourteen time-
dependent variables that can be interpreted to derive key parameters. To decrease noise
effects, the Bourdet derivative (Duong, 1989) was applied to curves as a way of smooth-
ing the data, this is indicated by a "B" in Figure 2. The compliance method (McClure
et al., 2016) and tangent methods (Barree et al., 2009) are both used for the estimation of
Shmin outputting pressures of Pcontact and Pclosure respectively for the field DFIT. Manual
interpretation workflows used in this study can be found in publications Zanganeh et al.
(2018); McClure et al. (2016). Collectively, ISIP, Pcontact, Pclosure, and Preservoir are the
four events that were compared from model/interpretation results to unsupervised cluster-
ing results. Both Pcontact and Pclosure are included to determine which value is picked most
consistently by cluster boundaries in the clustering app. To handle the different scales of
measurement (Figure 2) scaling was applied before input into clustering algorithms to avoid
any data bias.

CREWES DFIT Clustering App

The developed CREWES DFIT Clustering App addresses the challenge of visualizing
fourteen-dimensional data (Figure 2) with the application of unsupervised clustering and
Principle Component Analysis (PCA). To develop the CREWES DFIT Clustering App R-
Studio® programming software was used. R-Studio® offers the ability to design and create
interactive web apps (Shiny web app) for data manipulation and visualization. The benefits
of creating and using the Shiny web app include:

(1) Time saved: Eliminate the need for a user to run multiple sections of code to gen-
erate multiple plots for multiple clustering analysis types.

(2) Reactive variables: User can quickly manipulate hyperparameters for data fit.

(3) Intuitive display: Back-end code runs without the user requiring extensive knowledge
of programming.

Figure 3 displays a screen capture of this developed app. Additional features such as
elbow plots and tree diagrams are also included as visualizations within the app to aid in
hyperparameter definition (Figure 3). Evaluation of the performance of the multiple clus-
tering outputs is achieved by defining measurements of:

(1) Average number of events identified out of the 4 total events (varied hyperparame-
ters).

(2) Average number of unclassified points along curve (varied hyperparameters).

(3) Average repeatability of classified points for varied hyper parameters (varied hyper-
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FIG. 2. Correlation matrix of all variables that can be derived from a pressure vs time DFIT mea-
surement. The main diagonal corresponds to a variable correlated to itself, therefore, correlation is
1 (positive correlation large blue circle). Outside of the diagonal, correlations are displayed between
different variables; red circles indicate negative correlation. The bottom left corner of the matrix has
been eliminated due to its symmetry.

parameters).

PCA analysis is then used in the app to explore why cluster boundaries appear where
they do (Figure 3). In this study, the cluster boundaries are defined as the event locations
along the curve.

Results

Using the "simple" and "complex" Duvernay models, optimal hyperparameters and
variable combinations were tested to fit DFIT events representing key pressure data. The
iterative process also allowed for inferences to be made about the relative importance of
variables and their overall contribution to clustered events. This is displayed as a PCA cir-
cle in Figure 4. In this figure, DFIT pressure vs log (time) curve for the "complex" model
is clustered using variables groups identified by the PCA correlation circle.

Following variable analysis, elbow plots and visual inspection is used to determine op-
timal hyperparameters for each clustering method. Applying the three measures of perfor-
mance allows for this optimization to be quantified. Optimization results for each clustering
method are displayed in Table 2. Using these clustering parameters, the three measures of
performance can be further used to determine the best clustering method out of the four
methods tested (Figure 5). These measures of performance are compared for the three
DFIT model datasets in this study (Figure 5).
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FIG. 3. Screen capture of the interactive CREWES DFIT Clustering App with its various analytical
features highlighted.

The combination of the optimized variables, hyperparameters, and clustering method
that produced cluster boundaries correlated to key parameter events displayed in Figure 6
for the "simple," "complex" and raw Field Duvernay DFIT curves respectively. On these
plots, the percent difference from the true/interpreted value is also displayed.

Following the identification of optimal clustering variables, hyperparameters, and clus-
tering methods, the mathematics of why clusters appear where they do is explored by ex-
amining PCA plots of fourteen-dimensions reduced to three (Figure 7 ).

Table 1. Optimized Clustering Hyperparameters

Clustering method Parameters
K-means 6-clusters

DB-scan Minimum points = 10, Search radius = 0.1

Hierarchical Clustering Ward-D, 6-clusters

Gaussian mixture model VEE (Ellipsoidal, equal shape and orientation) 6-clusters
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FIG. 4. Results of testing different variable clustering for K-means using the 31-layer DFIT Duvernay
model. Subsets for variable testing were determined using the PCA correlation circle (center) where
clusters of variables correspond to high correlation. The axes on this plot are labeled Dim 1 and
Dim 2 representing dimensions that capture 41% and 28% of the variation in the data respectively.
Variables outside of clusters indicate an increasing negative correlation. Using this information, plot
A shows an example where only G-time derivatives are used as inputs of the clustering algorithm:
the outputs of the clustering are displayed on a pressure (PSI) vs log time with key events identified
and their corresponding error relative to the model inputs. Plot B shows the a simular plot using
Time, G-time, and Argarwal time derivatives. Plot C illustrates the use of the with only time derivate
input for this purpose. Plot D shows the result of using all variables in the clustering algorithm.
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FIG. 5. The cluster performance matrix compares the three designed metrics of evaluation to
selected clustering type. Bar plots for each dataset tested are colour coded, blue = "simple" model
DIFT, orange = "complex" model DFIT, green = Field DFIT.
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FIG. 6. Results of applying optimal variable combination, hyperparamters, and clustering method to
each of the three datasets in this study. Percent error is indicated on each plot to quantify difference
from true/interpreted values.
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FIG. 7. Three-dimensional principle component plot used to understand distribution of clusters
created from DFIT data. This case shows the "complex" DFIT model with its associated identified
events using the K-means algorithm. This figure includes different perspectives of the data to
understand variation.

Discussion

This new workflow using Rstudio Shiny Web Apps® has helped us understand and eval-
uate the feasibility of using unsupervised clustering methods to interpret events on a DFIT
pressure decay curve that can be used to derive key parameters. To achieve this, variable
contributions from derivative curves were first explored using a PCA correlation circle. In
Figure 4, it appears that reducing the original and derivative data into two dimensions (Dim
1 and Dim 2) has created natural clusters of correlation. To further explore these clusters
of correlation, the clustering algorithm, K-means, was run using only the variables within
each cluster. Plot A shows that clustering of only G-time derivatives has resulted in events
ISIP (highest relative error), contact and closure event identification. Plot B illustrates that
an accurate ISIP, and lower accuracy closure and reservoir pressure estimates, can be ob-
tained when clustering is performed using Time, G-time, and Agarwal time derivatives.
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Using time derivatives results in reservoir pressure being the only event identified in plot
C. Collectively, these clusters of correlation appear to extract pressure information from
different segments of the curve. The G-time events appear to give accurate contact and clo-
sure approximations (early time variables). This differs from the Time, G-time, Agarwal
time correlation circle which results in accurate values for ISIP and reservoir pressure are
now output. These clusters of variables will be referred to as the late/early time variables
based on this distribution. Lastly, the time derivative cluster appears to correlate with only
the late-time variable reservoir pressure (late-time variables).

Collectively, each variable cluster in the PCA plot appears to tell us different informa-
tion for early and late time segments along a DFIT curve. Most notably, the early time
variables (G-time derivatives) exist on the opposite side of the PCA correlation circle from
the late time variables (Time derivatives) suggesting that these clusters of negatively corre-
lated. This interpretation is supported by no event overlap existing in plots A and C. Plot
B contains information from both the early and late time stages of the DFIT. Therefore, its
cluster of variables has some correlation to the pure late and early time variables displayed
in the correlation circle of Figure 4 lying orthogonal to these clusters. This may imply
that depending on the events required from the clustering algorithm, different selections of
variables can optimize output results for early/late time DFIT events. For the purpose of
this study, a generalized approach was taken whereby all clusters of variables are merged
to produce a holistic interpretation of the DFIT curve. This is displayed in plot D of Figure
4. In this plot, it appears that an averaging of the components of each variable cluster has
created a holistic interpretation. This plot identifies ISIP with improved accuracy compared
to plots A and C, improved closure pressure, compared to plots B and C, and a reservoir
pressure that was non-existent in plot A.

The collective 14-variable approach then allows for cluster hyperparameters to be opti-
mized. Manually testing parameters leads to the optimizations displayed in Table 2. Gen-
erally, 6-clusters for K-means, Hierarchical, and Gaussian clustering methods appear to fit
the data best.

Following the optimization of variable inputs and hyperparameters, clustering methods
are quantitatively compared using the three parameters of evaluation in the form of a clus-
ter performance matrix (Figure 5). Using the "simple" model, DB scan appears to have
identified the highest percentage of events, while having the lowest average percentage of
noise points and highest repeatability with hyperparameters variation. This trend appears
to shift as the model becomes more complex. For the complex Duvernay model, DB scan
seems to retain high event identification and repeatability, however, the quality of value
uniqueness is significantly reduced by the number of unidentified points that appear in the
result (12). Compared to other methods, Hierarchical clustering has improved metrics for
all three measures of performance, and the Gaussian-based method appears to have opti-
mal performance with the highest average percentage of events identified and repeatability.
Analysis of the field data has also revealed the Gaussian mixture model method as the top
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performer. In the field case, the quality of the DB scan method appears to have degraded in
quality while the K-means method has improved. It is important to note that Figure 5 shows
the averages of multiple iterations of the clustering algorithms with varied hyperparame-
ters to quantify the algorithm’s ability to handle deviations from optimal hyperparameters
(repeatability). Individual tests with optimized variable input, hyperparameters, and clus-
tering method were found to output 75 -100% identification. The differentiator between
these percentages is merely dependent on if the length of recorded data is long enough to
extract reservoir pressures. This applies to the field test case.

DB-scan clustering methods appear to produce optimal results when the DFIT is "sim-
ple" and degrade as complexities are introduced. This is illustrated in Figure 6 where the
application of DB-scan to the complex model (plot B) has resulted in more noise clusters
being identified, degrading the uniqueness of key parameter event detection on the curve.
DB-scan applied to the simple model appears to have identified accurate ISIP and con-
tact events in Figure 6A, with little noise, while other events appear to be missed. This is
explained by the lower apparent sampling of the simple model data creating sparse point
density displayed in Figure 6A. Perhaps the sampling interval has affected the accuracy of
the clustering methods and this may be a subject of future study.

For the field test, (Figure 6C) we see that the Gaussian method appears to have identified
ISIP, contact, and closure pressures with only two unidentified cluster boundaries that exist
between the contact and closure pressures. These boundaries may be indicative of a more
accurate Shmin estimate highlighting another area of future study. In this case, the field
data were not collected for a long enough time to accurately identify a reservoir pressure,
therefore, no interpretation exists in these plots. Overall we see that Gaussian clustering
methods appear to handle noisy data better than DB-scan. This may be explained by the
ability to fit probability distributions to the data that better handle noise. Future experiments
may consist of filtering the DFIT data to see if this will improve clustering results.

There still remains the question as to why these clusters appear where they do. Inspec-
tion of Figure 6 does note conclusively show why these clusters occur. This question can
be addressed when observing three-dimensional PCA plots for the complex model with
K-means applied (Figure 7). In this figure, events appear to correlate with inflections in
data trend (see ISIP and closure in original and first magnification of PCA) and frequency
variation in data (see the largest magnification). This implies that a combination of dimen-
sionality and frequency changes in the data affect point density and cluster distribution.
It is hypothesized that the input of these manual interpretation derivative curves into the
clustering algorithms has allowed for these changes to be identified that line up with DFIT
parameter events.

12 CREWES Research Report — Volume 33 (2021)



Unsupervised DFIT Event Detection

CONCLUSIONS

Successful development of unconventional hydrocarbon reservoirs is dependent on de-
signing and modeling an effective stimulation program. This typically requires estimation
of critical parameters ISIP, Shmin, and reservoir pressure via manual interpretation meth-
ods using DFIT pressure falloff data. Although this process may produce values for stimu-
lation modeling, it is time-consuming and can be affected by human interpretational bias.
To address this adversity, a new method of applying unsupervised clustering methods in the
CREWES DFIT Clustering App was developed. This app allowed for quick visualization
and manipulation of clustering variables and hyperparameters to find the best fit interpre-
tation for three sets of DFIT pressure falloff data. Clustering calibration results found that
different variable inputs into the clustering algorithm result in different events being iden-
tified along the DFIT curve. These were classified and early and late time variables. For
a generalized interpretation of the DFIT curve, the variable clusters are merged to identify
late and early events that occur along the curve.

Optimized results suggested that the DB-scan method can accurately define event bound-
aries on the "simple" DFIT models, however, the introduction of geologic complexity and
noise degrades the result as more unclassified clusters appear in the interpretation. This is
where the Gaussian mixture method appears to handle noise variations with improved accu-
racy for the "complex" and field DFIT tests. It is hypothesized that the ability to change the
shape of the probability distribution fitting the data in this method has addressed any noise
contamination and effects of geologic complexity. Future studies will focus on eliminating
this noise with filters.

Understanding why clusters occur where they do is achieved by using PCA to reduce the
fourteen-dimensional data down to three dimensions. This process revealed that clusters
boundaries occur at inflection points (changes in dimensionality) and frequency variation
in the data correlates to a variation in point density.

The CREWES DFIT Clustering App offers the ability to quickly interpret and reduce
bias in DFIT-derived parameter estimates. Future studies will be directed toward using
this method to create training data for supervised learning methods for automated event
identification.
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APPENDIX

Table 2. List of nomenclature
Parameter Description

ISIP Instantaneous Shut In Pressure

Shmin Minimum horizontal stress

Pclosure Minimum horizontal stress
estimation using tangent-line method (Barree et al., 2009)

Pcontact Minimum horizontal stress estimation
using compliance method (McClure et al., 2016)

Preservoir Reservoir pressure
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