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ABSTRACT

Elastic full-waveform inversion is an ill-posed data-fitting procedure that is sensitive
to noise, inaccuracies of the starting model, the definition of multi-parameter classes, and
inaccurate modeling of wave fields amplitudes. The objective function measures the dif-
ference between the synthetic data and observed data, which plays an essential role in the
convergence property of the elastic wave equation. In this study, we investigate the behav-
ior of the `2, `1 norm and the correlation-based objective function in FWI, and show the
sensitivity of these objective functions with respect to VP, VS, and density. The objective
functions show that all three objective functions show strong non-linearity with the VS pa-
rameter, which means the inversion is relatively harder to invert compared with the other
two parameters since it contains a lot of local minimums. We also developed an objec-
tive function based on the multi-scale Z transform. The multi-scale Z transform objective
function could release the non-linearity of the objective function since the low frequency
information of the objective function is first extracted. Thus, the adjoint source contains
low frequency information, which helps to build the larger-scale information of the velocity
model.

INTRODUCTION

FWI potentially provides high-resolution models of the subsurface, but it suffers from
two main difficulties. However, the ill-posedness and the non-linearity of the inverse
problem is one of the most important issues faced with full waveform inversion. The
ill-posedness of FWI mainly arises from the lack of low frequencies in the source band-
width and the incomplete illumination of the subsurface provided by conventional seismic
surveys (Brossier et al., 2010). Thus, FWI is highly nonlinear, and the results strongly
depend on the accuracy of the starting model in the framework of local optimization and
on the presence of noise. Several hierarchical multi-scale strategies that proceed from low
frequencies to higher frequencies have been proposed to mitigate the non-linearity of the
inverse problem. Bunks et al. (1995) apply the multi-grid method to a subsampled, low
frequency version of the Marmousi data set. Sirgue and Pratt (2004) have defined a strat-
egy for selecting temporal frequencies for efficient prestack imaging. Brossier et al. (2009)
suggests that simultaneous inversion of multiple frequencies is critical when considering
complex wave phenomena. Wu et al. (2014) recognized that the envelope fluctuation and
decay of seismic records carries ultra low-frequency (i.e., the frequency below the lowest
frequency in the source spectrum) signals that can be used to estimate the long-wavelength
velocity structure. We then developed envelope inversion for the recovery of low wave-
number components of media (smooth background), so that the initial model dependence
of waveform inversion can be reduced.

The study of the objective functions for FWI could help us to understand the non-
linearity of FWI. The least-squares objective function remains the most commonly used
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criterion in FWI, although it theoretically suffers from poor robustness in the presence of
large isolated and non-Gaussian errors Brossier et al. (2009). The `1 norm is not based on
the Gaussian statistics in data space, and it was first introduced in the time domain with
Tarantola (2005). Djikpéssé and Tarantola (1999) used the `1 norm to successfully invert
the field data in the Gulf of Mexico. Pyun et al. (2009) use the `1 norm on the real and
imaginary part of the frequency domain components and achieve promising results. Huber
norm (Huber, 1973) or the hybrid `2 and `1 norm combines the advantages of the `1 and
`2 norm to release the non-linearity of the objective function. The small residuals would
be updated according to the `2 norm, and the large residuals would be updated with the `1
norm. Therefore, the hybrid objective function has the ability to tolerate the outliers noise
in data.

The phase information contains the kinematics property of wave propagation. Thus it
has great potential to be used in FWI. The cycle skipping problem could be explained from
the phase aspects of the wave fields. The phase of the Fourier-transformed wave field, or
what is referred to as the principal value of phase (PVP), has a finite but periodic range [-
π, π] thus phase of the modeled data could converge to the wrong phase corresponding to a
different cycle in the procedure of waveform inversion, which makes the inversion converge
to a local minimum. Thus, the utilization of the phase in the objective function also raises
the interest of the researchers. Liu et al. (2017), introduced the full waveform inversion
with normalized zero-lag cross-correlation objective function to relax on the amplitude
constraints and emphasizes the phase information when measuring the closeness between
the simulated and observed data. This FWI method becomes insensitive to differences in
amplitude. They test the effectiveness and robustness of FWI with the normalized zero-lag
cross-correlation function against the noise and unpredictable amplitude of the data that
cannot be modeled by the wave fields extrapolation operator. The direct utilization of using
the phase in the objective function suffers from the phase wrapping problem, which limits
its applications. Some approaches have been proposed to overcome this problem. Choi
and Alkhalifah (2015) introduced the instantaneous travel time in the inversion, which is
obtained from the phase derivative with respect to the angular frequency. Shah et al. (2012)
proposed the phase-unwrapped full waveform inversion (FWI) methodology for applying
the technique to seismic data directly from a poor or simple starting model in an automated,
robust manner.

In this report, we first take a brief review of the objective functions and their adjoint
sources. We review the `2, `1 and correlation-based objective functions. We discuss how
these objective functions react to the variation of VP, VS, and density in velocity param-
eterization. The contour plot of the objective functions demonstrates the non-linearity of
these objective functions and shows the local minimums of the objective functions. We also
show that the variation of VS parameter would cause severe non-linearity of the objective
function, which could make VS hard to invert and converge. We also design a multi-scale
Z transform objective functions, which measures the different damping properties in the
shotrecords with a scale factor z, which makes the inversion to invert different waveform
components in the shot records, for instance, from surface waves to reflection waves. The
contour plot of the multi-scale Z transform objective functions is much smoother than the
other three objective functions and has few local minimums. We also do the frequency
analysis of the adjoint sources for the multi-scale Z transform objective function. It shows
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that its adjoint sources have abundant low frequency information, which could help the in-
version to build large-scale information of the velocity model and reduce the non-linearity
of the inversion.

Least-squares norm

The Least-squares norm is often referred as the `2 norm. The `2 norm objective function
is one of the most commonly used objective functions in FWI and is expressed as:

E(m)`2 =
1

2
||dcal(r, t,m)− dobs(r, t)||2 (1)

The dcal(r, t,m) is the synthetic data which is recorded on receiver r, at time t and is
parameterized with parameter m. dobs(r, t) is the observed data recorded on receiver r, at
time t. E(m) is the objective function that parameterized with m. Differentiating E(m)
with respect to the model parameters gives the adjoint sourceX`2 = dcal(r, t,m)−dobs(r, t).
We could use this adjoint source to calculate the back-propagation and generating the back-
propagation wave fields. Gradients for the parameters could be gained with:

∂E(m)

∂m
=
∑
r

∫
t

∂dobs(r, t,m)

∂m
X`2 dt (2)

, where the ∂dobs(r,t,m)
∂m

is the Fréchet derivative of synthetic data with respect to the param-
eter m In 2, the dcal(r, t,m) is the synthetic data and the dobs(r, t) is the observed data. m
is the model parameter.

Least-absolute norm

The least absolute norm is also referred as the `1 norm objective function, introduced
with (Tarantola, 2005; Crase et al., 1990) which can be expressed as:

E(m)`1 = ||dcal(r, t,m)− dobs(r, t)|| (3)

Equation 3 shows that the `1 norm is the absolute error between the synthetic data and the
observed data. The `1 norm is not analytically differentiable. However the adjoint source
of the `1 norm is:

X`1 =
dcal(r, t,m)− dobs(r, t)
||dcal(r, t,m)− dobs(r, t)||

(4)

Equation 4 can also be expressed with the use of sign function Tarantola, 2005. According
to Brossier et al. (2010) in `1 norm adjoint source, the data residuals are normalized accord-
ing to their amplitudes, which gives insight into why this is expected to be less sensitive to
large residuals.

Correlation-based objective function

The global correlation function can be expressed as:

E(m)GC = −
∑

r

∫
t
[dcal(r, t,m)dobs(r, t)] dt√∫

t
[dcal(r, t,m)]

2
dt
√∫

t
[dobs(r, t)]

2
dt

(5)
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From equation 5, we can see that the global correlation is defined by the zero-lag cross-
correlation of two normalized signals Choi and Alkhalifah (2012). One of the motivations
for introducing the correlation-based objective function is to match more phase information
into the inversion. Since solely matching the amplitude could have the problem of trapping
into the cycle skipping problem. Equation 6 shows the adjoint source of the global correla-
tion objective function.

XGC =

∫
t
[dcal(r, t,m)][dobs(r, t)] dtdcal(r, t,m)√∫
t
[dcal(r, t,m)]

2
dt

3√∫
t
[dobs(r, t)]

2
dt

− dobs(r, t)√∫
t
[dcal(r, t,m)]

2
dt
√∫

t
[dobs(r, t)]

2
dt

(6)

Another correlation based objective functions is the zero mean global correlation misfit
function, which is expressed as:

E(m) = −
∑

r

∫
t

[
dcal(r, t,m)− dcal(r, t,m)

] [
dobs(r, t)− dobs(r, t)

]
dt√∫

t

[
dcal(r, t,m)− dcal(r, t,m)

]2
dt

√∫
t

[
dobs(r, t)− dobs(r, t)

]2
dt

(7)

where dcal(r, t,m) are the mean value of for the synthetic data trace and dobs(r, t) is the
mean of the observed data trace. The adjoint source for this objective function is:

XzeroGC =
1√∫

t

[
dcal(r, t,m)− dcal(r, t,m)

]2
dt

(d̃cal ˜dcaldobs − d̃obs) (8)

˜dcaldobs, d̃cal, d̃obs has the expression of:

˜dcaldobs = ∫
t

[
dcal(r, t,m)− dcal(r, t,m)][dobs(r, t)− dobs(r, t)

]
dt√∫

t

[
dcal(r, t,m)− dcal(r, t,m)

]2
dt

√∫
t

[
dobs(r, t)− dobs(r, t)

]2
dt

dcal(r, t,m)− dcal(r, t,m)√∫
t

[
dcal(r, t,m)− dcal(r, t,m)

]2
dt

(9)

d̃cal =
[dcal(r, t,m)− dcal(r, t,m)]√∫

t

[
dcal(r, t,m)− dcal(r, t,m)

]2
dt

(10)

d̃obs =
[dobs(r, t,m)− dobs(r, t,m)]√∫

t

[
dobs(r, t,m)− dobs(r, t,m)

]2
dt

(11)

The zero mean global correlation objective function performs well when there is ran-
dom noise in the data Dong et al. (2019).

Equations 2, 4, 6, 7 show that the gradients of the objective functions have similar forms
but different source terms for the back-propagated adjoint wave fields. This implies that the
same FWI algorithm can be used to compute the gradients of the different misfit functions
with the same computational cost, provided the source term of the adjoint back-propagated
wave fields and the misfit function can be computed for each functional.
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Multi-scale Z transform objective function

Here we introduce the The multi-scale Z transform objective function which is:

E(m)MZ =
1

2
||Fzdcal(r, t,m)− Fzdobs(r, t)||2 (12)

,where the matrix Fz is:

Fz =


1 1 1 . . . 1
1 z−1e−2πi/N z−2e−4πi/N . . . z−N+1e−2πi(N−1)/N

1 z−1e−4πi/N z−2e−8πi/N . . . z−N+1e−4πi(N−1)/N

. . . . . . . . . . . . . . .

1 z−1e−2πi(N−1)/N z−2e−4πi(N−1)/N . . . z−N+1e−2πi(N−1)2/N

 (13)

In equation 13, the z is a scale for the matrix that is not smaller than 1. If z = 1. Then
the equation 13 becomes the matrix that calculates the Discrete Fourier Transform (DFT)
for the trace signal. Fzdcal(r, t,m) means that we are calculating the cross-correlation with
different frequencies of sin and cos functions and resulting in the frequency spectrum. And
the equation 12 means we are calculating the `2 norm frequency spectrum between the
synthetic data and observed data as the objective function. If z > 1, then we are calculating
the cross-correlation of the synthetic data with a series of different frequencies sin and cos
function with damped amplitude. A larger value of z represents a larger damped property
as time propagates. The correlation results would also ignore the later time steps of the
shotrecords. Thus, the inversion strategy is that we truncate all the total inversion iterations
into several segments, and in each segment, we use a different value of z, from large to
small.

NUMERICAL TESTS

Objective function behaviors

In order to visualize the objective function behavior of the FWI, we plot how different
objective functions react with the variation of the parameters of VP, VS, and density ρ.
We perform forward modeling on a simple VP, VS, and density model, with homogeneous
background and a small box shape object located in the center of the model. We would
change the value of VP, VS, and ρ value in the small box and see how different kinds of
objective functions react to these variations. We are going to test four objective functions,
which are the `2 norm, `1 norm, the zero log correlation function, and the Multi-scale Z
transform objective function.

Figure 1 shows the objective function behavior of the variation of parameter VP and VS.
In the test, VP changes from 2500km/s ∼ 4500km/s and VS changes from 500km/s ∼
2500km/s. The valley in the center of Figure 1 shows the point for the true model, which
has the smallest objective function value. We can clearly see that a lot of the local minimum
existing in Figure 1, showing very strong non-linearity. However, the objective function of
multi-scale Z transform is very smooth, showing no local minimum on the contour. In
Figure 2, in the first row, we show the objective function behavior when we fix VP at
3300km/s and changes the VS. We can also see that the `2, `1, and correlation- objective
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FIG. 1. Contour plot of the different objective functions with the variation of the VP and VS. (a) `2
Norm . (b) `1 Norm . (c) Zero lag correlation objective function. (d) Multi-scale Z transform

FIG. 2. The objective function responses for VP and VS variation. Figure (a)-(d) shows how `2
norm, `1 norm, GC and Multi-scale Z transform objective function changes with a fixed value of VP=
3300m/s, and VS changes from 500m/s to 2250m/s. Figure (e)-(h): the corresponding objective
function changes with a fixed value of VS= 1300m/s, and VP changes from 2500m/s to 4500m/s.

functions have several local minimums, while the multi-scale Z transform has few. The
second row in Figure 2 shows another story. If we fix VS and change VP, all the objective
functions are very smooth and have no local minimum. It means that the VS has much
more influence on the non-linearity of the objective function compared with VP.
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FIG. 3. Contour plot of the different objective functions with the variation of the VP and ρ. (a) `2
Norm. (b) `1 Norm. (c) Zero lag correlation objective function. (d) Multi-scale Z transform

FIG. 4. The objective function responses for VP and ρ variation. Figure (a)-(d) shows how `2
norm, `1 norm, GC and Multi-scale Z transform objective function changes with a fixed value of
Vp= 3300m/s, and ρ changes from 500kg/m3 to 2500kg/m3. Figure (e)-(h): the corresponding
objective function changes with a fixed value of ρ = 500kg/m3, and VP changes from 2500m/s to
4500m/s.

Figure 3 shows the contour plot of the objective function behavior for the variation of
VP and ρ. The density ρ changes from 500km/m3 ∼ 2500km/m3 and VP still changes
from 2500km/s ∼ 4500km/s. Still, the center of the contour shows true models, which
have the smallest value. We can see that the objective functions show less local minimum
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compared with 1. However, if we look at the convergence for these objective functions, we
can see that the objective function for multi-scale Z transform is less steep compared with
the others. In, Figure 4 the first row shows that how objective function changes when we
fix VP at 3300km/s and changes the density ρ. We observe that all the objective functions
are very smooth. The same phenomenon could be seen when we change VP and fix density
at 500kg/m3. And we could see that the convergence property of multi-scale Z transform
objective function may not outperform the other objective functions. Without the influence
for VS, the inversion is less likely to full into the local minimums.

FIG. 5. Contour plot of the different objective functions with the variation of the VS and ρ. (a) `2
Norm . (b) `1 Norm . (c) Zero lag correlation objective function. (d) Multi-scale Z transform

Figure 5 shows how the objective function reacts to the variation of VS and density.
Again, VS has a lot of influence on the objective functions. We can see a lot of local min-
imums on the contour, showing strong non-linearity. The "true valley" in the center of the
image in the contour is very narrow, which can make inversion wonder out of the true con-
vergence region. However, the contour given by multi-scale Z transform objective function
shows a wider convergence region and showing no local minimum, which is helpful for the
early state inversion for FWI. The first row in Figure 6 shows how the objective functions
react to the variation of density when we fix VS and VP. It shows that there are no local
minimums. However, if we change the value of VS and fix the VP and density, we can
see a strong fluctuation of the objective function. Thus, we could also draw the conclusion
that the variation of VS plays a much more important role in the non-linearity of the objec-
tive functions. An incorrect initial model or the incorrect update of the VS could severely
influence the convergence property of the FWI.
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FIG. 6. The objective function responses for VS and ρ variation. Figure (a)-(d) shows how `2
norm, `1 norm, GC and Multi-scale Z transform objective function changes with a fixed value of
V s = 1300m/s, and ρ changes from 500kg/m3 to 2500kg/m3. Figure (e)-(h): the corresponding
objective function changes with a fixed value of ρ = 1500kg/m3, and VS changes from 500m/s to
2500m/s.

Adjoint sources

By choosing the scale factors in equation 6, we can change decide the damping property
of the sin and cos function that the data correlate with, which results in different kinds of
adjoint sources in each sub iterations. For instance, in Figure 7, 8, and 9, shows the adjoint
sources for the multi-scale Z transform objective function with different scale factor. We
can see that with a larger scale factor in equation 13, the synthetic data would correlate with
a function that has stronger damping with respect to time. As the surface waves always have
rapid amplitude decaying properties, we can see in Figure 7 and Figure 8, that we can see
surface-wave-like records are extracted. This means we are firstly using the surface waves
to build the surface structure of the velocity models. Then, we will use reflection waves to
perform the inversion, which is a multi-scale full waveform inversion. As the scale factor
z gets bigger, we could see that more reflection-waves-like records could be observed in
Figure 7, which means that reflections are going to be utilized in the inversion, which
helps to build more details of the velocity models. When z = 1, the Fz is doing Fourier
transform, which has no loss of information. We will use z = 1 in the last sub iteration for
the inversion. 12 is this means we are using the full waveform to build the velocity model.
Thus, the multi-scale Z transform objective functions have the ability to use different kinds
of waveforms to achieve multi-scale full waveform inversion.

FIG. 7. Multi-scale Z transform adjoint sources scale=1.005

Figure 10 shows the adjoint source in the time domain. We can see that as the scale
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FIG. 8. Multi-scale Z transform adjoint sources scale=1.002

FIG. 9. Multi-scale Z transform adjoint sources scale=1.003

FIG. 10. Multi-scale Z transform adjoint sources with different scale values. (a)-(b) z and x adjoint
sources with scale value=1.005. (c)-(d) z and x adjoint sources with scale value=1.001. (e)-(f) z
and x adjoint sources with scale value=1.0003. (a)-(b) z and x adjoint sources with scale value=1.

factor changes from z = 1.005, to z = 1.001 and to z = 1.0003. More information could be
observed. With z = 1.0003, the adjoint source of multi-scale Z transform contains almost
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FIG. 11. Frequency spectrum in Figure 10. (a)-(b) z and x adjoint sources with scale value=1.005.
(c)-(d) z and x adjoint sources with scale value=1.001. (e)-(f) z and x adjoint sources with scale
value=1.0003. (a)-(b) z and x adjoint sources with scale value=1.

the same information with the `2 norm objective function. Figure 11 shows the frequency
spectrum of the adjoint sources. We could clearly see that the adjoint source for multi-scale
Z transform with z = 1.005, Figure 11 has abundant low frequency components. The main
frequency in Figure 11 (a) is smaller than 5 Hz, while the in Figure 11 (c) it is around 6Hz.
With the increase of the z in Figure 11 (e), the main frequency is around 8Hz. Thus, the
multi-scale Z transform with different z values could gradually increase the main frequency
of the adjoint sources, which could help the inversion to gradually build the velocity model
from general to detail.

CONCLUSIONS

In this study, we first discuss the behavior of `2, `1, and the correlation-based objective
functions. We demonstrate how the objective functions would react to the variation of
the parameters for VP, VS, and density. We conclude that all the objective functions for
`2, `1, and correlation-based objective functions contain several local minimums, and the
convergence regions are all very small. The all these three objective functions are sensitive
for variation of the VS parameter. When VS changes, the objective functions fluctuate a lot
m indicating that VS is very hard to invert. We also introduce the multi-scale z transform
objective function, which has a broader convergence region than the other three objective
functions with few local minimums, which means that the inversion could perform well
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the initial model is not good. According to the frequency analysis of the adjoint sources,
the multi-scale z transform contains fruitful information about the low frequencies. With
the proper control of the scale factor z we could first use the surface waves to perform the
inversion. With sufficient information about the low frequency in the records, we could
build a reliable upper structure velocity model.
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