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ABSTRACT

We introduce and analyze implicit full waveform inversion (IFWI), which uses a neural
network to generate velocity models and perform full waveform inversion. IFWI has two
main parts: a neural network that generates velocity models, and a recurrent neural network
FWI to perform the inversion. IFWI is distinct from conventional waveform inversion in
two key ways. First, it does not require an initial model as does conventional FWI. Instead,
it requires general information about the target area, for instance means and standard devi-
ations of medium properties in the target area, or alternatively well-log information in the
target area. Second, within IFWI, we update the weights in the neural network, unlike in the
conventional FWI, which updates the velocity model directly. The neural network we use
to generate velocity models is a fully connected set of sinusoidal activation layers, which
has been shown to outperform Relu and tanh because of its ability to learn high-order spa-
tial derivatives. Through numerical tests, we demonstrate that, by controlling the random
initialization of the weights in the network and the scale of the velocity the network gen-
erated, the IFWI can in principle build accurate models in the absence of an initial model.
In practice IFWI itself may be a useful tool for building initial models for conventional or
high-frequency FWI.

INTRODUCTION

Full waveform inversion (FWI) is an optimization based inverse procedure with the
capacity to produce high-resolution velocity models and subsurface images (Virieux and
Operto, 2009). Although very promising as a technology for exploration and monitoring,
practical FWI still faces several key challenges. On land, adequate near-surface models
typically require elastic or viscoelastic propagation models to be considered, and within
these, accurately-determined shallow heterogeneities (Teodor et al., 2021). However in
multi-parameter inversion, different sensitivities across parameter classes cause crosstalk
in reconstructed models (e.g., Keating and Innanen, 2020, 2019). Even in single-parameter
problems challenges arise. The commonly used `2 norm objective function typically con-
tains many local minima, requiring either very accurate initial models or high-fidelity
broadband data (Lailly and Bednar, 1983; Tarantola, 1984; Tromp et al., 2005; Plessix,
2006; Virieux and Operto, 2009).

A great deal of recent research has been focused on leveraging machine learning (ML)
techniques to address these FWI challenges. For instance Sun and Alkhalifah (2020) used
a recurrent neural network to train an optimization method for FWI; a convolution neural
network has been used to fill in missing low frequency information to stabilize FWI (Sun
and Demanet, 2020); also Zhang and Alkhalifah (2020) has developed a deep neural net-
work for reservoir characterization. Directly merging FWI and ML is not straightforward,
but natural linkages exist. For instance, Richardson (2018) and Sun et al. (2020) formu-
lated waveform inversion as a training procedure in a constrained recursive neural network,
and Sun et al. showed that training such a network with a single data set is equivalent to
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conventional FWI. Subsequently Zhang et al. (2020, 2021)produced a significant extension
of this work to multiparameter elastic inversion with a range of optimizers. This RNN ap-
proach is an example of theory-guided machine learning, in which the neural network is
structured based on prior knowledge, and the desired medium parameters are the trainable
weights in the network.

Among these various kinds of the neural network, the coordinate-based multilayer per-
ceptron (MLP) appears to be of particular interest. Coordinate-based MLP takes low-
dimensional coordinates as input (usually in R2 or R3) and are trained to output a rep-
resentation of the targets (Tancik et al., 2020). These networks (e.g., Rahaman et al., 2019;
Stanley, 2007; Genova et al., 2020) have been developed and applied in image represen-
tation problems, shape representation in texture synthesis, shape inference from images,
and novel view synthesis, and have achieved state-of-the-art results (Rahaman et al., 2019;
Stanley, 2007; Genova et al., 2020; Park et al., 2019; Liu et al., 2019; Sitzmann et al., 2019).
The property networks of this kind most often report is a very strong ability to resolve low
frequencies in the loss function; difficulties are reported in its ability to resolve high fre-
quency information (Basri et al., 2020; Rahaman et al., 2019). We suggest that therefore
such networks hold promise in complementing FWI, which conventionally recovers high-
resolution details well but requires an accurate long-wavelength initial model.

In coordinate-based MLP networks, initialization and activation function choices have
a strong influence on the accuracy and the convergence properties of the training step. A
proper initialization of the weights and activation function can force the data to be generated
within a desirable range, which in turn tends to have a positive impact on convergence.
Conventionally, activation functions for neural networks are the Relu, Sigmoid, or Tanh, but
Sitzmann et al. (2020) has demonstrated that the MLP with periodic sinusoidal activation
function is better able to recover derivatives of the target image compared with Relu and
Tanh.

In this report, we set up what we call an implicit full waveform inversion (IFWI) inver-
sion method. This involves combining a coordinate abased MLP network, activated with
sinusoidal activation functions, with a recurrent neural network FWI. The IFWI set up like
this proceeds in the manner of a waveform inversion, but does not require an explicit initial
model to begin. The MLP takes in the spatial positions of the grid cells associated with
the model we wish to reconstruct as coordinate information, and, through judicious initial-
ization of the weights and some degree of prior model information, generates a range of
velocity models with expected statistical properties. These velocity models are then sent
to the RNN and through it data are simulated. The residual between the observed and sim-
ulated data are then sent back to the MLP, through the RNN, and updating occurs. The
key is that the iterative procedure involves updating the weights of the MLP, which in turn
produces the suite of velocity models based on these, as opposed to updating the velocity
model explicitly.

We carry out a range of numerical tests to develop the behaviour of this IFWI scheme.
There is significant freedom in applying IFWI. Medium property models can be generated
in a variety of ways, differing in their general or in detailed features. We observe that
shallow model structures tend to be well-recovered in particular. Although the method is in
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its early stages of analysis, this is suggestive that it in the presence of surface seismic data it
may have particular applicability in producing shallow model information for initialization
of conventional FWI workflows.

THEORY

Implicit neural representation with sinusoidal activation layer

The neural network we use in this study is a fully connected layer with the activation of
the sin function, which can be formulated as:

hi(X) = φi(WiXi + bi) (1)

Here, hi : Rmi → Rni means the ith layer output, with Xi ∈ Rmi as the input. The
transform of hi is defined with the weight matrix Wi ∈ Rni×mi and the bias bi ∈ Rni .
φi is the sinusoidal activation function. The network with sinusoidal activations has been
demonstrated to produce favourable convergence properties. In each layer, the data can be
generated such that it falls within a specified range, with the mean and the standard devi-
ation of the network changing though out the network. Suppose that we have four layers
of the network, and in the first layer, we initialize the weight matrix with uniform distri-
bution form [−1, 1]. The weights in other layers are initialized uniformly in the interval
[−c, c], and we use a linear range of 256 points in the range of [−1, 1] as input and plot
the histogram of each linear transform and sinusoidal activation. We show in Figure 5 that
the activation throughout the networks is standard normal distributed before each sine non-
linearity and arc-sine distributed after each sine non-linearity, irrespective of the depth of
the network. We will discuss this property further in the next section.

Training a network to predict images or signals with a fully connected neural network
activated with sinusoidal functions, is equivalent to using a series of sinusoidal functions
with different frequencies and phases to represent models and images. This is similar
to a Fourier-based method wherein sine and cosine functions with different amplitudes,
frequencies, and phases represent complex signals. In equation (1), Wi controls the range
of the frequencies of the sinusoidal functions that we use to represent the outputs, and the
bias bi is the phase.

Neural tangent kernel

The neural tangent kernel (NTK) is a quantity that captures the approximate dynamics
of the neural network during training. Suppose that, like in equation (1), h is the fully-
connected deep neural network which is parameterized with weights θ initialized with
Gaussian distribution N .Tancik et al. (2020) indicates that if we have infinite numbers
of layers for the fully-connected network, optimized with the gradient descent method, the
convergence property of the network can be described with the neural tangent kernel, which
is defined as:

kNTK(xi, xj) = 〈φ(xi), φ(xj)〉 (2)

φ(x) = ∂θh(x; θ), which is the partial derivative of the activation function with respect to
parameters, and 〈:, :〉 means inner product. xi and xj represents two input values.
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The NTK is used to approximate the dynamics of a deep network during training, which
brings us the detail of how the loss would change during training. Tancik et al. (2020) gives
the variation of the training error U = Ŷ −Y, with iteration time (approximating it as a
continuous variable) as

∂tU = −KU, (3)

where the positive semidefinite matrix K ∈ Rn×n is the neural tangent kernel of the net-
work. Ŷ and Y are the output of the network and the labeled data respectively. U, Ŷ,Y ∈
Rn

Let the eigen-decomposition of the kernel be K = VΛVT =
∑n

n=1 λiViV
T
i . We ex-

press the training loss U by using the eigen vector with U =
∑n

n=1 eiVi, where the ei means
the ith components of the training loss,we have ∂t

∑n
i=1 eiVi = −

∑n
i=1 λiViV

T
i

∑n
i=1 eiVi,

based on the orthogonal properties of the eigen vectors and removing the summation nota-
tion, we have:

∂tei = −eiλi;→ ei = e−λit + C (4)

Equation (4) demonstrate a very important conclusion for this study. It shows that, if we
consider training convergence in the eigen-basis of the NTK, the ith components of the
training loss will decay exponentially with the rate of λi, indicating components of the
target function that correspond to kernel eigenvectors with larger eigenvalues will decay
faster compared with components with smaller eigenvalue. This means that the components
loss function’s eigenvectors with larger eigenvalues will be learned faster.

Implicit FWI: constructing velocity models with neural network

The inversion procedure is driven by the idea of “implicit FWI”, or IFWI, wherein what
is solved for are weights in a network that more and more effectively produces realizations
of velocity models. This distinguishes it from conventional FWI, in which the velocity
model parameters are solved for explicitly. IFWI consists of two parts. The first part is a
fully connected neural network with sinusoidal activation functions. The input of the net-
work is the coordinate information of the model informing the size of the model we aim
to generate. Thus, this is actually a coordinate-based multilayer perceptron (MLP). The
output would be the velocity model, which would be sent to the second part of the network.
The second part of IFWI, is an RNN forward modeling method. After the forward mod-
eling, the residuals between the synthetic data and the observed data would be calculated.
The update would be performed on the weights in the network, unlike the velocity model
like the conventional FWI. Thus, we are actually training a fully connected network that
can generate velocity models with a very complex objective function. Since in the network
objective function, we use the wave equation to project the velocity model from model
space to the seismic data space and calculate the norm of the residuals there.

With the conclusion from the last section, we can discuss the rationality of the IFW
network. It is because that the eigenvectors with larger eigenvalues always correspond to
the larger scale or low frequencies information, and smaller eigenvalues always correspond
to the small scale or high frequencies information. If the loss function’s eigenvectors with
larger eigenvalues are always learned faster. It means that the low frequencies information
of the objective function would be first recovered. This is exactly very reasonable for FWI,
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because low frequencies information is critical for reducing the non-linearity of FWI. The
multi-scale FWI methods are doing the same process. In multi-scale FWI, we usually first
extract low frequencies information from the data and perform the inversion. The higher
frequency components would be later included in the inversion. This means that performing
the inversion with the IFW alliances with the philosophy of multi-scale FWI.

FIG. 1. The NTK analysis of a two layer fully connected layer with Relu activation function. (a)
The NTK kernel of Relu function. (b) The plot of numbers for eigenvector of the Relu NTK crossing
the zero point indicating the oscillation properties of the eigenvector (index 0 stands for the largest
eigenvalue). (c) The plot of the eigenvectors fpr V0, V1,V2,V3 for Relu NTK, with eigenvalue λ0 >
λ1 > λ2 > λ3

FIG. 2. The NTK analysis of a two layer fully connected layer with sin activation function. (a) The
NTK kernel of sine function. (b) The plot of numbers for eigenvector of the sin NTK crossing the
zero point indicating the oscillation properties of the eigenvector (index 0 stands for the largest
eigenvalue). (c) The plot of the eigenvectors for V0, V1,V2,V3 for Relu NTK, with eigenvalue λ0 >
λ1 > λ2 > λ3

To further explain our analysis, we compute two the neural tangent kernel for two sim-
ple neural networks and do the eigen-decomposition of the NTK. Figure 1 (a) shows the
NTK for a network with Relu activation function consisting of two neurons. Figure 1 (b)
shows the oscillation property of the eigenvectors. The vertical axis shows the number of
the eigenvector passing the zero point, and the horizontal axis shows the index of the eigen
vector ( index 0 has the largest eigenvalue and index 49 has the smallest eigenvalue). We
can see that the eigenvector shows a stronger oscillation as the eigenvalue becomes smaller.
Figure 1 (c) we plot the four of the eigenvectors, V0, V1,V2 and V3, their corresponding
eigenvalues are λ0 > λ1 > λ2 > λ3. We can see that a bigger eigenvalue corresponds to
a eigenvector with small little oscillation property, and as the eigenvalue becomes smaller,
the eigenvector would show more oscillations. We observed the same phenomenon in 2,
which is the neural tangent kernel analysis with a neural network activated with the sin
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function, (Figure 2, and Figure 1 shares the same initialization weights and input). The
major differences between these two figures are the NTK. With the same weight and input,
Figure 1 shows a larger area with small NTK values compared with Figure 2. It means
that the neural network with Relu function is less sensitive with some input data compared
with the sin activation neural network. Thus these two figures further explained how NTK
demonstrates the dynamic behavior of the neural network.

To further clarify our statement, we train a coordinate-based MLP with sin activation
functions to generate a single image of the velocity model. The objective function of the
network is the `2 norm of the image generated with the network and the target velocity
model. The maximum iteration time is 200 times, and we plot the prediction results in
Figure 3 for different training epochs. We can see that the network gradually generates the
model with information from general to detail, which alliances with our discussion in the
last paragraph.

FIG. 3. The prediction results of training a network to generate a velocity model in different epoch.
From left to right are the training prediction with, (a) 10 epoch, (b)40 epoch,(c) 80 epoch, (d) 120
epoch, (e) 200 epoch. In the early stage of the iteration, the network tends to recover the general
information of the target image, corresponding to our discussion that the eigenvectors with larger
eigenvalues are learned faster, which gives the general information for the model.

FIG. 4. The input of the network are the X and Y coordinates, in this figure, the matrix with the
dimension of 2×Nx. This matrix represents all the points in the first row of the velocity mode. We
take them into the neural network and it will generate the model with the dimension of 1×Nx. The
output would be put into the first row of the velocity model, If we do this for very row then we
can using the coordinate information to generate a velocity model. This velocity model would be
sent into the RNN to calculate synthetic data and weights in the neural network would be updated
according to the residual.
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The weight initialization of neural network

Note that building the coordinate-based MLP without carefully chosen weights yielded
poor performance both in accuracy and in convergence speed. The key idea in our initial-
ization scheme is to preserve the distribution of activation through the network so that the
final output at initialization does not depend on the number of layers. In this study, we use
the sin function as the activation layer. Thus, according to equation 1, weights we gen-
erated determine the range of the frequencies of the sin function that we use to represent
imagines. Figure 5 shows the initialization of the weights of a four-layer network and the
histogram of the data before and after the sin activation function. In the first layer, the
weights are generated with a Uniform distribution, W1 ∼ U(−1, 1), and in the rest of the
network, the weights are initialized with W2∼4 ∼ U(−

√
c
n
,−

√
c
n
), where n is the number

of the weights in the inversion and c is the hyper-parameter of the network. In Figure 5,
c = 6, we can see that, in each layer, the data generated before the sin activation is the
Gaussian’s distribution. After the sin activation layer, it becomes the U shape arcsine dis-
tribution. Such a pattern has been preserved throughout the following layer. We can see
that in the first column, except for the first layer, the range of the weights are approximately
from−5×103 ∼ 5×103, It means that the frequencies we use here are very narrow. Figure
6 shows the histograms of the network with c = 20. We can see that, with a larger value
of c, a broader range of the weights are generated, indicating we are using a wider range
of frequencies with sin functions for the network to generate velocity models. It is helpful
for the recovering of the details of our target. Also, we can see that the distribution of the
output data remains the same throughout the network.

FIG. 5. Activation statistics of a four layer neural network with c = 6. The first column: the initializa-
tion of the weights Wi, i ∈ (1, 2, 3, 4). The second column: the histogram of WT

i Xi, where Xi is the
input of the layer, before sin activation. Third column: the histogram of (WT

i Xi) after sin activation.

To further demonstrate the influence of the initialization, we did the experiments in
Figure 3 again with a different c value. The maximum iteration time is 200 times, and we
test five c values with, c = 1 , c = 3, c = 9, c = 15, c = 20, and the prediction results
are plotted in Figure 7. We a relatively small c we only recover the general information of
the velocity model, and as the increase of the c value, we can see that more details of the
model have been reconstructed.
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FIG. 6. Activation statistics of a four layer neural network with c = 20. The distribution of in each
layer alliance with Figure 5, however, with a different c value a broader ranges of weights are
generated meaning we can use more frequencies of sin functions to represent the target.

FIG. 7. The prediction result training a network to generate a velocity model with different c value
with a four layer coordinate based MLP. (a) c = 1, (b) c = 3, (c) c = 9, (d) c = 15, (e) c = 20. With a
broader range of weights are generated, more detail of the image can be resolved.

NUMERICAL TESTS

In this section, we will use the IFWI to perform the elastic full waveform inversion. The
neural network is a four-layers fully connected neural network with sin activation function
that takes in the grid coordinate information in the x and z direction as input, and the outputs
of the network are the velocity models that would be sent to the RNN to perform forward
modeling obtaining the synthetic data. The residual between the observed data and the
synthetic data is calculated with the `2 norm. The residual would be sent back to the fully
connected neural networks through the RNN, to update the weights in the fully connected
network. Thus, in this inversion test, we update the weights in the neural network, not the
velocity models generated with networks. The 2D VP model is obtained through the 3D
Overthrust model, and the VS and density models are calculated through scaling the true
VP model. The size of elastic models is 125×125, and we use dx = dz = 20m as the grad
length of the model. The wavelet is Ricker’s directional wavelet with the main frequency
of 15Hz. The maximum receiving time is 2.6 seconds, with the dt = 0.002. We use the
staggered grid stress velocity finite difference method with 10 layers of PML boundaries to
calculate the synthetic data. The maximum iteration time is 2000 times.

Figure 8 shows inversion results with the surface acquisition, which means that the
source and the receivers are located on the surface of the model. The subfigures in Figure
8 from left to right, in columns, are the inversion results at 60, 100, 200, 500, and 2000
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iteration, and from top to bottom, in rows, are VP, VS, and density. We can see that after 60
iterations, the network could actually generate the general background of the model, and
arbitrarily the first layer of VS can be roughly seen. After 100 iterations, we can see some
geological-meaningful structures at 1km depth in the models generated with the network.
The areas that are near the source tends to have more update than other areas. As for the
inversion results at 200 iterations, the general upper structures, with depth less than 1km of
the model, have been recovered. After 500 iterations, more details are added to the velocity
models. The inversion results at 2000 iteration do not show much more updates compared
with the inversion results after 500 iterations. Figure 9 shows the vertical inversion profile
of the inversion results for VP, VS, and ρ, and we plot the inversion results at 20, 200, and
500 iterations at 2km distance of the model to see how the inversion evolves throughout
the iteration time. We can see that at iteration 20 (yellow line), we can only generate a
velocity model that has the mean value of the model. As the increase of the iteration time,
the network progressively adds the details into the velocity model. However, we can see
that the inversion shows poor resolution at around 2km of the model.

FIG. 8. Elastic IFW inversion results with surface acquisition. Figure (a)-(e) shows the inversion
results of the VP model at 60, 100, 200, 500 and 2000 epochs. The second and the third row shows
the inversion results for VS and density.

We test another acquisition system that has a vertical well of shots at around 2.5km,
in the distance, in the model. The interval of shots in the well is z = 30 grid points
which means that every 600m in the well we have a shot. The receivers are still located
on the surface. All other variables in this test are the same as the surface acquisition test.
The inversion results are shown in Figure 9. In Figure 9 we observed a similar pattern of
how the velocity model generated with the network updates from general to detail. We
observe that in the well acquisition tends to produce more updates around the well, while
the surface acquisition test tends to first update around the surface. Compared with the
inversion results at 200 iterations, (c),(h),(m) in Figure 8 and 10, it shows that the layers
around the sources are better resolved as the red ecliptic marks. Also, we can see that in the
final results of Figure (e), (j), (0). The bottom layer has been better recovered as marked in
the plot. Figure 11 shows the vertical profile of the inversion results at 2km of the model.
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FIG. 9. Vertical profile of the IFWI surface acquisition results for VP, VS and density at 20, 200, and
500 for VP, VS and density respectively.

We can see the improvements made with the well at around 2km in the depth of the model,
which is a better fit for the velocity model compared with Figure 9. Although both the
tests fail to recover the bottom part of the inversion, we still consider this is a successful
recovery for the elastic velocities. Because we do not have any initial models, the IFWI we
introduce could become a valid method that provides the larger scale initial model for the
conventional FWI.

FIG. 10. Elastic IFW inversion results with surface and well acquisition. Figure (a)-(e) shows the
inversion results of the VP model at 60, 100, 200, 500 and 2000 epochs. The second and the third
row shows the inversion results for VS and density.

COMPUTATIONAL COST

All our inversion tests are calculated with GPU provided by ARC Cluster in the Uni-
versity of Calgary with Nvidia Tesla V100 (16GB). In the surface acquisition test, we use 6
shots on the surface, and the maximum receiving time is 2.6s with 1300 time steps. It takes
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FIG. 11. Vertical profile of the IFWI with surface and well acquisition results for VP, VS and density
at 20, 200, and 500 for VP, VS and density respectively.

about 73% of the total RAM, 11.68G, on the GPU. The surface acquisition inversion test
takes about 4 hours, 43 minutes, and 21 seconds to finish 2000 iterations. In the well log
acquisition test, we use 4 shots on the surface and 4 shots in the well, also with a maximum
receiving time 2.6s with 1300 time steps. It uses approximately 87%, 13.92G, of the total
RAM. And it takes 5 hours, 23 minutes and 47 seconds to finish 2000 iterations.

CONCLUSION

In this study, we introduce the implicit FWI to perform inversion without using an initial
model. The stricture of the network consists of two parts. The first part is a coordinated-
based MLP with the sinusoidal activation function. And the second part is an RNN based
neural network forward modeling method. The velocity model generated with the MLP
would be sent into the RNN for obtaining the synthetic data, and the residuals between the
observed data and the synthetic data would be sent back to the MLP, through the RNN,
to update the weights in the MLP. The analysis of the training for MLP indicates that
the components of the target function that correspond to kernel eigenvectors with larger
eigenvalues will decay faster compared with components with smaller eigenvalue. This
means that the components loss function’s eigenvectors with larger eigenvalues will be
learned faster. This explains why the training with MLP has a good ability to provide
general information in the velocity model for inversion. We also demonstrate how the
initialization of the weights could influence the approximation of training. The Numerical
test section shows how the velocity model generated with the MLP evolves throughout
iterations. The Computational cost section shows that IFW method is a computational
affordable inversion method.
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