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ABSTRACT

We implemented a non-uniform discrete Fourier transform(NUDFT) algorithm in C++
on both CPU and GPU. In this paper, we explore the advantages and challenges of the
implementation of the CUDA API on the non-uniform discrete Fourier transform. The
implementation of CUDA is interesting in this application because the non-uniform trans-
form is very time-consuming on the CPU due to O(n2) complexity and the high amounts
of memory operations that are performed due to the non-uniform natures of the transform.
We implement the NUDFT in CUDA to see if the superior multi-threading performance of
GPUs can offset the losses due to memory operations, to make NUDFT and in extension
interpolation via NUDFT a computationally viable alternative.

INTRODUCTION

With the increased adoption of specialized processors like GPUs, previous algorithms
that were too costly to implement commercially can be considered. Advancements in
technology, especially in the consumer GPU market in recent years provide a very high-
performance alternative to the traditional CPU-based parallel processing methods for math-
ematical operations. GPU processing’s main draw is the massively parallel pipeline that
exists on GPUs. A consumer GPU currently has 10s of thousands of threads that it can
compute on, which allows for much higher throughput than traditional CPUs. Although
many seismic workflows are highly parallelizable, depending on the implementation some
algorithms may see limited benefits from some parallelization methods. While originally
used only for graphics processing, over the years advancements in GPU technology have
made general parallel computing on the GPU more and more appealing, known as general-
purpose GPU computing or GPGPU. As the graphics processing unit (GPU) is traditionally
used for computer graphics their architecture is purpose-built differently from a CPU’s.
One approach is to think of a CPU as "multi-serial" processor where each thread can do
independent (serial) jobs unrelated to each other at very high speeds. The GPU is then a
parallel processor where each operation executed by its grouped threads must be the same
but it can process significantly more operations in parallel than a CPU can. For purposes of
general signal processing, the fast Fourier transform is often used over the discrete Fourier
transform as it performs a similar job while being significantly faster for larger data. The
discrete Fourier transform however has the advantage of being able to be performed on
irregularly sampled data which is regularly encountered in real-world data, generally, the
irregularly sampled data would either be resampled or binned to a regular interval for FFT
but will cause errors when binned data are not similar or where information will be lost due
to binning. The application of a DFT operator allows for the binning process to be bypassed
entirely and allows for work with exact sampling, with the trade-off being computational
expense.
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CUDA

In 2007 the graphics card engineering company, Nvidia, introduced the Compute Uni-
fied Device Architecture API, otherwise known as CUDA. CUDA allows programmers to
utilize the GPU rendering engine to be used for general-purpose parallel computing (Nick-
olls et al., 2008). This allows for users to access the very high throughput GPU threads for
use in parallel processing. A GPU differs from a CPU in many ways: generally, a GPU
is made with groups of processors, called streaming multiprocessors (SMs), which each
having an allocation of lightweight processing threads. Each SM has an allocation of L1
cache and shared memory to which its threads can access. This general architecture can be
seen in Figure 1. The SMs are sub-divided into groups called warps, with each warp con-
taining a set of usually 32 threads. This is important because, in each execution, all threads
in a warp must do the same operation. This is different from threads in a CPU, which can
perform different operations for each thread. This layout allows for very fast calculations
due to the sheer number of very lightweight threads. Many computational algorithms like
convolutions and matrix multiplications can benefit from this pattern.

FIG. 1. General layout of a GPU (Wang and Kemao, 2017).

CUDA is built on top of the C/C++ language and requires Nvidia’s proprietary compiler
called NVCC in addition to a standard C/C++ compiler. CUDA introduces many new
qualifiers, data types, and API calls for processing on the GPU. With CUDA programming
in C/C++, a set of new qualifiers for functions determines whether the codes will run on the
device (GPU) or the host (CPU). Functions that run on the GPU are called kernel functions.
Usually, they are invoked by the CPU and run on the GPU, but can also be invoked from
the GPU itself. Coding for CUDA is unique because we need to explicitly define which
type of memory each operation will store information, and use a to transfer the information
required to perform each operation since the high-speed "shared" memory is small and does
not communicate directly across different parts of the GPU. These transfers are usually
slow, so they have to be done in such a way that they do not outweigh performance gains.
To get the most efficiency out of the program, CUDA requires an understanding of the low-
level GPU architecture. Some important architectural details that impact the performance
of a program include proper allocation of both global and shared memory, where shared
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memory can only be accessed by threads inside a block but have significantly lower access
times. Figure 2 show the relative speeds from accessing information from many parts of
the system.

FIG. 2. Transfer memory bandwidths in different memory sections. (Han and Sharma, 2019).

Thread wraps are another factor we need to keep in mind when we program for CUDA
as all threads under a warp execute the same instruction. Other concepts that can make a
large difference in efficiency are newer features recently added to GPUs, like tensor cores,
which are much faster than previous methods for matrix calculations on specifically sized
matrices. The programmer must also keep in mind not to excessively transfer data from the
system memory to the GPU memory due to limitations in PCI-E protocol signaling. This
is due to compatibility for older x32 CPUs allowing only the exposure of 256MB of GPU
ram at a time to the CPU through the PCI-E Base Address Register (BAR) for memory
access. With proper coding a GPU program can significantly outperform a CPU program
in parallel tasks.

Non-uniform discrete Fourier transform

The non-uniform discrete Fourier transform (NUDFT) is important in the field of signal
processing as in many applications the signal recorded does not exist in regular intervals
across some dimensions. In many applications of the NUDFT, the signal is interpolated
into regular sampling then run through an FFT algorithm. For our applications, because we
are seeking to interpolate with NUDFT, resampling/interpolating to regular sampling is in
contention with our objective. The standard DFT equation can be seen in equation 1.

H(ω) =
N−1∑
k=0

hke
−iωk∆t (1)

Where H(ω) is the Fourier coefficient, hk is the signal at the kth sample ω is the
wavenumber and N is the number of frequencies. For the purposes of signal processing,
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the fast Fourier transform (FFT) is generally used, this transform takes advantage of the
regularity due to its periodicity, reducing computational complexity to O(nlog(n)). This is
different from the direct evaluation of the discrete Fourier transform with complex O(n2) of
which NUDFT shares. Processing using NUDFT is also costly in that because the samples
are not evenly spaced NUDFT takes more time to calculate due to the extra calculations
needed to set up the unevenly spaced matrix. This problem is similar to the computer sci-
ence problem of sparse matrix-vector multiplication where sparse matrices must account
for the non-uniform way in which data is stored. In 5D interpolation, binned FFT interpo-
lation is commonly used for its speed, in this application seismic traces are binned together
to form a regularly spaced dataset. The regular spacing then allows for the use of common
FFT algorithms, allowing for a relatively fast 5D interpolation algorithm. 5D interpolation
using the FFT operator however causes an issue at long offsets due to the binning of the
data where values at different offsets are binned together causing loss of information in
those areas (Trad, 2016). By implementing 5D interpolation using a NUDFT operator then
bypasses the need to bin traces for a uniform grid, however, this adds a significant process-
ing requirement by significantly increasing the computational complexity of the problem
from O(nlog(n)) to O(n2).

RESULTS

We ran the test algorithms for DFT on a range of different hardware to show the perfor-
mance of the algorithms in different conditions, a laptop, and two high-end workstations.
The laptop utilizes an intel i7 8750H 6-core CPU with an Nvidia RTX 2060 MAX-Q GPU,
the first workstation is equipped with an AMD Threadripper 3960x 24-core CPU, with an
Nvidia RTX 3080, the second workstation has an intel i5 8600 8-core CPU equipped with
an Nvidia RTX 1080 GPU. The test was run with 25 shots 297 receivers and 3600 time
samples. These results can be seen in table 1.

Processor (API) Time for 25 shots (s)
i5 8600 6-core (openMP) 1.5996
i7 8750H 6-core (openMP) 1.752
TR 3960x 24-core (openMP) 0.8539
GTX 1080 (CUDA) 0.0447
GTX 1080 (CUDA THRUST) 276.43
RTX 2060 MAX-Q (CUDA) 0.0563
RTX 2060 MAX-Q (CUDA THRUST) 304.43
RTX 3080 (CUDA) 0.0379

Table 1. Table of average runtimes for DFT implementation.

It should be noted that although the RTX 2060 series GPUs are newer they have a lower
CUDA core count (≈ 75%) with respect to the GTX 1080 which results in the difference
in computational times seen in the table. The results recorded are only the operator ker-
nel runtimes for this implementation as our current work is ongoing and memory copies
still need to be optimized, because a significant amount of runtime is eaten up by memory
transfers between GPU and CPU. As pure DFT performance is the objective of our paper
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we will be mainly looking at the kernel runtimes with an updated paper later for total pro-
gram runtimes. The DFT operator was implemented in three different ways, once on CPU
using openMP, twice on GPU, using both a custom CUDA kernel as well as a prepackaged
CUDA thrust library for matrix operations. The comparison between the CUDA and CPU
times is as expected with a significant speedup seen by the CUDA GPU due to its massively
higher thread count. The Thrust library results in comparison to the other two were signif-
icantly worse by multiples of a magnitude, we are as yet unsure of why performance is so
poor using the Thrust library matrix operators. One possible cause of the poor performance
of the thrust library is that the inner product function does not compute a correct inner-
product for complex vectors, thus a custom functor was made and added as an argument to
the function. Upon profiling the code to diagnose the issue, the results show a significant
amount of runtime was used in a thrust copy operation which is not used anywhere else in
the code. These memory operations are what most likely caused the significant increase in
processing time.

CONCLUSION

The use of the discrete Fourier transform has generally been overlooked in favor of
the much faster fast Fourier transform for most signal processing uses, however in certain
applications the FFT cannot be used because data is given in a format that is un-evenly
sampled. Traditionally the solution is to either interpolate or bin the data before sending it
to the fast Fourier transform. The introduction of GPU processing allows us to implement
operators that are generally too expensive to implement on the CPU even through the use of
large clusters. In our comparison, we show that when properly implemented, the discrete
Fourier transform on GPU can perform much faster than its CPU counterpart. The differ-
ence results in computational time which may make it economically more acceptable for
use in industry. This speedup may allow for the implementation of the DFT in programs
such as 5D interpolation or curvelet transforms without the need for local binning. We
also note that due to unexpected memory operations, the prepackaged Thrust toolkit matrix
operators cause significant slowdowns to the calculations.
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