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ABSTRACT

A two-step inversion method of employing azimuthal seismic data to estimate fracture
weaknesses constrained by fracture facies constraint is proposed. Firstly, based on the PP-
wave reflection coefficient and azimuthal elastic impedance (EI) derived in terms of elastic
properties, density and fracture weaknesses, we use a Bayesian Markov chain Monte Carlo
(MCMC) algorithm to estimate EI of different incidence angles and azimuths, and predict
fracture facies using the estimated EI. Secondly, we use the fracture facies to construct
a more accurate initial model of unknown parameters(M , µ, ρ, δN and δT ) and use the
estimated EI of different incidence angles and azimuths as the input to estimate unknown
parameters. Employing noisy seismic data of signal-to-noise ratios (S/N), we verify the
robustness of the proposed inversion method.

INTRODUCTION

Subsurface natural fractures are important channels for oil and gas migration and stor-
age. Using seismic data to implement predict the characteristics of underground fractures
with high accuracy is of great significance.

Rock physics effective model plays an important role in relating fracture properties
(e.g. fracture density, aspect ratio, fracture fillings) to elastic properties (e.g. stiffness coef-
ficients, velocity) of fractured rock. Schoenberg and Sayers (1995) proposed the linear-slip
model, in which two dimensionless parameters, the normal and tangential fracture weak-
nesses (δN and δT ) are presented to measure how fractures affect the displacement com-
ponent perpendicular and parallel to the fracture plane. Fracture weaknesses become two
important indicators, which are used to characterize underground fractures, and methods of
inversion of azimuthal seismic data for estimating fracture weaknesses has been presented.

Based on the linear-slip model, Chen et al. (2014, 2018) proposed azimuthal elastic
impedance (EI) expressed in terms of δN and δT and implement the simultaneous inver-
sion for elastic properties of isotropic background and fracture weaknesses. Estimation of
elastic parameters and fracture weaknesses based on azimuthal EI has many advantages,
such as the input data is azimuthally incidence-angle-stacked seismic data, which is of a
relatively high signal to noise ratio (SNR), and the inversion of stacked seismic data for
estimating EI is more stable than the inversion of amplitude-versus-offset (AVO) data for
estimating elastic parameters and fracture weaknesses, which is ill conditioned. However,
due to the noise existing in seismic observation data and the error accumulation of two-step
inversion (inversion for EI in the first step, and using EI to estimate elastic parameters and
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fracture weaknesses in the second step.) is relatively larger than that of single-step inver-
sion (inversion of azimuthal AVO data to estimate parameters and fracture weaknesses),
the first-step inversion should be more robust and produce azimuthal EI results of relatively
high, and the second-step inversion should be more stable and provide more reliable esti-
mate of elastic parameters and fracture weaknesses. In the present study, we aim to use a
more reliable and accurate initial model to constrain the two-step inversion, and additional
information, i.e. fracture facies, is considered to construct the initial models.

Currently, lithology facies, are used to constrain seismic inversion for elastic parameters
(e.g. P- and S-wave velocities) and reservoir parameters (e.g. porosity, shale content, water
saturation). Grana (2018) implemented the simultaneous estimation of lithofacies, porosity,
clay volume, and water saturation using a nonparametric distribution of Bayesian Gaussian
mixture model. Similar to the role of lithology facies in seismic inversion for reservoir
characterization, we extract fracture facies from seismic data and involve the fracture facies
as a constraint in the estimation of elastic parameters of isotropic background and fracture
weaknesses.

We propose a two-step inversion method of employing azimuthal seismic data to esti-
mate elastic parameters of isotropic background and fracture weaknesses. Firstly, we use
azimuthally incidence-angle-stacked seismic data as the input and employ the Bayesian
Markov chain Monte Carlo (MCMC) to obtain azimuthal EI and fracture facies; and sec-
ondly, following the Bayesian framework again, we implement the estimation of elastic
parameters and fracture weaknesses constrained by fracture facies. We use noisy synthetic
seismic data to verify the robustness of the proposed inversion method.

THEORY AND METHOD

In this section, we present how to obtain fracture facies information during the inversion
of azimuthally partially incidence-angle-stacked seismic data for EI, and how to implement
the inversion of azimuthal EI for fracture weaknesses under the constraint of fracture facies.

Estimation of azimuthal elastic impedance and facies

Stiffness matrix of a rock that contains a set of vertical fractures is given by (Schoenberg
and Sayers, 1995)
C =

M (1− δN ) (M − 2µ) (1− δN ) (M − 2µ) (1− δN ) 0 0 0
(M − 2µ) (1− δN ) M

(
1− χ2δN

)
(M − 2µ) (1− χδN ) 0 0 0

(M − 2µ) (1− δN ) (M − 2µ) (1− χδN ) M
(
1− χ2δN

)
0 0 0

0 0 0 µ 0 0
0 0 0 0 µ (1− δT ) 0
0 0 0 0 0 µ (1− δT )

 ,
(1)

whereM and µ are P- and S-wave moduli of the isotropic background rock, χ = (M − 2µ)/M ,
and δN and δT are the normal and tangential fracture weaknesses, respectively.

We use a relationship between reflection coefficient and perturbation in stiffness param-
eters to derive a linearized PP-wave reflection coefficient RPP as a function of reflectivities
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of P- and S-wave moduli (∆M
2M

, ∆µ
2µ

), density (∆ρ
2ρ

) and changes in fracture weaknesses (∆δN ,
∆δT ) across the reflection interface

RPP (θ, φ) =aM (θ)
∆M

M
+ aµ (θ)

∆µ

µ
+ aρ (θ)

∆ρ

ρ

+ aN (θ, φ) ∆δN + aT (θ, φ) ∆δT ,

(2)

where θ is angle of incidence, φ is angle of azimuth,

aM (θ) =
1

4
sec2 θ,

aµ (θ) = −2 g sin2 θ,

aρ (θ) =
cos 2θ

4cos2 θ
,

aN (θ, φ) = − 1

4cos2 θ

[
2g
(
sin2 θsin2 φ+ cos2 θ

)
− 1
]2
,

aT (θ, φ) = −g sin2 θcos2 φ
(
tan2 θsin2 φ− 1

)
. (3)

From the derived PP-wave reflection coefficient, azimuthal EI emerges as

EI (θ, φ) =M2aM (θ) µ2aµ(θ) ρ2aρ(θ) exp [aN (θ, φ) δN + aT (θ, φ) δT ] . (4)

We write the nonlinear relationship between the vector of EI (i.e. m) and the vector of
seismic data (i.e. d) as

d = G (m) , (5)

where G is the nonlinear forward modeling operator.

Based on Bayesian theorem, we make probabilistic estimates of EI and fracture facies
from seismic data of incidence angle θ and azimuth φ. Considering the fracture facies f as
another unknown parameter vector and introducing the distribution of fracture facies P (f)
into the posterior probability of m given d, we express the posterior probability distribution
function, i.e. P (m, f |d), as

P (m, f |d)∝P (d|m, f)P (m, f)∝P (d|m)P (m|f)P (f) , (6)

where P (d|m, f) is the likelihood function, P (m, f) is the prior distribution that contains
two components: 1) the likelihood function that expresses the probability of m given f , i.e.
P (m|f); and 2) the distribution of fracture facies, P (f). We emphasize that we assume the
probability of d given m and f mainly depends on m, therefore, we approximately write
the likelihood P (d|m, f) as P (d|m).

To solve the nonlinear inversion problem, we employ the Markov chain Monte Carlo
algorithm to generate a few of acceptable results of EI and facies. Assuming two likelihood

CREWES Research Report — Volume 34 (2022) 3



Chen et al.

functions P (d|m) and P (m|f) are Gaussian distribution and fix the facies, we first esti-
mate EI using partially incidence-angle-stacked seismic data of different azimuthal angles.
The acceptance ratio used to determine whether to keep the candidate of m is given by

r = min {1, exp (− [E (m∗)− E (m)])} , (7)

where m∗ is the candidate, and

E (m) = [d−G (m)]T [d−G (m)] +

(
1

2
∆lnm− s∆f

)T (
1

2
∆lnm− s∆f

)
, (8)

where s is a scale factor, lnm is the logarithmic value of m, and ∆ is the differential
operator.

In Figure 1, we show EI curve of a layered model, corresponding fracture facies, and
comparison between reflectivity computed using EI and fracture facies. We observe that

1 2 3 4

10
4

1005

1010

1015

1020

1025

1030

1035

0 0.5

1005

1010

1015

1020

1025

1030

1035

-1 -0.5 0 0.5 1

1005

1010

1015

1020

1025

1030

1035

FIG. 1. A layered model. The scale factor s is 0.5.

the locations of quasi-reflectivity calculated using the scaled fracture facies match that of
the true-reflectivity calculated using the logarithmic EI, and at some locations the value of
quasi-reflectivity is also close to that of the true-reflectivity. It verifies that we may use the
fracture facies to constrain the inversion for EI, as shown in equation 8.

We proceed to the estimation of fracture facies using the estimated EI of different in-
cidence angles and azimuths. Following the Bayesian framework again, we present the
posterior probability of s∆f (denoted by Df ) given 1

2
∆ lnm (denoted by Dm) as

P (Df |Dm)∝P (Dm|Df)P (Df) , (9)

and we implement a most likely estimate of fracture facies. Under the assumption that the
likelihood function P (Df |Dm) is Gaussian and the prior distribution P (Df) is Cauchy,
which may create a sparse spike series of fracture facies, we write the objective function as

J (Df) =
(Dm−Df)T (Dm−Df)

2σ2
n

+
N−1∑
i=1

ln

[
1 +

(Dfi)
2

σ2
Df

]
, (10)
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where σ2
n is variance of the difference between Dm and Df , σ2

Df is variance of the differ-
ential of fracture facies, and N is the number of underground layers.

Taking the derivative of J (Df)

∂J (Df)

∂Df
= 0, (11)

results in (
I +

2σ2
n

σ2
Df

L

)
Df = Dm, (12)

where I is an identity matrix, and

Lii =

[
1 +

(Dfi)
2

σ2
Df

]−1

. (13)

Given an initial model of fracture facies constructed using Formation Micro-Imager (FMI)
logging data, the inverse problem is solved iteratively to obtain results of Df . Using the
inversion results of Df , we may obtain the estimated fracture facies f .

Inversion for fracture weaknesses constrained by fracture facies

Using the estimated EI of different incidence angles and azimuths, we proceed to the
inversion for elastic properties (M , µ), bulk density (ρ) and fracture weaknesses (δN and
δT ). Taking a logarithm of EI yields

LEI (θ, φ) = 2aM (θ)LM + 2aµ (θ)Lµ + 2aρ (θ)Lρ + aN (θ, φ) δN + aT (θ, φ) δT , (14)

where LEI , LM , Lµ and Lρ represent the logarithmic EI, M , µ and ρ, respectively.

Considering N layers, two incidence angles and two azimuths, equation 14 becomes

B = Ax, (15)

where

B =


LEI (θ1, φ1)
LEI (θ2, φ1)
LEI (θ1, φ2)
LEI (θ2, φ2)

 , (16)

A =


pM (θ1) pµ (θ1) pρ (θ1) pN (θ1, φ1) pT (θ1, φ1)
pM (θ2) pµ (θ2) pρ (θ2) pN (θ2, φ1) pT (θ2, φ1)
pM (θ1) pµ (θ1) pρ (θ1) pN (θ1, φ2) pT (θ1, φ2)
pM (θ2) pµ (θ2) pρ (θ2) pN (θ2, φ2) pT (θ2, φ2)

 , (17)
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x =


LM

Lu

Ld

LN

LT

 , (18)

where

LEI (θ, φ) =

L
(1)
EI (θ, φ)

...
L

(N)
EI (θ, φ)

 , LM =

L
(1)
M
...

L
(N)
M

 , Lu =

L
(1)
µ

...
L

(N)
µ

 ,

Ld =

L
(1)
ρ

...
L

(N)
ρ

 , LN =

 δ
(1)
N
...

δ
(N)
N

 , LT =

 δ
(1)
T
...

δ
(N)
T

 ,

pM (θ) =

[
2a

(1)
M (θ)

2a
(2)
M (θ)

]
, pµ (θ) =

[
2a

(1)
µ (θ)

2a
(2)
µ (θ)

]
,

pρ (θ) =

[
2a

(1)
ρ (θ)

2a
(2)
ρ (θ)

]
, pN (θ, φ) =

[
a

(1)
N (θ, φ)

a
(2)
N (θ, φ)

]
,

pT (θ, φ) =

[
a

(1)
T (θ, φ)

a
(2)
T (θ, φ)

]
, (19)

where the superscript indicate the layer number.

In the forward modeling to produce the vector of LEI , we assume difference between
the modeled result and the input data follow Gaussian distribution. Considering a univariate
Cauchy prior distribution, we express the posterior probability of x given B in the case of
N layers as

P (x|B)∝P (B|X)P (x)

∝ exp

[
−(B−Ax)T (B−Ax)

2σ2
e

−
5N∑
i=1

ln

(
1 +

(xi − xa)
T (xi − xa)

σ2
x

)]
,

(20)

where σ2
e is the variance of difference between the modeled and input data of B, xa is the

average of x, and σ2
x is the variance of x, respectively.

The objective function used to make a best estimate of unknown parameter vector x
is proposed based on the maximum of posterior probability. Using model constraints, we
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write the final expression of the objective function as

J (x) =
(B−Ax)T (B−Ax)

2σ2
e

+
5N∑
i=1

ln

[
1 +

(xi − xa)
T (xi − xa)

σ2
x

]
+WM (LM − LM0)T (LM − LM0) +Wµ (Lu − Lu0)T (Lu − Lu0)

+Wρ (Ld − Ld0)T (Ld − Ld0) +WN (LN − LN0)T (LN − LN0)

+WT (LT − LT0)T (LT − LT0) ,

(21)

where WM , Wµ, Wρ, WN and WT are weight factors of model constraints, LM0, Lu0,
Ld0, LN0 and LT0 are model constrains of P- and S-wave moduli, density and fracture
weaknesses, respectively.

A more reliable initial model leads to a better inversion result of unknown parameter
vector. Using the fractured facies obtained in the previous step of inversion for EI, we
construct new initial models of LM, Lu, Ld, LN and LT as

LM0 = Llow
M + sM f ,

Lu0 = Llow
u + sµ f ,

Ld0 = Llow
d + sρ f ,

LN0 = Llow
N + sN f ,

LT0 = Llow
T + sT f ,

(22)

where Llow
M , Llow

u , Llow
d , Llow

N and Llow
T represent low frequency components of P- and S-

wave moduli, density and fracture weaknesses, and sM , sµ, sρ, sN and sT represent scale
factors that determine how fracture facies contributes to initial models.

Taking the derivative of J (x)

∂J (x)

∂x
= 0 = H− G x, (23)

results in the solution of x

xi+1 = xi +
(
GTG

)−1 GT (H− G xi) , (24)

where xi is an initial model of unknown parameter vector. Using the iterative algorithm as
shown in equation 24, we obtain the inversion results of M , µ, ρ, δN and δT .

NUMERICAL EXAMPLES: SYNTHETIC

In this section, we use synthetic data generated for a well log model to verify the ro-
bustness of the proposed inversion algorithm. Curves of P- and S-wave moduli and density
are shown in Figure 2. Fracture weaknesses δN and δT , and the reference fracture facies
constructed based on the tangential fracture weakness δT (i.e. interpreting the area where
δT ≥ 0.11 as fractured reservoir and setting the corresponding f to 1), are shown in Figure
3.
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We add Gaussian random noise to synthetic data generated based on the convolution
model to produce noisy seismic data of signal-to-noise ratio (S/N) of 4 and 1. Using the
noisy synthetic seismic data as the input, we implement the inversion for EI of different
incidence and azimuthal angles. In Figures 4 and 5, we show comparisons between the
inversion results and true values of EI.
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FIG. 2. A well log model: Curves of P- and S-wave moduli and density
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FIG. 3. A well log model: Curves of fracture weaknesses and the constructed fracture facies

Using the inversion results of EI, we next implement the estimation of fracture facies
at different incidence and azimuthal angles. Comparisons between the estimated fracture
facies and the reference fracture facies are shown in Figure 6. We observe there is a good
match between the estimated and reference fracture facies.

We use the inversion results of EI of different incidence and azimuthal angles to obtain
elastic properties (M and µ), density (ρ) and fracture weaknesses and employ the estimated
fracture facies as the constraint. In Figure 7, we show comparisons between inversion
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FIG. 4. Comparisons between true values and inversion results of EI of different incidence and
azimuthal angles for the case of S/N of 4. a) Azimuthal angle φ is 10◦; and b) Azimuthal angle φ is
90◦.

results and true values of δN and δT , and we observe there is a good match between the true
value and the inversion result obtained under the constraint of fracture facies.

CONCLUSION

We propose a two-step inversion method of employing azimuthally incidence-angle-
stacked seismic data to estimate elastic parameters of isotropic background and the normal
and tangential fracture weaknesses, in which fracture facies estimated during the estimation
of azimuthal elastic impedance (EI) is employed as a constraint to improve the accuracy
of inversion for fracture weaknesses. Using azimuthally incidence-angle-stacked seismic
data as the input, we implement a Bayesian Markov chain Monte Carlo (MCMC) inversion
for EI of different incidence and azimuthal angles, and predict fracture facies during the
estimation of EI. Using the estimated EI as the input and the fracture facies as the constraint,
we implement the estimation of elastic parameters and fracture weaknesses following a
Bayesian framework again. We applying the proposed inversion method to noisy synthetic
seismic data of different signal-to-noise ratios (S/N), and we observe that even in the case of
S/N of 1, elastic parameters and fracture weaknesses are estimated stably. We conclude that
the inversion method for estimating elastic parameters and fracture weaknesses constrained
by fracture facies is robust.
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FIG. 5. Comparisons between true values and inversion results of EI of different incidence and
azimuthal angles for the case of S/N of 1. a) Azimuthal angle φ is 10◦; and b) Azimuthal angle φ is
90◦.
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S/N of 4; and b) S/N of 1.
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