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ABSTRACT

Estimation of reservoir porosity, shale content and fluid type is the key and difficult
problem of geophysical exploration. Based on rock physics theory and effective models, we
relate seismic reflection coefficient and elastic impedance (EI) to reservoir porosity, shale
content and fluid. Using the nonlinear reflection coefficient and EI, we present a two-step
inversion method, which involves: 1) linear inversion of partially incidence-angle-stacked
data to predict EI; and 2) nonlinear inversion of EI to estimate shale content, porosity,
fluid modulus and density. We introduce the procedure of using the first- and second-order
derivatives of EI to improve the accuracy of the inversion. The robustness and reliability of
the proposed inversion method are verified using noisy synthetic seismic datasets and real
data.

INTRODUCTION

Prediction of reservoir parameters (shale content, porosity) and identification of fluid
type are crucial to characterization of reservoirs. Through seismic inversion, geophysicists
first estimate elastic parameters (e.g. velocity, Lamé constants) from seismic amplitude
data, and then convert the estimated elastic parameters to reservoir parameters based on
rock physics effective models. A method of direct inversion for reservoir parameters and
fluid factors using seismic data is required.

Currently, the commonly used fluid factors are mainly established based on difference
between bulk moduli of water and gas (water: 2.865 GPa; gas: 0.041 GPa). The fluid
substitution model, proposed by Gassmann (1951), is used to analyze effects of different
fluids on rock elastic properties (e.g. bulk and shear moduli, P- and S-wave velocities,
Lamé constants, Poisson’s ratio, etc.). Geophysicists propose a series of fluid indicators by
combining various parameters related to fluid type and content. Russell et al. (2003) pro-
pose a fluid indicator (fluid/porosity term) based on the fluid substitution model. However,
the constructed fluid/porosity term is indeed influenced by the comprehensive influence of
lithology, fluid and porosity, which reduces the sensitivity to fluid. Chen and Zhang (2017)
present the fluid/porosity term is much more affected by porosity than by fluids, and may
have certain limitations in practical applications. In this study, we use fluid bulk modulus,
which is only related to fluid type and content, as an indicator.

Parameterization of reflection coefficient is the basis of pre-stacked seismic inversion.
Aki and Richards (1980) propose a linearized reflection coefficient in terms of reflectivi-
ties of P- and S-wave velocities and density. Goodway et al. (1997) present a linearized
reflection coefficient that is expressed as a function of Lamé parameters and density. Based
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on the fluid substitution model, Russell et al. (2003, 2011) propose reflection coefficient
expressed in terms of fluid factor, which relates the fluid information to seismic amplitude
directly. However, there is no an explicit reflection coefficient that can relate reservoir
parameters and fluid indicator to pre-stacked seismic amplitudes.

In this study, we derive the reflection coefficient and elastic impedance (EI) that are
expressed as a function of reservoir parameters (shale content, porosity) and fluid factor
(fluid bulk modulus) based on rock physics effective models. Using the derived reflection
coefficient and EI, we propose an inversion method of employing pre-stacked seismic am-
plitudes to estimate reservoir parameters. We employ noisy synthetic and real data sets to
verify that the proposed inversion method is robust, and we may obtain reliably estimated
results of reservoirs parameters using the proposed inversion method.

THEORY AND METHOD

In this section, we present the derivation of EI that is a function of reservoir parameters
and the method of estimating reservoir parameters using first- and second-order derivatives
of EI.

Elastic impedance parameterized in terms of reservoir parameters

The fluid substitution model, proposed by Gassmann (1951), is employed to calculate
bulk and shear moduli of saturated rock (Ksat and µsat) using bulk and shear moduli of dry
rock (Kdry and µdry), porosity (φ) and fluid bulk modulus (Kf )

Ksat = Kdry +
(1 −Kdry/K0)

2

φ/Kf + (1 − φ) /K0 −Kdry/K2
0

,

µsat = µdry, (1)

where K0 is bulk modulus of minerals that make up the rock.

Krief et al. (1990) proposed an approximate relationship between bulk and shear moduli
of dry rock and porosity, which is given by

Kdry = K0M (φ) ,

µdry = µ0M (φ) , (2)

where µ0 is shear modulus of minerals that make up the rock, and

M (φ) = (1 − φ)
3

1−φ ≈1 − 3φ+
7

2
φ3. (3)

In the case of fluid-saturated reservoirs, we may simplify the bulk and shear moduli of
saturated rock as

Ksat≈K0 M (φ) +
[1 −M (φ)]2

φ/Kf

≈K0 M (φ) +Kf F (φ) ,
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µsat = µ0 M (φ) , (4)

where

F (φ)≈φ
(

3 − 7

2
φ2

)2

. (5)

Under assumptions of quartz and shale making up the rock, we employ the Voigt-Reuss-
Hill average model to calculate K0 and µ0 as

K0 = Y1 (Vc) =
1

2

[
Kq + (Kc −Kq)Vc +

KqKc

Kc + (Kq −Kc)Vc

]
,

µ0 = Y2 (Vc) =
1

2

[
µq + (µc − µq)Vc +

µqµc
µc + (µq − µc)Vc

]
, (6)

where Vc represents the shale content, Kq = 33.6 GPa and µq = 45 GPa are bulk and
shear moduli of quartz, and Kc = 21 GPa and µc = 7 GPa are bulk and shear moduli of
shale, respectively.

Gray et al. (1999) present a linearized PP-wave reflection coefficient in terms of bulk
and shear moduli of saturated rock as

RPP (θ) =

(
1

4
− 1

3
γsat

)
sec2 θ

∆Ksat

Ksat

+ γsat

(
1

3
sec2 θ − 2sin2 θ

)
∆µsat
µsat

+

(
1

2
− 1

4
sec2 θ

)
∆ρ

ρ
,

(7)

where γsat = µsat/
(
Ksat + 4

3
µsat

)
.

Combining equations 1-7, we derive the PP-wave reflection coefficient as a function of
shale content, porosity, fluid bulk modulus and density as

RPP (θ) =P1 (θ)
∆Y1 (Vc)

Y1 (Vc)
+ P2 (θ)

∆Y2 (Vc)

Y2 (Vc)

+ P3 (θ)
∆F (φ)

F (φ)
+ P4 (θ)

∆M (φ)

M (φ)

+ P5 (θ)
∆Kf

Kf

+ P6 (θ)
∆ρ

ρ
,

(8)

where γdry = µdry/
(
Kdry + 4

3
µdry

)
, and

P1 (θ) =
1

4

(
γsat
γdry

− 4

3
γsat

)
sec2 θ,

P2 (θ) = γsat

(
1

3
sec2 θ − 2sin2 θ

)
,
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P3 (θ) =
1

4

(
1 − γsat

γdry

)
sec2 θ,

P4 (θ) =
1

4

(
γsat
γdry

sec2 θ − 8γsatsin
2 θ

)
,

P5 (θ) = P3 (θ) =
1

4

(
1 − γsat

γdry

)
sec2 θ,

P6 (θ) =
1

2
− 1

4
sec2 θ, (9)

Using the derived PP-wave reflection coefficient, we may write PP-wave EI as

EI (θ) = [Y1 (Vc)]
2P1(θ) [Y2 (Vc)]

2P2(θ)

[F (φ)]2P3(θ) [M (φ)]2P4(θ)

(Kf )
2P5(θ) (ρ)2P6(θ) .

(10)

Inversion for reservoir parameters using derivatives of EI

To obtain results of reservoir parameters from input seismic datasets, we present a two-
stage inversion method. In the first stage, we implement a linear inversion of partially
incidence-angle-stacked seismic data for estimating EI, and in the second stage, we use the
estimated EI to predict reservoir parameters.

The damping least-squares (DLS) algorithm, which is proposed by Chen et al. (2020),
is used in the estimation EI from seismic data. In this study, we focus on the second-stage
inversion, i.e. the inversion of EI for reservoir parameters. In equation 10, we observe the
relationship between EI and reservoir parameters is nonlinear. We succinctly express the
nonlinear relationship between the vector of EI (d) and the vector of unknown parameters
(m) as

d = G (m) , (11)

where G represents the forwarding vector. In the case of n layer and the incidence angle
θi, we express d and m as

d =

EI1 (θi)
...

EIn (θi)

 ,

4 CREWES Research Report — Volume 34 (2022)



EI inversion for reservoir parameters

m =



V 1
c
...
V n
c

φ1
...
φn
K1
f

...
Kn
f

ρ1
...
ρn



, (12)

The Newton algorithm is utilized to solve the nonlinear problem, and the vector of
unknown parameters is given by

mk+1 = mk + ∆mk, (13)

where mk represents the estimated vector of unknown parameter after the kth iteration, and
the update ∆mk is calculated as

∆mk = −H−1g, (14)

where

g =
∂EI

∂m

∣∣∣∣
m=mk

∆d,

H≈g gT , (15)

where ∆d represents difference between vectors of modeled and input EI datasets.

NUMERICAL EXAMPLES

In this section, we use synthetic and real seismic data to validate that the proposed
inversion method is robust and may make reliable estimation of reservoir parameters.

Synthetic data

We first apply the proposed inversion method to synthetic data generated using a well
log model. Given a Ricker wavelet of dominant frequency of 20 Hz, we generate synthetic
data based on the derived reflection coefficient and the convolution model. Adding Gaus-
sian random noise to synthetic data, we obtain the noisy seismic data of signal-to-noise
ratio of 5 and 2, which serves the input data for the estimation of EI. In Figure 1, we show
curves of porosity φ, shale content Vc, water saturation Sw and density ρ; and we also show
curves of Kf , Kdry, Ksat and µsat that are calculated using the fluid substitution model and
the Voigt-Reuss-Hill average model.
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FIG. 1. Well log model.

Given angles of incidence θ1 = 5◦, θ2 = 12◦, θ3 = 19◦ and θ4 = 26◦, we show the
generated noisy seismic data of signal-to-noise ratio of 5 and 2 in Figure 2. Comparisons
between true values calculated using the derived EI equation and inversion results of EI
obtained using the DLS algorithm are shown in Figure 3. We observe there is a good match
between the inversion result and true value of EI, which illustrates the inversion result of
EI can be used for the estimation of reservoir parameters in the second-stage inversion.

Using the inversion result of EI as the input, we proceed to the estimation of reser-
voir parameters based on the proposed nonlinear inversion method. In Figure 4, we show
comparisons between inversion results and true values of Vc, φ, Kf and ρ. With inversion
results of EI of four incidence angles, i.e. EI (θ1), EI (θ2), EI (θ3) and EI (θ4), in hand,
we may obtain four sets of inversion results for each reservoir parameter, and we calcu-
late the average of four sets of inversion results as the final inversion result of reservoir
parameter.
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FIG. 2. Noisy seismic data. a) Signal-to-noise ratio of 5; and b) Signal-to-noise ratio of 2.

In Figure 4, we observe the final inversion result of each reservoir parameter matches
the corresponding true value well. It illustrates that the proposed inversion method can be
used to estimate reservoir parameters reliably from the inversion results of EI even in the
case of signal-to-noise ratio of 2, which verifies the robustness of the proposed nonlinear
inversion method.

Real data

We apply the proposed inversion method to a real data set acquired over a gas-bearing
reservoir. Following the workflow of two-stage inversion, we first implement the inver-
sion for EI using partially incidence-angle-stacked seismic data. In Figure 5, we show the
stacked seismic datasets that are used for the estimation of EI of different incidence angles.
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FIG. 3. Comparisons between true values (Black) and inversion results (Red) of EI of different inci-
dence angles. a) Signal-to-noise ratio of 5; and b) Signal-to-noise ratio of 2. Blue curve represents
the initial model of EI, which is a smoothed version of true value.

Using the DLS algorithm again, we implement the inversion for EI results of different
incidence angles, which are used as the input for the estimation of reservoir parameters.
In Figure 6, we show the inversion results of EI of incidence angles θ1, θ2, θ3 and θ4. We
observe at locations where inversion results of EI exhibit low values the attached P-wave
velocity also exhibits a relatively low value, which verifies the reliability of EI inversion
results. Using the inversion results of EI, we implement the estimation of reservoir param-
eters.

In Figure 7, we show the final inversion results of Vc, φ, Kf and ρ, which are av-
erage values calculated using reservoir parameters estimated from EI results of different
incidence angles.

At the location of gas-bearing reservoirs (around CDP 310 and Time 1450 ms), we
observe that inversion results of Vc, Kf and ρ show relatively low values and inversion
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FIG. 4. Comparisons between true values (Black) and inversion results (Red) of shale content,
porosity, fluid bulk modulus and density. a) Signal-to-noise ratio of 5; and b) Signal-to-noise ratio of
2. Blue curve represents the initial model of EI, which is a smoothed version of true value, and gray
curve represents the inversion result that obtained using EI of each angle.

result of φ exhibits relatively high values, which may match the well log interpretation
data. It validates that inversion results of reservoir parameters obtained using the proposed
method are reliable and can be used for identifying hydrocarbon reservoirs.

CONCLUSION

Estimation of reservoir porosity, shale content and fluid type plays an important role in
geophysical exploration. Based on petrophysical theory and equivalent models, the rela-
tionship between seismic wave reflection and reservoir porosity, shale content and fluid is
constructed. Combining fluid substitution model and the average model, we first present
the nonlinear reflection coefficient and elastic impedance (EI) that are expressed as a func-
tion of porosity, shale content, fluid bulk modulus and density; and using the derived re-
flection coefficient and EI, we propose a two-step inversion method, which involves: 1)
using partially incidence-angle-stacked seismic data to implement a linear inversion to pre-
dict EI datasets; 2) using the predicted EI datasets to implement a nonlinear inversion for
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FIG. 5. Partially incidence-angle-stacked seismic data of angles of incidence θ1 = 5◦, θ2 = 12◦,
θ3 = 19◦ and θ4 = 26◦. The curve represents P-wave velocity provided by well logging data.
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FIG. 6. Inversion results of EI of angles of incidence θ1 = 5◦, θ2 = 12◦, θ3 = 19◦ and θ4 = 26◦. The
curve represents P-wave velocity provided by well logging data.

shale content, porosity, fluid modulus and density, during which we compute the first- and
second-order derivatives of EI with respect to unknown parameters to improve the accu-
racy of inversion. The robustness of the proposed inversion method is verified using noisy
seismic data. Applying the proposed method to real data, we may obtain reliable inversion
results of reservoir parameters that can match the well log interpretation data.
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FIG. 7. Final inversion results of shale content, porosity, fluid bulk modulus and density. The curve
represents the corresponding shale content, porosity, fluid bulk modulus and density provided by
well log interpretation data.
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