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ABSTRACT

We successfully created a natural language processing pipeline to extract mud-
logging cutting descriptions from PDF files. We converted them to usable structured
numerical tables that can be used to match with wireline logs or seismic sessions. The
nature of the original tables required extensive preprocessing of the extracted object,
including data manipulation, pattern recognition, missing values treatment, and resample.
The extract and processed table were merged with well logs and used to predict DTC and
provided important improvement of the predictions compared to the baseline model using
wireline logs only, where the R2 improved from 0.73 to 0.82 using a linear regression
model. Feature selection with the stepwise regression generated an optimized model that
kept the quality of the predictions and used logs and cutting descriptions with equal
importance. Lately, an XGBoost regressor created a non-linear model to improve the
predictions with an R2 of 0.88, relying more on the wireline logs. New tests were done on
a train-validation split of 5% and 95% to avoid biased predictions. Both the stepwise and
XGBoost regression predictions were less precise but still close to the actual values,
showing the robustness of the methodology.

INTRODUCTION

Cutting descriptions are part of the mud-logging analysis (Whittaker, 1990), where
samples from the subsurface are examined, and chip descriptions are added to a logging
report. These analyses are widely used in the industry by crossing the description with other
logging measurements. Mohamed A. El-Dakak et al. (2021) used cutting descriptions to
match sand reservoir bodies with the wireline logs. A similar application was made by
Sakurai et al. (2002), where the cutting descriptions were used to calibrate lithology models
from the wireline logs. Vo Thanh & Lee (2022) used cutting descriptions as one of the
tools for the facies and depositional analysis. Although important, the cutting descriptions
are inside the mud-logging reports, in PDF format, and are not directly used as data tables
but as a reference for the petrophysicists.

Tables can be extracted from PDF files and exported to data tables using Natural
Language Processing (NLP), a field to identify words from texts and audio. Some
applications include the use of NLP to identify severe injuries from HSE reports (Guarido
& Trad, 2019), sentiment analysis to improve human-robot interactions (Atzeni &
Reforgiato Recupero, 2020), text classification from extensive engineering reports in PDF
for design and development (Abdoun & Chami, 2022), and converting tables from PDF to
HTML files by using image classification techniques (Zhong, ShafieiBavani, & Jimeno
Yepes, 2020).

There are different tools to extract tables from PDF files, such as the Tabulizer
library in R (Leeper, 2018). They work well on organized tables but start to fail on more
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complex and unstructured ones, and preprocessing the data is required to convert more
complex tables to usable ones.

In this report, we will automatically extract cutting descriptions from mud-logging
reports from the ConocoPhillips Poseidon survey in Australia using, as a starting point, the
Tabulizer package and NLP techniques to localize the names of the minerals and their
quantity in the specific cut as well as oversampling the data to match the depth sample
rating of wireline logs. The final goal is to create an application where users can
automatically upload their mud-logging reports and export the cutting descriptions tables.
Also, as a proof of concept (PoC), we will use the extracted cutting descriptions and logs
that are commonly used on log-while-drilling (LWD), such as gamma-ray and resistivity,
to generate synthetic sonic logs, using linear regression for a deeper analysis, and the
XGBoost (Chen & Guestrin, 2016) for more precise predictions.

CUTTING DESCRIPTIONS REPORTS

Cutting descriptions are part of the mud-logging report of drilled wells worldwide.
These reports are standard and widely used to match the interpretation of reservoir
characterization by petrophysicists. However, such data is usually in PDF files, and they
are used as supporting information but not matched directly with wireline logs and seismic
sessions. We propose to convert such tables from PDF to CSV files automatically.
Extracting tables from PDF files can be arduous, as some can be highly unstructured, and
exhaustive preprocessing is required.

ConocoPhillips

CmocJPhiIIips Cuttings Descriptions Report

| Well Name : Poseidon-2 Print Date 807/2010

Wellsite Geologist(s) : MBoyd MOtz S Philips J Bardelosa M Ortiz M Warrington

Interval % Lithology / Show Descriptions. Ca(%) Mg (%)
(m)
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FIG. 1. Cutting description from the Poseidon-2 well in Australia.
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Error! Reference source not found. is the first page of the cutting descriptions of
the mud-logging from Poseidon-2 by ConocoPhillips. It is a perfect example of an
unstructured table, and it is used in this report. It contains two rows of headers on the first
page only, 1 row with the names of the columns, and five rows of data: the depth interval,
the percentages of the listed minerals in the lithology descriptions column, the rate of Ca,
and the ratio of Mg.

We use the Tabulizer package in R to convert the PDF table to a data frame. Due
to the unstructured origin of the table, the extracted table is far from usable. A whole
process of data regularization, with the use of Natural Language Processing (NLP), is
required to create a table that can be matched with wireline logs.

Tabulizer

e Select the table on the first page
*Read other pages
eExtract long table

Processing

eRegularize table and merge rows
e Locate minerals with NLP and separate into columns
e Feed the new columns with percentages

Export

eResample to the desired sample rate
e Export to CSV

FIG. 2: PDF to CSV process.

FIG. 2. presents the process of reading a table in a PDF file and convert to a CSV
one. Each step is detailed below:

e The first step is to manually select the table area of the first page (in a pop-up
window), as it contains a table header.

e All other pages are read automatically, as they do not contain the table header, as
the second page on FIG. 3.

e Page header, footnote, and page number are automatically removed.

e Each page is automatically preprocessed, separated, and concatenated in the final
steps.

e As text descriptions are long, the extracted table divides descriptions into different
rows so they are merged.
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e Use NLP to recognize the name of minerals in the descriptions column, as the words
are capitalized and followed by a colon and create a column for each character.

e Populate the new columns with the information from the “%” column.
e Resample the table to the desired sample rate.

e Export to CSV.

Srilips £2sEien2

Interval % Lithology / Show Descriptions. Ca(%) Mg (%)
(m)
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FIG. 3. Second page of the cutting descriptions table.

All these steps work because the patterns are the same for all the pages, and an
example of part of the final table can be seen in FIG. 4. We can observe some of the new
columns created with the percentage values included. The number of new columns equals
the number of different minerals listed in the descriptions. However, this method would
work only for the ConocoPhillips table template. To design the web application, we need
to include other templates; the user can select one.

With the table extracted and exported to a resampled CSV format, we can merge it
to wireline logs from LAS files and use the percentages of the mineral as logs for different
analyzes, such as facies classification, or create synthetic traces, for example.
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FIG. 4. Extracted table from Poseidon-2 cutting descriptions.

USING CUTTING DESCRIPTIONS WITH WIRELINE LOGS

Extracting the cutting descriptions from a PDF file and converting them to a table
is only part of the job: we need to test if the new logs can improve petrophysical analysis.
As proof of concept (PoC), a sonic log (DTC) will be predicted with and without the cutting
descriptions for the Poseidon-2 borehole.

The previous section extracted cutting descriptions from mud-logging PDF files
and converted them to a numerical table for the Poseidon-2 well. Now, this table can be
merged with LWD and wireline LAS files to include more information in the analysis, and
FIG. 5 shows the merging outcome. The cutting descriptions table was resampled to the
same sample rate as the wireline logs of 50cm. There are, after merging, 8 well logs, 26
mineral rates, and 2 percentage variables (Ca and Mg) as data. From the well logs, only 3
logs are vastly available for the depth interval: GR, RDEP, and DTC. Gamma-ray and
resistivity are logs that are also available in several LWD surveys. So, the proposal is to
predict synthetic DTC using GR and RDEP only, include the cutting descriptions, and
evaluate the effectiveness of the cutting descriptions as log data.
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FIG. 5. Wireline logs and the extracted chip descriptions merged.

Baseline Model

In the first test, the data (with 5684 observations) were randomly split into 40% for
training (2273 observations) and 60% for validation (3411 observations), and the data were
standardized to have all variables at the same scale. This is a splitting sin, as the rows are
correlated to the rows above and below, but the idea is to show how the cutting descriptions
can improve the predictions. As we are predicting DTC, this is a regression problem.

The baseline model is a linear regression trained using only GR, RDEP, and Depth to
predict DTC. FIG. 6 shows the training results. Assuming a significance level of 5% (P <
0.05), only GR and RDEP were statistically significant in predicting the target (p-value
smaller than 0.05). The adjusted R? is 0.73, a reliable metric number, showing that using
only these two logs.

call:
Im(formula = DTC_Detrended ~ GR + RDEP + Depth (m) , data = train)

Residuals:

Min 1Q Median 3Q Max
-27.379 -3.160 -0.161 3.037 33.115

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.11421 .11001 -1.038 0.299
GR 1.91385 .12934 14.797 <2e-16
RDEP -7.62717 .12629 -60.395 <2e-16
‘Depth (m)~ -0.07992 .10949 -0.730 0.466

Signif. codes: 0 ‘¥*%*’ 0. f¥%7 0.01 ‘*’ 0.05 ¢

Residual standard error: 5.244 on 2269 degrees of freedom
Multiple R-squared: 0.7318, Adjusted R-squared: 0.7315
F-statistic: 2064 on 3 and 2269 DF, p-value: < 2.2e-16

FIG. 6. Baseline linear regression model using only RDEP, GR, and Depth to predict DTC.

Predictions on the validation data are in FIG. 7. The R? is 0.73, similar to the
training value. Visually the predictions (in orange) closely follow the actual values (in
black), with some difference at depths 3500m, 4100m, and 4750m, showing that we can
get great DTC values only from a handful of logs.
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Linear Regression Prediction (Logs Only)
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FIG. 7. Predictions using only logs with a 40/60 split.

Linear Regression

The next step is to include the cutting descriptions as new features for the linear
regression, and FIG. 8 shows its summary. Not all cutting descriptions are statistically
significant to predict the target, as their p-value are larger than 0.05, but several are. With
the new R? of 0.82, we can already see that including the cutting descriptions is helping the
linear model to reach more accurate predictions.

call:
Im(formula = DTC_Detrended ~ . - Depth - Trend_DTC - DTC, data = train)

Residuals:

Min 1Q Median 3Q Max
-24.2906 -2.3174 -0.0601 2.4379 22.1395

coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.07621 09041 -0.843 0.399360
“Depth (m)~ -5.10753
"Argillaceous calcilutite’ -0.28764
Calcarenite -2.53034
Cement 0.34663
calcilutite 0.06983
‘Calcarenite Calcilutite’ -0.47073
Chert -0.44993
“Calcarenite Chert’ -0.40398
“calcilutite Argillaceous Calcarenite’ -0.05612
"Argillaceous Calcarenite’ 0.27558
"Argillaceous cCalcisiltite’ .12594
‘calcilutite 1 .19880

43234 . < 2e-16
42570 499306
75655 000838
08092 92e-05
44667
14862
16017
15794
14630
12137
08487
11180
09888
09703
26453
27965
13569
35293
60937
17072
11964
51090
12842
13603
20897
30407
11029
06590
13287
67561
13907
15345

875787
001560 *
005010
010602
701306
023270 *
137975
075495
158227
000381
009587
371752
343524
814598
1le-06
240709
014075 *
630218
002434
027349
39e-07
320785
459887
032627 *

“calcareous Siltstone’ .13957
"Argillaceous Calcilutite 1° .34530
Mar .68583
Sandstone .24984
‘Mar1 calcilutite’ .12855
“calcareous Claystone’ .08277
Claystone .97673
“Claystone 1° .20035
Contamination .29400
Siltstone .24599
Volcanic .38974
“No Lithology" 30034
"Ferruginous Volcanic’ 10406
"Argillaceous Volcanic’ 30196
“Siltstone 1° 08152
"Siltstone Siltstone 1’ 14090
"Argillaceous Siltstone’ 31283
“ca (%)

OOO0O0OOHOOOOOHOOOO0OOOO0O0OOOOROO

68043
27713
72598

ANHOOOOHO
CO00000000O00C0000O000O00OCOOO00000

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * 7

Residual standard error: 4.281 on 2240 degrees of freedom
Multiple R-squared: 0.8235, Adjusted R-squared: 0.821
F-statistic: 326.7 on 32 and 2240 DF, p-value: < 2.2e-16

FIG. 8. Linear regression model summary using logs and cutting descriptions.

Applying the new model to the validation set generated the predictions in FIG. 9.
The new R? is 0.81 for the validation set, close to the training one, suggesting there is no
overfitting, and the predictions (in orange) are closer to the actual values (in black). This
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shows that using the extracted cutting descriptions from the PDF file of mud-logging help
improve the sonic log (DTC) estimation.

Linear Regression Prediction
00

estimator

standard

standard

standard

150

DTC

100

3000

4.4386886
08151114
3.0930813

4000
Depth (m)

5000

Type
Prediction

— True

FIG. 9. Predictions with the new model using all the cutting descriptions variables.

Stepwise Regression

From FIG. 8, many input features are not statistically significant to predict DTC.
They can be automatically removed using stepwise regression (Johnsson, 1992), which
adds or subtracts a variable at each step to improve the Akaike Information Criterion (AIC).
The AIC is a metric used to determine the best model of a set of models created in the same
set of observations and is suited for model selection (Bozdogan, 1987). FIG. 10 shows the
stepwise regression and how AIC decreases with adding a feature to the model, indicating
an improved model. The summary only shows the results for significant features for a linear

regression model.

Step

+ RDEP

+ Claystone

+ GR

+ Siltstone

+ Chert

+ Calcilutite

+ Marl

+ Cement

+ “Ferruginous Volcanic'
+ "Depth (m)
+ "Ca (%)’

+ Calcarenite

+ " Argillaceous Calcilutite 1°
+ Volcanic
+ " Calcarenite Calcilutite”

+ Contamination

+ "Calcarenite Chert”

+ "No Lithology"

+ "Argillaceous Calcarenite”
+ “Argillaceous Siltstone

+ "Siltstone Siltstone 1°

+ "Calcilutite 1°

+ "Argillaceous Calcisiltite

Deviance

164201.15914
11905.59089
3638.88705
4409.50446
1948.92161
433.89126
411.73326
404.94381
407.18323
370.41554
1190.78662
814.37080
222.65322
179.73710
173.82514
107.77090
110.49629
99.43980
96.34674
82.81256
85.12202
82.97880
39.81617

Resid. Df

2272
2271

2270
2269
2268
2267
2266
2265
2264
2263
2262
2261

2260
2259
2258
2257
2256
2255
2254
2253
2252
2251

2250
2249
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232626.37
68425.21
56519.62
52880.73
48471.22
46522.30
46088.41
45676.68
45271.73
44864.55
4449414
43303.35
42488.98
42266.33
42086.59
41912.76
41804.99
41694.50
41595.06
41498.71
41415.90
41330.77
41247.80
41207.98

AIC|

10522.201

6652.783
6648.767
6645.340
6642.069
6639.529
6636.852
6634.284
6634.089

FIG. 10. Feature selection using stepwise regression.

The stepwise regression results are in FIG. 11. The model has a similar R? as using
all the features, but some are not statistically significant. The stepwise regression uses the
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AIC metric to determine the best model, while the linear regression with the selected
features uses another statistical method to define variable significance.

call:
Im(formula = DTC_Detrended ~ RDEP + Claystone + GR + Siltstone +
Chert + ca1c11ut1te + Marl + Cement + "Ferruginous Volcanic™ +
‘Depth (m)" + "Ca (%) + Calcarenite + 'Argillaceous Calcilutite 1° +
volcanic + "Calcarenite Calcilutite’ + Contamination + "Calcarenite Chert’ +
‘No_Lithology' + "Argillaceous Calcarenite’ + "Argillaceous Siltstone +
‘Siltstone Siltstone 1° + "Calcilutite 1° + "Argillaceous Calcisiltite’,
data = train)

Residuals:

in 1Q Median 3Q Max
-23.7128 -2.3492 -0.0624 2.4954 22.0296

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) -0.06767 09007 75
RDEP -4.63892 14619
Claystone .64004
GR .26257
Siltstone -0.61817
Chert -0.35745
calcilutite .29630
Marl .73528
Cement .35096
"Ferruginous Volcanic’ .05934
‘Depth (m)~ .89432
“ca (%) .69692
Calcarenite .87118
"Argillaceous calcilutite 1° .28086
volcanic 0.31937
‘Calcarenite cCalcilutite .36713
Contamination .23988
‘Calcarenite Chert’ .30700
No Lithology .23056
"Argillaceous Calcarenite’ .23653
"Argillaceous Siltstone’ .25202
‘Siltstone sSiltstone 1 .13833
“calcilutite 1° 0.21857
"Argillaceous Calcisiltite’ .12187

Signif. codes: 0 ’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 1

18929
13164
17092
12527
12718
10253
08081
13837
40638
41170
22906
08208
08867
10138
08804
11659
09067
10175
11258
06389
10546
08268

038331 *
140588

0000000000000 0000000000O:

ocoococo00cO00O0OVN

Residual standard error: 4.281 on 2249 degrees of freedom
Multiple R-squared: 0.8229, Adjusted R-squared: 0.821
F-statistic: 454.2 on 23 and 2249 DF, p-value: < 2.2e-16

FIG. 11. Summary of the stepwise regression.

Moreover, the predictions on the validation set in FIG. 12 show that with fewer
features, we can still have the same level of accuracy in predicting DTC.

Step-wise Model Prediction

200

.metric .estimator

Type

Prediction

DTC

— True
100

3000 4000 5000
Depth (m)

FIG. 12. Stepwise predictions on the validation set with a 40/60 split.

These results indicate that including cutting descriptions in petrophysical analysis
can improve their outcome. We have considered a linear correlation between the features
and the target. A non-linear regressor model could improve the situation even further in
the predictions’ quality.
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XGBoost Regressor

A non-linear regressor model may be able to improve the predictions even further.
Using the same features selected by the stepwise regression, an XGBoost regressor was
trained, and the predictions were estimated on the validation set. FIG. 13 shows predictions
(in orange) closely matched with the actual values (in black), with R? of 0.88, a good
improvement compared to a linear model.

XGBoost Model Prediction
200 . it

150

Type

Prediction

DTC

— True

100

3000 4000 5000
Depth (m)

FIG. 13. XGBoost regression on the validation set with a 40/60 split.

Feature importance can be extracted from several statistical and machine learning
models. In linear regression, using standardized features, the magnitude of the weights (or
parameters) indicates the effect power of the feature. Larger the absolute values of the
weights, the more significant the importance of the features of those weights. From FIG.
11, the stepwise regression modelling suggests that the most important features are RDEP,
Depth, Ca, and Claystone. Shapley Values (Hart, 1989), used in game theory, can be used
to understand which feature had the highest contribution for each observation to reach a
predicted value. The XGBoost library provides the most important features by measuring
the gain (their contribution to improving the accuracy in each branch of each tree). FIG.
14 shows that, for the XGBoost regressor, the wireline logs are the most important features,
highly dominated by RDEP (also the most important feature in the stepwise regression).
The cutting descriptions have more discrete importance, different than the stepwise
regression. As a recommendation for the future, use Shapley Values in both models for a
direct comparison.
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FIG. 14. Top 10 most important features used by the XGBoost regressor in 40/60 split data.

Our results indicate the significance of including cutting descriptions to estimate a
synthetic DTC, but as pointed out previously, we are sinning with the random 40/60 train-
validation split. The next step is testing a different train-validation ratio.

MODELLING WITH A 5/95 SPLIT

Randomly splitting log data into train-validation is not optimal as an observation is
correlated to neighbouring observations. To minimize a biased prediction, we tried our
methodology on a new ratio of train-validation split: 5% (284 observations) and 95% (5400
observations), respectively.

Stepwise Regression 2

FIG. 15 shows the summary of the stepwise regression model trained on 5% of the
data. The number of statistically significant features has decreased, as most cutting
descriptions are absent from the training data (zero for those observations). The weights
suggest that the most important features are Depth, Ca, and RDEP.

call:

Im(formula = DTC_Detrended ~ RDEP + Claystone + GR + Volcanic +
Siltstone + Calcarenite + Depth (m)  + "Cca (%) + Marl +
“Calcareous Claystone  + 'No Lithology + "Argillaceous calcilutite 1,
data = train)

Residuals:
Min 1Q Median 3Q Max
-12.9835 -2.3522 -0.2917 2.4866 22.6639

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2462 2477 -0.994 0.32109
RDEP -4.4025 4032 -10.919 < 2e-16
Claystone 1.1320 4448 2.545 0.01149
GR 2.1850 3610 6.052 4.74e-09
Volcanic 0.6611 1510 4.377 1.72e-05
Siltstone -1.3066 4190 -3.118 0.00202
calcarenite -2.5688 4543 -5.654 3.97e-08
‘Depth (m)~ -6.9181 1325 -6.109 3.48e-09
‘ca (%) -5.6660 0575 -5.358 1.80e-07
Marl 0.7436 2531 2.938 0.00359
“Calcareous Claystone’ -0.6084 3056 -1.991 0.04747 *
"No Lithology" -0.2677 1534 -1.745 0.08210 .
"Argillaceous calcilutite 1° 0.2833 1748 1.621 0.10618

COO0OOHHOOOOOOCO

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 * ’ 1

Residual standard error: 4.08 on 271 degrees of freedom
Multiple R-squared: 0.8404, Adjusted R-squared: 0.8334
F-statistic: 118.9 on 12 and 271 DF, p-value: < 2.2e-16

FIG. 15. The new stepwise model with a 5/95 split.
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Predictions in FIG. 16 have lost accuracy, with R? of 0.79 on the validation set. As
the R? on the training set is 0.84, minor overfitting is suggested. Visually the predictions
(orange) are still closely matched to the actual values (black), indicating the robustness of
the model.

Step-wise Model Prediction

200

Type

Prediction
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100

o

3000 4000 5000
Depth (m)

FIG. 16. Stepwise regression predictions on the validation set with a 5/95 split.

XGBoost Regression 2

Training an XGBoost regressor model on 5% of the data using the same variables
selected by the stepwise regression model produced the predictions on the validation set in
FIG. 17. The R? reduced to 0.86 but is still high. The predictions (orange) are closely
matched to the actual values (black), only with some spikes showing up around 4000m.
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FIG. 17. XGBoost regression predictions on the validation set with a 5/95 split.

Features importance in FIG. 18 are like the ones in FIG. 14, where RDEP, Depth,
and GR are the most important features. The wireline logs gain more importance by
training the linear and XGBoost models on fewer data.
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FIG. 18. XGBoost feature importance on the 5/95 spilit.

CONCLUSIONS

We presented a natural language processing pipeline to successfully extract mud-
logging cutting descriptions from PDF files and converted them to usable structured
numerical tables that can be used to match with wireline logs or seismic sessions. The
nature of the original tables required extensive preprocessing of the extracted object,
including data manipulation, pattern recognition, missing values treatment, and resample.

The extract and processed table were merged with well logs and used to predict
DTC and provided important improvement of the predictions compared to the baseline
model using wireline logs only, where the R? improved from 0.73 to 0.82 using a linear
regression model. Feature selection with the stepwise regression generated an optimized
model that kept the quality of the predictions and used logs and cutting descriptions with
equal importance. Lately, an XGBoost regressor created a non-linear model to improve the
predictions with an R? of 0.88, relying more on the wireline logs.

New tests were done on a train-validation split of 5% and 95% to avoid biased
predictions. Both the stepwise and XGBoost regression predictions were less precise but
still close to the actual values, showing the robustness of the methodology.
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