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ABSTRACT

The spatial distribution of CO, saturation and the plume location can be monitored
using time-lapse seismic data. Due to the limited knowledge of rock and fluid properties
before injection, model predictions are often uncertain and must be updated when new
measurements are available. The 2018 CMC VSP survey provided a dataset suitable for
creating a baseline subsurface model for later monitoring studies. In this report, we apply
full waveform inversion to the measured data, to reconstruct the subsurface model of elastic
and rock physics properties. The key strategies used in our FWI framework are the effective
source method for coping with near surface complexity, the inclusion of DAS data in FWI
for leveraging the complementary aspects of accelerometer and DAS data, and the rock
physics parameterized FWI that allows for jointly updating the elastic and rock physics
variables. The result is high-resolution, plausible, and has a good agreement with the well-
log data.

INTRODUCTION

The Carbon Management Canada (CMC) Newell County Facility is a platform for de-
velopment and performance validation of technologies intended for measurement, moni-
toring and verification of CO, storage (Lawton et al., 2017). In 2018, a vertical seismic
profile (VSP) baseline survey was acquired using accelerometers and collocated distributed
acoustic sensing (DAS) fiber in a monitoring well located approximately 20 meters south-
west of the injector well. The subsurface models obtained from this survey can be used to
support further time-lapse analysis, e.g., reduce the uncertainty in predicting CO, distri-
bution during injection and migration. In this report, we focus on using the technology of
full-waveform inversion (FWI) to reconstruct elastic and reservoir property models from
the measured data.

Prior to its inclusion in FWI, the field data must be processed to make them more
comparable to simulated data generated by modeling procedures and to remove artifacts
from the data. The processing workflow performed on each of the accelerometer and DAS
datasets is detailed in (Eaid et al., 2021a). Figure 1 plots the processed datasets for several
shot points on source line 1. In addition to seismic data, a comprehensive log suite was
acquired at the injection well. The wireline logs were further interpreted that provides
depth profiles of porosity and mineral composition. Hu et al. (2022b) construct a rock
physics model combining the soft-sand model and Gassmann’s equations to link the elastic
and rock property logs. The model predicts the data accurately, then is used to reconstruct
the shallow section of the velocity and density logs (Figure 2).

The preliminary FWI results for this survey are given in Keating et al. (2021) using
accelerometer data and Eaid et al. (2021b) using both DAS and hybrid DAS-accelerometer
data subsets. Two of the strategies they promote to improve the convergence are the ef-

CREWES Research Report — Volume 34 (2022) 1



Hu and Innanen

fective source method for addressing near surface complexity and the log-derived single-
parameter inversion for preventing parameter crosstalk. Eaid et al. (2021b) also illustrate
that inverting both accelerometer and DAS data together has a stabilizing effect on the
inverted models when compared to using either dataset alone. While using the single-
parameter inversion offers advantages, it also causes a loss of elasticity information in the
result that is important for reservoir property characterization. In addition, the assumption
made for this parameterization, namely the model variables such as velocity and density are
perfectly correlated, introduces uncertainty to the inversion. In this work, while retaining
most of the existing strategies, we extend the FWI framework to three-parameter elastic
inversion and direct rock physics parameter inversion (Hu et al., 2021).

In this work, we perform 2D frequency-domain isotropic-elastic FWI on the 2018 CMC
VSP dataset including both accelerometer and DAS measurements. We first review the key
FWI strategies we apply to the field data, including the effective source method, the inclu-
sion of DAS data in FWI, and the FWI framework which allows for direct updating of rock
properties. We then propose two workflows combing FWI and rock physics for the predic-
tion of both elastic and rock physics properties in the field. One is a conventional workflow,
where we first estimate the elastic properties using FWI, then invert these elatic properties
for rock physics properties using a Bayesian approach. The other is a direct approach, in
which we estimate the rock properties directly from seismic data, the corresponding elastic
properties are then jointly output.
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FIG. 1. Processed accelerometer and DAS data for the shot points on source line 1 (Eaid et al.,
2021a).
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FIG. 2. Well-log data of the injection well: P-wave velocity, S-wave velocity, density, porosity, and
the volume fractions of quartz, clay, and coal. The blue and red curves denote the real data and
the data predicted by the rock physics model (Hu et al., 2022b).

THEORY

In FWI, the inverse problem is generally framed as an attempt to minimize the data
misfit, subject to an assumed wave propagation model linking the wavefield and subsurface
together. The objective function can be written as

1
E(m) = 5 |Ru—d|j subjectto A(m)u="f, (1)

where R is the sampling matrix representing receiver measurement, u is the displacement
wavefield simulated from model vector m, d is the measured data, A is a finite-difference
forward modeling operator, and f is the source term. Within a Newton optimization, the
search direction dm for model update is the solution of

Hoim= -V, E, (2)

where V,, /' and H are the gradient and the Hessian of the objective function, respectively.
We employ the [ — BFGS method, which stores the changes of the gradient and model from
a limited number of previous iterations and uses the stored information to approximate the
inverse of the Hessian (Nocedal and Wright, 1999).

Effective source estimation

Keating et al. (2021) propose a strategy for FWI of VSP data sets where the effects of
the near-surface are significant. In this approach, they eliminate the need to characterize the
near-surface by replacing each surface source used in the data acquisition with an effective
source at depth. Unlike unconventional formulations of FWI where only the subsurface
model m is treated as unknown in the inversion, they introduce an additional unknown a
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variable characterizing the wavefield after propagation through the near surface. Equation
1 is rewritten as

1
E(m,f*) == |Ru—d|? subjectto A(m)u=f* 3)
9 2

Equation 3 is effectively the same optimization problem as conventional FWI, with the
exception that we define the problem on a smaller model domain, and we invert for both
an unknown model m and an unknown source term f*. The details of simultanecous FWI
prediction of model and source properties, such as the expressions for gradient and Hessian-
vector product, are presented in Keating and Innanen (2020).

Inclusion of DAS data in FWI

The strain field associated with the displacements in Equation 1 is

=9\ 0r; " Ox;

) , (4,7) ranging over (z,y, 2), 4)

In practice, the strain tensors in equation 4 are solved on a grid that is staggered relative to
that of the displacements (Eaid et al., 2020). To generate a model of the local DAS fiber
response, the strain tensors in the field coordinate system (z, y, z) must be transformed into
the local system describing the fiber, from which the tangential tensor is extracted.

The inclusion of DAS data in FWI requires an objective function that can compare
observed and modeled strain sampled along the tangent of a fiber embedded in the sub-
surface. The matrix R in Equation 1, which acts to sample the displacement wavefield,
can be understood more generally as an operator that transforms the output of the numeri-
cal simulation of the wavefield into quantities that are directly comparable to the observed
data. This allows us to use any standard FWI algorithm by simply reformulating the wave-
field sampling matrix R. Specifically, when incorporating DAS data, R is responsible for
computing the strain field along the DAS fiber, applying gauge length averaging, and com-
puting the tangential strain for each receiver location along the fiber. These steps are given
in detail in Eaid et al. (2020).

Rock physics parameterized FWI

Hu et al. (2021) formulated a direct procedure for updating rock and fluid properties
within elastic FWI. This was achieved by re-parameterizing the inversion in terms of rock
physics properties, adopting a viewpoint similar to that of Russell et al. (2011) within an
AVO environment.

Let m = [m!',m? m3] represent a reference FWI parameterization which is based
on three elastic parameters (e.g., the P- and S-wave velocities plus density) and r =
[r1,r? ...,r"] represent a desired FWI parameterization based on n different rock physics
properties, we can express the elastic variables at the i*" spatial position as a function of
the rock physics variables at the same position: (m}, m? m?) = g(r},r?, ...,r"), where g

is the rock physics model. We point out that the model update in Equation 2 is proportional
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for each of j = (1,2, ...,n). Given the rock physics model g, so that the partial derivatives
of m with respect to r can be derived, through Equation 5 we can move to a new one in
which the vector r is updated.

Hu et al. (2021, 2022a) illustrate the main advantages of this approach: 1) it allows
examination of any rock physics property that has a well-defined relationship with elastic
parameters; 2) it shares the same numerical structure as the conventional FWI, and 3) with
a suitable initial model, the method exhibits higher prediction accuracy than conventional
two-step approaches, in which the elastic properties are first estimated, followed by rock
physics properties.

FIELD DATA INVERSION

The inversion results we present here use the data of source line 1 pre-processed by
Eaid et al. (2021a). The source line 1 includes shot points 1101-1197 for offsets of 480
meters east and west of the observation well 2. We use 64 shots with both accelerometer
and DAS data recorded. The accelerometers were deployed from surface to the bottom of
well at 324.2 m depth. Each shot record is converted from the time domain to the frequency
domain through a temporal Fourier transform. The inversion is computed over 5 frequency
bands using a multiscale approach (Bunks et al., 1995), with each band consisting of 6
equally spaced frequencies. The minimum frequency we use is 10 Hz, which was found to
be the lowest frequency at which the ratio of seismic signal to noise was acceptable, and the
maximum frequency is 25 Hz, which was limited by the computational costs of moving to
the smaller finite-difference grid spacing necessary for higher frequencies (Keating et al.,
2021). The initial model is a 1D model built from smoothed well logs of the injection well.

Elastic FWI + Bayesian rock physics inversion

The three-parameter elastic FWI result is shown in Figure 3. This result has several pos-
itive features: 1) the model shows efficient update from the initial one, while maintaining
the overall trend of each parameter with depth; 2) the model updates are largely layer-like,
but exhibit some degree of heterogeneity in the horizontal direction; 3) the inverted param-
eter values remains in the variation range of the well-log data. 4) unlike previous result
which is based on single-parameter inversion, the three models are exempt from having
exactly the same structure.

In Figure 4, the measured data of shot 1168 and the corresponding modeled data simu-
lated from the initial model and the inverted model are plotted. The measured data are nor-
malized for source-receiver pair, to prevent under-emphasizing measurements from deeper
in the model (Keating et al., 2021). In order to compare these re-scaled data to our sim-
ulated data in the FWI procedure, the modeled data are also scaled in a similar way. The
result accurately reproduces the measured data. However, we note that much of the data
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residuals are eliminated by updating the effective source, or equivalently by changing the
modeling of wave propagation through the near-surface.
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FIG. 3. Initial and inverted models of P-wave velocity, S-wave velocity, and density.
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FIG. 4. Comparison between the measured data, the data simulated from the initial model, and the
data simulated from the inverted model. The data corresponds to shot 1168. The absolute value of
the frequency-domain data is used.

We next use the inverted elastic model as input data to estimate the model of rock
properties, based on the rock physics relations built at the injection well (Hu et al., 2022b).
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In this application, because the the nonlinearity of the rock physics relations are not strong
and the well-log data of the rock physics variables are approximately Gaussian distributed
(Figure 5), we adopt a Bayesian linearized inversion method (Grana, 2016). The main
advantage of this method is the small computational cost due to the analytical solution
given by the linearization of the forward operator and the Gaussian assumption of the prior
model. In a companion report, we provide details for the rock physics aspects of the well-
log data and the formulation of the inverse problem.
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FIG. 5. Gaussian distribution fitted to the well-log data of porosity and quartz content.
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FIG. 6. Bayesian rock physics inversion result: porosity, quartz content, and clay content.

CREWES Research Report — Volume 34 (2022) 7



Hu and Innanen

—Actual log Initial — Inverted
50 50 50
100 ! 100 100
150 9 150 150
g d
£ 200 200 200
o
()
a
250 2 250 250
300 £ 300 300
350 : 350 350 3
2400 2600 2800 3000 800 1000 1200 1400 1600 2200 2300 2400 2500
Vp Vs Density
50 50 50
100 100 100
150 150 150
E
e
E§2oo 200 200
a E
250 E 250 250
—
300 -E 300 300
350 350 350
0.14 0.16 0.18 0.2 02 03 04 05 06 0.2 0.4 0.6 0.8
Porosity Vquartz Vclay

FIG. 7. Results of elastic FWI and Bayesian rock physics inversion at an offset of 20 m. The blue
curves are the actual logs (slightly smoothed), the gray curves are the initial models, and the red
curves are the inverted models.

Here we apply the Bayesian approach to the 2D case. The inversion result is shown in
Figure 6. Although the estimated parameter values are meaningful, the massive "blocky"
appearances exhibited on the porosity model and the shallow intervals of the quartz content
model are undesirable. In Figure 7, the profiles plotted through the recovered models are
summarized. The S-wave velocity, density, and clay content models correlate strongly to
the log data, whereas the matches between the P-wave velocity, porosity, and quartz content
and their logs are poor.

Direct rock physics FWI

We next repeat the inversion of seismic data using the direct rock physics FWI ap-
proach. One of the advantages of this approach is that it allows elastic attributes to be
jointly output with rock physics properties. The recovered elastic and rock property mod-
els are summarized in Figure 8. Compared with the results of two-step inversion, this result
has the following advantages: 1) it has a higher resolution; 2) it shows greater consistency
between the elastic and rock property models; 3) it matches more closely the well-log data.
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FIG. 8. Recovered elastic and rock property models with direct rock physics FWI.
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FIG. 9. Results of direct rock physics FWI at an offset of 20 m. The blue curves are the actual
logs (slightly smoothed), the gray curves are the initial models, and the red curves are the inverted
models.
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CONCLUSIONS

In this report, we focus on using the technology of full-waveform inversion (FWI) to
reconstruct elastic and reservoir property models from the 2018 CMC VSP survey. The
key strategies we apply to the field data include the effective source method, the inclusion
of DAS data in FWI, and the FWI framework which allows for direct updating of rock
properties. The subsurface model obtained from this survey can be used to support fur-
ther time-lapse analysis, e.g., reduce the uncertainty in predicting CO, distribution during
injection and migration.
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