
TL monitoring using stacked Bi-LSTM

Time-lapse monitoring using a stacked bidirectional long
short-term memory neural network

Shang Huang and Daniel O. Trad

ABSTRACT

Time-lapse seismic monitoring quality is affected by near-surface noise, weak reser-
voir change amplitude and poor subsurface illumination. Except for some geophysical
approaches, deep learning can solve the challenges above with high efficiency and accu-
racy. This project uses a stacked bidirectional long short-term memory neural network
(SD-Bi-LSTM) to predict near-surface noise from baseline seismic data. Furthermore, the
surface multiple is added in forward modeling to generate baseline and monitor data with
expanded subsurface illumination. Results show that stacked bidirectional long short-term
memory can predict and mitigate noise in monitor data. The final difference between base-
line and monitor models has suppressed significant noise after combining SD-Bi-LSTM
and surface multiples. Images have improved accuracy and quality.

INTRODUCTION

Time-lapse seismic monitoring, which acquires seismic data at different times over the
same site to obtain fluid-flow variations, has contributed to detecting subsurface physical
properties and reservoir behavior in recent years (Wang, 1997; Koster et al., 2000; Pen-
nington, 2000; Lumley, 2001; Arts et al., 2003; Isaac and Lawton, 2006, 2014; Chadwick
et al., 2010; Wang and Morozov, 2020; Henley and Lawton, 2021). Particularly, time-lapse
in investigating carbon storage reservoirs becomes important, because monitoring CO2 mi-
gration status is essential for carbon capture and storage, which will help to locate oil and
gas displacement effects during long-term change. It can improve to estimate secondary
recovery of reservoir, or fluid injection.

Currently, there are some challenges for time-lapse seismic monitoring. Seismic imag-
ing of weak time-lapse changes remains a major challenge among others because weak
change’s amplitude might be covered by other noise generated by near surface, which is
hard to distinguish. Excepting that weak reservoir change amplitude is affected by artifacts,
time-lapse monitoring analysis may construct false anomalies due to poor subsurface illu-
mination and the inaccurate input image. Additionally, 4d seismic may only capture some
reservoir change geometry. Some geophysical approaches (Rickett and Lumley, 2001;
Ayeni and Biondi, 2010; Zhang et al., 2013; Bergmann et al., 2014; Wapenaar and Van Ijs-
seldijk, 2021; Fu and Innanen, 2022) try to solve the challenges above. Except for that,
deep neural networks have become prevalent methods to deal with time-lapse monitoring
of carbon capture and storage with high efficiency and accuracy (Yuan et al., 2020; Zhong
et al., 2020; Li et al., 2021; Hussein et al., 2021; Alali et al., 2022; Li and Alkhalifah, 2022).
Long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM)
(Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005), as two typical recur-
rent neural networks have been applied in many geophysical problems to learn non-linear
relationships. For example, seismic data reconstruction (Yoon et al., 2020), missing well
log estimation (Pham and Wu, 2019), elastic properties and litho-fluid facies estimation
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(Aleardi, 2022), seismic impedance inversion and parameter estimation (Calderón-Macías
et al., 2000; Moya and Irikura, 2010; Alfarraj and AlRegib, 2019; Das et al., 2019; Guo
et al., 2019; Roy et al., 2020). For Bi-LSTM, it can learn from both long-term forward and
backward temporal dependencies from historical data, and it works with long and dense
temporal traces. Thus, this method is suitable to be used in time-lapse seismic data.

In this project, we propose a data-driven method to predict baseline data with noise from
monitor shot traces, using stacked bidirectional long short-term memory (SD-Bi-LSTM)
and surface multiple reflections. Stacked bidirectional long short-term memory is used to
predict noise variation of monitor seismic data from baseline data. Stacked layers’ mecha-
nisms can enhance the power of neural networks. The seismic data is obtained from elastic
reverse time migration using GPU. By this approach, reservoir change will be predicted
properly with artifact suppression. Additionally, we take advantage of multiple reflections
generated from free surface boundary conditions. It can help with broadening subsurface
illumination and indicate accurate reservoir variation location.

THEORY

Time-lapse seismic

In time-lapse seismic, base data is set as the reference. After injecting CO2 or other
fluids into a reservoir, monitor data is obtained to indicate the seismic attribute variations.
Based on Alali et al. (2022), the residual between monitor data dobsm and base data dobsb is

δd(t) = dobsm(t)− dobsb(t) = n(t) + δr(t) (1)

where t means time, n(t) denotes noise generated from near-surface change and non-
repeatable signal, which should be eliminated. The data difference term, δr(t), is our
target is detect subsurface reservoir variation. Manually removing noise is hard to achieve,
whereas neural networks can learn the patterns from the noisy part in monitor data and
mitigate the noise. Then, reservoir variation can be obtained from the difference between
monitor data and predicted base data.

Recurrent neural network (RNN) and long short-term memory (LSTM)

A recurrent neural network (RNN) is an artificial neural network that uses sequential or
time series data. Recurrent neural network (RNN) (Jordan, 1986; Rumelhart et al., 1985) is
derived from the a feed-forward neural network where the connections between nodes do
not form a cycle and deliver information in one direction (Figure 1). On the opposite, RNN
has an internal self-looped deep-learning architecture. It allows previous output to affect
subsequent input and output. In other words, the current input will learn from and depend
on the past sequence output. After obtaining the current output, it will be sent back into the
recurrent network. The benefit of RNN is that it can process variable-length sequences of
input, for example, time sequences. While training an RNN model, vanishing or exploding
gradient issues might occur. If the gradient is too small or large, it tends to grow or vanish
when it is passed back through many time steps.
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Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) was designed
with special memory cells to store temporal information. It can remember values over
arbitrary time intervals with gate structures shown in Figure 2. Also, it can avoid the
vanishing gradient problem usually occurring in RNN. The gradient in LSTM contains
the gate’s vector of activations, allowing the network to control the gradient values better
and avoid getting too small or large. This structure allows LSTM to remember long-range
features better than conventional recurrent neural networks. Similar to time series, the
seismic data traces also have long-term and dense sampling rates. Because LSTM can
capture very long-term dependencies, it is also suitable for working with seismic traces.

FIG. 1: Workflow for recurrent neural network (RNN).

FIG. 2: Workflow for long short-term memory (LSTM) algorithm.

We can start with a simple LSTM framework, then dive into the BLSTM that was used
in this project. Within each LSTM cell (shown in Figure 2), there are four gates in total: ft,
it, gt and ot are respectively the forget gate, input gate, candidate gate and output gate cell
activation vectors. They have the same size as the hidden vector ht. Next, each gate vector
will be illustrated in detail. The forget gate ft is determined by

ft = σ(Wf [ht−1, xt] + bf ) (2)

where ht−1 is the hidden layer vector from previous time and xt means the current input
vector. σ, Wf and bf represent the logistic sigmoid activation function, weight matrices
and bias for the forget gate.

Then, the input gate follows a similar behavior as forget gate but with different weight
and bias in the input gate it:

it = σ(Wi[ht−1, xt] + bi) (3)

Another gate named candidate gate gt can be determined by:

gt = tanh(Wg[ht−1, xt] + bg) (4)
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where tanh() denote a tanh activation layer.

The last gate in the LSTM unit is output gate ot, and it can be obtained by:

ot = σ(Wo[ht−1, xt] + bo) (5)

After having all the gates, the next step is to calculate and determine a new updated
memory Ct and current output ht. The former needs memory from last LSTM unit Ct−1
combined with forget gate ft and the product of input gate it and candidate gate gt. Then,
the current cell state Ct can be calculated by

Ct = itgt + ftCt−1 (6)

As for the output of the LSTM cell ht, it is made of the product of output gate ot and
current cell state Ct after applying tanh activation layer:

ht = ottanh(Ct) (7)

Bidirectional long short-term memory (Bi-LSTM)

Unlike conventional RNNs make use of previous contexts, bidirectional RNNs can deal
with sequential data in both directions: forward and backward with two separate hidden
layers (Schuster and Paliwal, 1997; Graves et al., 2013b). Based on BRNNs and LSTM,
bidirectional long short-term memory (Graves and Schmidhuber, 2005) was developed to
capture long sequences in reverse and forward two directions. One hidden layer processes
the input sequence in the forward direction. This flow does a forward pass for forward
and backward states, and the output layer. The other hidden layer handles the input in
the reverse direction. It includes doing backward passes for output neurons, forward and
backward states, and updating error functions and weights. Thus, the output of the current
time step is obtained from both layers’ hidden vectors.

The forward function of Bi-LSTM with inputs of M units with N hidden units is shown
below:

hn
t =

M∑
m=1

xnt wmn +
N∑

n′=1,t>0

αn′

t−1wn′n (8)

αn
t = Θn(hnt ) (9)

where hnt is the network input, and xt denotes the sequence input. wmn represents the
weight of the inputm to hidden unit n, and wn′n means the weight of hidden unit n towards
hidden unit n′. The activation function of hidden unit n at time step t is given by αn

t . Θn

means the activation function of the hidden unit n.
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As for the backward calculation, it is

δO

δwnk
=

T∑
t=1

δO

δhnt
αn
t (10)

δO

δαn
t

= Θ′n(hnt )(
K∑
k=1

δO

δhnt
wnk +

H∑
n′=1,t>0

δO

δhn
′

t+1

wnn′) (11)

where O denotes an objective function with unit K output.

For the bidirectional LSTM, forward LSTM and backward LSTM need to consider as
two separate layers (Du et al., 2020). The final output can be obtained by

ht = αhft + βhbt (12)

yt = σ(ht) (13)

where hft is the forward LSTM layer output which takes time sequences from x1 to xT ,
hbt denotes the backward LSTM layer output which takes the reverse time sequences from
xT to x1. α and β represent the importance of forward LSTM and backward LSTM, and
satisfy α + β = 1. ht is the sum of two LSTM outputs, and yt is the impedance prediction.
Note that a linear activation function is chosen for the dense output layer because seismic
attributes might have negative values.

FIG. 3: Workflow for bidirectional long short-term memory (Bi-LSTM) algorithm.

Stacked bidirectional long short-term memory (SD-Bi-LSTM)

Based on the research from Graves et al. (2013a), and Cui et al. (2018), deep bidi-
rectional long short-term memory can be generated by stacking several Bi-LSTM hidden
layers on top of each one. The output of one Bi-LSTM hidden layer will be fed into the
subsequent Bi-LSTM hidden layer as the input. Deep bidirectional RNNs can be imple-
mented by using the forward

−→
h n and backward sequences

←−
h n.Figure 4 shows the stacked

bidirectional long short-term memory mechanism. The input of every hidden layer should
consist of both the forward and backward layers at the level below. Stacked Bi-LSTM can
detect and build up an effectively high level of sequential data representations.
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FIG. 4: Stacked bidirectional long short-term memory (Bi-LSTM).

WORKFLOW

The workflow in this project, shown in Figure 5, includes three steps: first is training
stacked bidirectional long short-term memory neural networks by using different traces
with direct arrivals. We did not remove direct arrivals because it can help mitigate near-
surface noise. Traces are separated into two parts for two training goals: simulate near
surface noise, and mimic reservoir changes. After that, using stored neural networks to
predict baseline and monitor data. The final step is to calculate the migrated image differ-
ence between monitor data and predicted baseline data to determine time-lapse reservoir
changes.

Measurements

Mean squared error (MSE)

The mean squared error (MSE) loss is applied to evaluate the model performance and
penalize the large prediction errors:

MSE =
1

n

n∑
i=1

(di
calc − di

obs)
2, (14)

where n is the total number of samples, dcalc is predicted monitor or baseline data, and dobs

denotes the corresponding observed monitor or baseline data.

Peak signal-to-noise ratio (PSNR)

A peak signal-to-noise ratio (PSNR) is used to evaluate the model performance:

PSNR = 20 ∗ log10(
MAXI√

MSE
), (15)
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FIG. 5: Workflow for predicting time-lapse reflectivity change.

where MAXI denotes the maximum possible pixel value of the image, and MSE is the
mean squared error based on the equation 14.

TRAIN, TEST AND VALIDATION

One assumption in this project is that monitor and baseline systems are the same for
basic training purposes. In future work, we will test different systems, or add near-surface
velocity changes. A horizontal-layered with a dipping event geology model is used for
training and testing. A slight reservoir anomaly is located at 2800 meters depth to generate
weak amplitude data difference. Monitor and baseline velocity models are shown in Figure
6 whose size is 601×801 grid points. There are 16 shots simulated on the surface with 500
meters spatial interval. The number of receivers is the same as horizontal points, which
is 801. The starting point is located at 50 meters horizontal distance. The temporal and
spatial sampling rates are 1 ms and 10 meters, respectively. Bidirectional long short-term
memory is utilized to predict monitor data traces from base survey seismic data. Thus, the
base data is considered the input of the neural network model. However, unlike training
the whole base data at one time, we extend the idea of Alali et al. (2022), the input traces
are divided into two parts: traces collected near the surface, and the other part includes
reflections above the CO2 injection area. Data chosen from the near surface is used for
noise simulation. A neural network trained by the second part of data can learn other
artifacts or noise generated from monitor data.

CREWES Research Report — Volume 34 (2022) 7



Huang and Trad

(a) (b)

FIG. 6: Velocity model for (a) baseline and (b) monitor systems.

At this stage, to speed up the training process, half the number of shots are implemented
in the training whose training and testing sets rate is 0.8: 0.2; the rest is for validation. In
the training process, we developed two neural networks. One is only applied in the first
part data to learn the difference between base and monitor data in the shallow depth or near
the surface. This process helps to predict noise and suppress it in the migration image.
Then, pseudo monitor data traces for deeper structure, but above the reservoir variation can
be predicted by the other trained neural network with the second data part. The residual
between observed monitor data and predicted traces indicates CO2 injection information
with less noise, because the neural network does not learn how to differentiate reservoir
changes from the base survey.

NUMERICAL EXAMPLE

In this section, we implement the same geology model, which is used in the training
and testing process, with different source-receiver locations. The start location for the shot
is 300 meters with 750 meters spatial interval. Seven shots are fed into two trained neural
networks separately with different data parts. After prediction, an example of comparison
between observed and calculated data is shown in Figure 7. It is extracted from the third
shot at a time window between 2.5 and 4.0 seconds. Figure 7a and b represent baseline
data dobsb and monitor data dobsm , and Figure 7c and d denote predicted baseline dcalcb and
monitor dcalcm data. Since neural networks are trained based on data above the reservoir
change, the original baseline and predicted baseline and monitor data share a similar data
pattern that does not contain anomalies. However, the relative amplitude in predicted base-
line data dcalcb is stronger between 3.6 and 4.0 seconds, which might be subtracted from
monitor data to suppress noise in migration.

The data residual between observation and prediction is shown in Figure 8.The left
figure gives the observed difference (dobsm − dobsb), and the right one means the calculated
difference between observed monitor and predicted baseline data (dobsm − dcalcb). Except
for reservoir data changes, the calculated difference gives additional information for direct
arrivals and other noise at both offset sides. For a detailed comparison, Figure 9 delivers
a trace comparison at 6000 meters horizontal distance between different data. Predicted
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(a) (b)

(c) (d)

FIG. 7: Data obtained from (a) observed baseline, (b) observed monitor, (c) predicted
baseline and (d) predicted monitor system.

baseline data (solid red line) keeps a basic pattern as observed baseline (green starred line),
but also recovers amplitudes for some events that are close to observed monitor data (black
dashed line). As for the predicted monitor data (blue dashed line), its amplitude is more
stable than the predicted baseline data. The reason is that predicted baseline data, which
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is predicted from the shallow depth data with noise, whereas the predicted monitor data is
derived from relatively deep data above reservoir change, which has a regular pattern to
learn for the neural network.

(a) (b)

FIG. 8: Data difference between (a) observed monitor data and baseline data, and (b) ob-
served monitor data and predicted baseline data.

Migration results from observed and predicted data are shown in Figure 10 and 11.
Migration images of predicted baseline (Figure 10c) and monitor data (Figure 10d) have
increased amplitude for events above the reservoir at 2800 meters depth. To obtain migra-
tion difference, we implement the double difference concept that originated from tomogra-
phy and inversion (Watanabe et al., 2004; Asnaashari et al., 2015; Zhou et al., 2010). The
difference between the two sets of data is:

δd = (dobsm − dobsb)− (dcalcm − dcalcb) (16)

where dobsm and dobsb denote observed monitor and baseline data separately, and dcalcm and
dcalcb give predicted data. Thus, the time-lapse model changes δmtime−lapse can be derived:

δmtime−lapse = δmobs − δmcalc (17)

where δmobs and δmcalc are calculated from the first and second parentheses in equation
16, respectively.

Then, calculated double-difference model residual δmtime−lapse is obtained and shown
in Figure 11a. Compared with δmobs (Figure 11c) and δmcalc (Figure 11b), δmtime−lapse has
suppressed artifacts above the reservoir change, which is shown in red arrow. Additionally,
amplitude and illumination for the anomaly are more amplified in Figure 11a than the other
two results.
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FIG. 9: Trace comparison at 6000 meters horizontal distance.

The peak signal-to-noise ratio of double difference model residual has the highest value,
21.12 dB compared with other two model residuals indicated in Table 1. It also proves that
our proposed method gives improved accuracy and image quality.

Figure 12 and 13 indicate train and validation loss of the first and second neural net-
works, respectively. Note that validation loss in both models is smaller than training loss
along all the iterations. Even though this situation is common in long short-term memory
neural network training, one possible reason is that the train and test data size is small-
scale, which might lead to overfitting or underfitting. Future work will consider enlarging
the train and test dataset.

Table 1: PSNR (dB) comparison different model residuals
Prediction Original δmobs Predicted δmcalc Double difference δmtime−lapse

Example 15.19 15.26 21.12

Table 1: PSNR (dB) comparison different model residuals.
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(a) (b)

(c) (d)

FIG. 10: Migrated result from (a) observed baseline, (b) observed monitor, (c) predicted
baseline and (d) predicted monitor system.

CONCLUSIONS AND FUTURE WORK

In this project, we proposed to use two stacked bidirectional long short-term memory
neural networks to learn near-surface noise and shallow depth signal information of moni-
tor data. Predicted baseline and monitor data can recover and mimic noise patterns that will
be subtracted from observed monitor data using the double-difference method, to mitigate
noise. Results show that migration image by this method has improved artifact suppres-
sion with significant amplitude for reservoir change. In future work, we will try different
complex geology models to train and test this neural network architecture and workflow to
make it generalized to other situations.
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(a) (b)

(c)

FIG. 11: Migrated result comparison between (a) model difference from double-difference
method, (b) predicted model difference and (c) original model difference.

FIG. 12: Train and validation loss.
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FIG. 13: Train and validation loss for the second neural network.
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