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ABSTRACT

Full-waveform inversion (FWI), an optimization-based approach to estimating sub-
surface models, is limited by incomplete acquisition and illumination of the subsurface.
Adding data corresponding to new and independent ray paths as input could significantly
increase FWI models’ reliability. In principle, seismic-while-drilling (SWD) technology
can supply these additional ray paths; however, it introduces a new suite of unknowns,
namely precise source locations (i.e., drilling path), source signature, and radiation charac-
teristics. Here we formulate a new FWI algorithm in which source radiation patterns and
positions join the velocity and density values of the grid cells as unknowns to be deter-
mined. We then conduct several numerical inversion experiments with the SWD sources
located along a plausible well-trajectory with different source settings through a synthetic
model. These SWD sources are supplemented by explosive sources and multicomponent
receivers at the surface, simulating a conventional surface acquisition geometry. The sub-
surface model and SWD source properties are recovered and analyzed. After adding SWD
data, both the inversion of physical elastic properties and source mechanisms get consid-
erably enhanced, even in the cases where low frequencies are missing; the inversion also
shows preferences on the features of the sequence of SWD sources along the trajectory.
This model-source inversion algorithm also indicates the potential to simultaneously esti-
mate the anelastic properties and trajectory deviation while drilling. The analysis suggests
that, in principle, SWD participation improves the accuracy of FWI models, and source
information can also be acquired. However, further studies are required to provide a more
comprehensive representation of the SWD sources.

INTRODUCTION

Full-waveform inversion (FWI) is a set of methodologies in which seismic data are used
to estimate the physical properties of the Earth. By iteratively minimizing a misfit function
measuring the difference between synthetically modeled and experimentally recorded data,
the subsurface distributions of elastic properties and other relevant unknowns are updated
to produce high-resolution model estimates (Tarantola, 1984, 2004; Virieux and Operto,
2009; Brittan et al., 2013). In applying FWI to field data, several well-known practical
issues and challenges arise, which can strongly affect the accuracy of the inverted mod-
els (Brossier et al., 2009; Fichtner, 2011; Métivier et al., 2017; Singh et al., 2018; Pan
et al., 2019; Aragao and Sava, 2020). An important example is acquisition geometry. In
particular, the necessarily limited spatial sampling and aperture of the seismic experiment
(Jannane et al., 1989; Mothi et al., 2014; Kerrison et al., 2021). Seismic rays tend to bend
toward high-velocity zones, such as salt bodies, and away from low-velocity zones, such as
overpressure regions (Cheadle et al., 1991; Kazemi et al., 2020), etc. In general, the com-
plicated and non-uniform ray paths associated with incomplete acquisition and complex
heterogeneous media introduce shadow zones, regions of the geological medium which are
poorly constrained. At best, physical properties in those regions are inaccurately recovered
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unless additional a priori subsurface information is used to fill in the gaps in ray path cover-
age (Tiwari et al., 2018; Liu et al., 2020). The unavailability of low and intermediate model
wavelengths from datasets associated with short-offset surface acquisitions is perhaps the
best-known issue arising from acquisition limitations — wide-aperture acquisition, which
increases the number of overlapping ray paths, is essential in these cases (Virieux and Op-
erto, 2009; Vigh et al., 2021).

A clear, but often practically difficult, solution is to include additional, e.g., subsurface,
sources or receivers in the seismic survey, which introduce unique ray paths supporting the
estimation of essential model components. Acquisition geometries which include sources
or receivers in the subsurface, for instance, cross-well (Pratt et al., 1996; Pratt, 1999; Pratt
and Shipp, 1999) and vertical seismic profile, or VSP (Pan et al., 2018; Podgornova et al.,
2018; Eaid et al., 2022), naturally supply these, and lead to different, and in some respects
better, FWI model estimates and convergence properties. Generally, improvements are
tied to the appearance of ray paths that interact with the medium through transmission-
like geometries; in reflection surveys, these are, for the most part, limited to diving waves,
which explains the necessity for long offsets (Virieux and Operto, 2009; Brittan and Jones,
2019).

Seismic-while-drilling (SWD) is a longstanding auxiliary tool in exploration and mon-
itoring seismology (e.g., Sheppard and Lesage, 1988; Rector and Hardage, 1992; Miranda
et al., 1996; Naville et al., 2004; Poletto and Miranda, 2004), wherein the drill bit acts as
a seismic source, and sensors arrayed in a range of possible geometries produce an exper-
iment similar to a reverse VSP (Khaled et al., 1996; Miranda et al., 1996). The approach
is attractive because it generates a field of important extra seismic information in real-time
without interrupting drilling processes (Poletto and Miranda, 2004). SWD has attracted
renewed interest in recent years, taking advantage of advances in the understanding of
drill-string dynamics and the use of neural networks for data analysis (e.g., Auriol et al.,
2021). It has been pointed out that the introduction of SWD ray paths, which begin at the
drill bit and end at surface or borehole receivers, can, in principle, constrain velocity mod-
els (Bertelli and di Cesare, 1999), and that this could further impact imaging (Kazemi et al.,
2018) and FWI (Kazemi et al., 2021) by partially addressing the issues discussed above.

Additionally, using SWD data to complement other seismic data, ostensibly in support
of imaging or FWI, feeds back into the problem of drilling optimization. A drilling program
is naturally de-risked when better estimates of physical parameters near the drill string are
available (Poletto et al., 2003; Martinez et al., 2020). Reducing uncertainty in, for instance,
locations of formation tops, and heterogeneities in general within a complex stratigraphy,
is relevant to geohazard avoidance, e.g., zones of high pore pressure. Further, near-real-
time updating of drilling parameters requires accurate seismic velocity estimates within the
formations interacting with the drill bit (Auriol et al., 2021). Models deriving from FWI
would, in principle, address both of these issues.

The potential of SWD as an enabler of seismic imaging and inversion was first dis-
cussed by Bertelli and di Cesare (1999), who proposed using velocity information from
real-time reprocessing of the SWD dataset to adjust and continuously refine the velocity
model for migration. Rocca et al. (2005) developed a migration approach wherein a circu-
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FIG. 1. Schematic figure of the radiation patterns of SWD sources (modified after Rector and
Hardage (1992)).

lar line of receivers is settled to apply the 3D migration in the angular frequency domain,
and this method successfully recovered the position of reflectors in a horizontally layered
medium. Vasconcelos and Snieder (2008) applied the deconvolutional interferometry in
SWD field data to provide an interferometric image of a fault zone at depth within the
study area, and Poletto et al. (2012) tested SWD with seismic interferometry and migration
to map the geothermal field around wells. Kazemi et al. (2018) formulated an illumina-
tion compensation for imaging of surface data using SWD data processed with a sparse
multichannel blind deconvolution (SMBD) algorithm, originally built for other applica-
tions (Kazemi and Sacchi, 2014). Similar arguments led to the formulation of a two-stage
sequential SWD-FWI algorithm, in which inversion of data from SWD sources was fol-
lowed by inversion from conventionally-acquired surface data (Kazemi et al., 2021). These
studies provide strong evidence that the ray paths associated with SWD do have a marked
impact on model estimation when used in combination with other data sets. However, the
assumption of acoustic wave physics, the estimation of a single unknown model parameter
class (i.e., scalar acoustic P-wave velocity), and the assumption that the radiation charac-
teristics of the drill bit are known (or can be accommodated through preprocessing) are all
idealizations making proper feasibility analysis difficult. Borehole inclination and azimuth
change the vertical and horizontal components of the SWD signal. For instance (see Fig-
ure (1)), drill bit radiation patterns have strong directionality features, and wide ranges of
surface receiver locations are likely to be sensitive primarily to S-wave energy. The SWD
signal is thus inherently elastic. Further, the complicated interaction of the continuously-
radiating source drill-bit and the formation rock will induce strong modeling errors in an
FWI scheme formulated with a static, known, and simply-radiating point source.
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THEORY

In this paper, seismic data are regarded as measurements of a wavefield that has propa-
gated through an unknown distribution of elastic medium properties as the result of a local-
ized source with a known (or pre-determined) position, a known (or pre-determined) source
wavelet, and an unknown moment tensor. A candidate set of these known and unknown
parameters is used to simulate frequency-domain seismic data, and those simulations are
used to drive a modified full-waveform inversion algorithm, as follows.

Forward modeling

We employ a finite-difference solution of the 2-D isotropic viscoelastic wave equation
in the frequency domain (Pratt, 1990; Brossier et al., 2010), and 2-D moment tensors (e.g.,
Aki and Richards, 2002; Vavrycuk, 2005; Tape and Tape, 2013) to represent source radia-
tion. The viscoelastic wave equations areω2ρux +
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where ω is the angular frequency, ρ is the density, ux and uz are displacement components,
and fx and fz are the source terms in the horizontal and vertical directions, respectively;
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The fields ux and uz are discretized onto a square grid, and the derivatives are approximated
using standard methods (e.g., Pratt, 1990). fx and fz are the source terms in the horizontal
and vertical directions, respectively. Wavefields are excited at particular positions (i.e.,
grid cell locations). Source radiation patterns are simulated with general 2-D isotropic
moment tensors M, which have 3 independent components M11, M12, and M22, with Mij

representing the derivative in the jth direction of the ith component of displacement. The
Mij values lie between -1 to 1.

To include moment tensor source representations, it is necessary to approximate deriva-
tives in the vicinity of the source in the finite-difference model (Keating and Innanen,
2020). Figure (2) illustrates our first-order difference approach to calculating source-related
derivatives. For a point source located midway between two finite-difference cell centers
(Figure (2)-(a)), the finite difference approximation of M11 = 1 can be represented with
differences formed between two adjacent cells by summing with weights −1

∆x
and 1

∆x
. If

the source position is not equidistant between finite-difference cell centers, which is the
general case shown by Figure (2)-(b), we use three continuously-weighted members to ap-
proximate the first-order spatial derivatives. The finite-difference weights used for a source
location between two finite-difference grid lines is a weighted average of the amplitudes
used for a source at either of the bounding grid lines, as shown in Figure (2)-(b). Extending
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this concept to the 2-D case, the finite difference approximation can be defined by weight-
ing between intersections of nine grid cells in a small surrounding region. Specifically, we
define stencil variables with indices of the four cells for a point source shown by the red
dot in Figure (3). The top-right cells (0, −z, +x − z, +x) make the NE stencil, and the
SE, SW, and NW stencils can be represented by the bottom-right, bottom-left, and top-left
four-cell sections following the same indexing rule.

(a)

0 1 2 3 4 5
-1

0

1

(b)

0 1 2 3 4 5
-1

0

1

FIG. 2. Scaled weights for approximating an example of M11 = 1 in one dimension. (a) weights for
source location x = 2. (b) weights for source location x = 2.25.

−𝑥 −𝑧 −𝑧 +𝑥 −𝑧

−𝑥 +𝑥

−𝑥 +𝑧 +𝑧 +𝑥 +𝑧

FIG. 3. Stencil variables definition. The red dot in the center cell is the source location.

With the stencils well defined, the finite difference approximation of moment tensors
can be defined on each of the four stencils. In our formulation, fx and fz in equation
(1) are expressed by nine grid cells surrounding an arbitrary source position considering a
weighted summation of moment tensor components in each stencil based on the specific
locations of a source within the center cell:{

fx =
∑

sw (s) [M11wdx (s) +M12wdz (s)] ,

fz =
∑

s w (s) [M12wdx (s) +M22wdz (s)] ,
(3)

where w (s) is the spatial weighting term considering the skewing of a point source to the
mid of a grid cell. s is an indexing vector containing four indices of a stencil that can
be chosen from NE-SW-SW-NW. wdx (s) = 1 or −1 when s contains eastward (right) or
westward (left) direction; wdz (s) = 1 or −1 when there is southward (down) or northward
(up) in the stencils.

This treatment makes it possible to precisely represent a point source in arbitrary loca-
tions. Figure (4) shows an approximation example based on the assumption of M11 = 1,
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while it is also applicable for a point source with a more general moment tensor combi-
nation. Small changes in the source locations correspond to a small re-weighting of the
source term values. In such a case, the gradient of the objective function with respect to
these variables is well defined by our approximation.

0 1 2 3 4 5

5

4

3

2

1

0 -1

-0.5

0

0.5

1

FIG. 4. Scaled weights for approximating an example of M11 = 1 in two dimension with source
location x = 2.25 and z = 2.25.

2-D frequency-domain FWI

Inversions are carried out through 2-D frequency-domain elastic FWI, optimized with
a truncated-Newton approach following Keating and Innanen (2020), who built on the for-
mulation of Pratt (Pratt, 1990, 1999). In the frequency domain, the problem is to obtain

argminxΦ (x) = argminx

Nω∑
j=1

Ns∑
k=1

1

2
Ruj,k − dj,k

2
2, s.t. S(x)u = f , (4)

where x is a vector of inversion variables (which will ultimately comprise both subsurface
and source unknowns), ω is the frequency, s denotes the source index, R is the sampling
matrix representing the measurements of receivers, u is the discretized wave field due to
the fixed source, d is the vector observed data between a source-receiver pair, S is the
finite-difference modeling operator, and f is the source term. In this paper, we assume that
the wavefield only has one source and frequency component for simplicity.

The adjoint state method (e.g., Plessix, 2006; Fichtner et al., 2008) is used to deter-
mine the gradient through a combination of forward and backward propagated wavefields,
the latter of which has the residual wavefield as the source. We start by formulating the
Lagrangian of this problem:

L (x) =
1

2
Ru− d2

2 + ⟨S (x)u− (fR + ifI) , λ⟩ , (5)
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where λ is a vector of Lagrange multipliers, fR and fI are the real and imaginary parts
of the source term f . ⟨·, ·⟩ represents the inner product. We consider a wavefield u that
satisfies the wave equation such that L (u) = Φ. By choosing λ that satisfies ∂L

∂u
= 0, the

complicated calculation of ∂u
∂x

, namely the Jacobian matrix can be avoided. Such λ can be
solved through a backpropagation process in which data residual is considered the source
term. The derivative of the objective function with respect to any inversion variable is then
given by:

∂Φ

∂x
=

∂L
(
u, λ

)
∂x

. (6)

The Hessian matrix is required in the optimization procedure to accelerate the convergence
and improve the resolution of the inversion. However, the full Newton approach is not
recommended due to the high computational demand (Pratt et al., 1998), so some alterna-
tive methods are developed and tested. In convention, Pratt et al. (1998) preconditioned
the steepest-descent or conjugate-gradient by the diagonal components of the approximate
Hessian. Shin et al. (2008) took advantage of the pseudo-Hessian, and Brossier et al. (2009)
applied a quasi-Newton method based on the LBFGS algorithm (Nocedal and Wright,
2006). The iterative process in this approach estimates the curvature information in the
Hessian matrix from a limited number of recently stored vectors. This approach exploits
the computer capacity and extracts as much information from the Hessian matrix. This pa-
per uses such an approach that efficiently truncates the Gauss-Newton Hessian calculation
with several fixed iterations (Métivier et al., 2013). The Truncated Gauss-Newton method
is based on the Gauss-Newton approximation of Hessian which keeps the first-order part
of it and thus obtains the diagonal part of the Hessian matrix (Nash, 2000).

Hessian-vector products involving H are also derivable through similar argumentation
with the calculation of the gradient (Métivier et al., 2013, 2015; Xing and Zhu, 2020). From
the FWI objective function defined in equation (4), the Gauss-Newton Hessian can be given
by:

HGN = J†RTRJ, (7)

where J is the Jacobian matrix, and † denotes the conjugate transpose. Following the same
concept of the adjoint state method, the costly calculation of the Jacobian matrix in the
Gauss-Newton Hessian can also be avoided. We consider such a Lagrangian:

L̃ = ⟨u (x) ,w⟩+ ⟨S (x)u− (fR + ifI) , µ⟩ , (8)

where w = RTRJv, and v is an arbitrary vector.

Referring to the gradient calculation with the adjoint state method, similarly, the La-
grange multiplier µ satisfies:

S†µ+w = 0, (9)

However, it is challenging and thus not prioritized to directly solve for w because the
Jacobian matrix J is contained. Alternatively, we calculate the product of J with the vector
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v through consideration of the derivative of the forward problem with respect to variables
xp multiplied by vector elements vxp (Métivier et al., 2013; Keating and Innanen, 2020):

∂ (Su− f) vxp

∂xp

= 0. (10)

This allows us to acquire w and thus derive the Lagrange multiplier µ in equation (9). The
Gauss-Newton Hessian vector product HGNv can be then shown by ∂L̃

∂x
.

Incorporation of source unknowns

Let us now suppose that the model unknown vector x is made up of medium property
unknowns, contained in the vector m, and source unknowns, contained in the real vectors
fR and fI , such that the full source vector in equation (4) is f = fR + ifI (also shown
explicitly in equation (5) and equation (8). Equation (6) can be separated as:

∂L

∂mp

=

〈
∂S

∂mp

u, λ

〉
, (11)

where p labels the pth component of model parameters.

∂L

∂fRp

= −Re
(
λp

)
, (12)

and

∂L

∂fIp
= Im

(
λp

)
, (13)

fR and fI both have large dimensionality with a number of elements equal to the number of
points in the wavefield used in forward modeling multiplied by the number of the unknown
sources considered, so it is necessary to have more restrictions on source-related variables.
Consider a variable fr that controls the moment tensors or position of a point source. The
derivative of the objective function with respect to such a variable is an extension of the
derivative with respect to the force term:

∂Φ

∂fr
=

∑
p

[
−Re

(
λp

) ∂fRp

∂fr
+ Im

(
λp

) ∂fIp
∂fr

]
, (14)

where the first part within the summation on the right-hand side is the derivative of the real
component of the source term with respect to fr, and the second part is the derivative of the
imaginary component of the source term with respect to fr.

This concept also holds in the Hessian-vector products. Using the relation in equation
(10), it can be shown that

S (Jmvm) = −u
∑
p

(
∂S

∂mp

vmp

)
, (15)
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S (JfRvfR) = Re
(
vfRp

)
, (16)

and More specifically

S (JfRvfR) = Im
(
vfIp

)
, (17)

where vmp is the element of v corresponding to the pth element of m, vfRp
is the element

corresponding to the pth element of fR and vfIp is the element corresponding to the pth
element of fI .

NUMERICAL EXAMPLES

The numerical tests in this section are based on synthetic models to evaluate the per-
formance and investigate the potential of combining seismic-while-drilling datasets with
simultaneous model-source FWI. Figure (5) shows the true and initial models. One of the
major advantages of our inversion is the intervention of additional sources can provide fea-
sible information on the subsurface anelastic models, so the starting model for our inversion
is based on the assumption that there is less prior information available. The whole model
size is 300 by 150 grid points in x and z directions, with a 20-meter interval.

We assume that (1) the drill can be treated as if it occupies a discrete sequence of quasi-
static positions along the drill trajectory, (2) the radiation patterns of the SWD sources are
represented by independent and general moment tensors, which means force couples can
approximate the drill-bit-rock interaction; the problem of transformation of SWD signals
into useable seismic data has been discussed by Kazemi et al. (2021), and (3) the SWD
data can be analyzed into the discrete FWI frequencies we select below.
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FIG. 5. True and initial subsurface properties of the synthetic models. (a) True P-wave velocity
model. (b) True density model. (c) Initial P-wave velocity model. (d) Initial density model.
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The multi-scale approach is used throughout this paper. We subsequently update the
model with 10 frequency bands, each containing 12 sub-frequencies. The starting frequen-
cies of every band are set to 1 Hz, while the ending frequencies linearly increase from 2 Hz
(for the first band) to 15 Hz (for the last one). 20 inner iterations are used for approximation
of the inverse Hessian in the truncated Gauss-Newton approach, and 3 outer iterations are
set to update each band’s model.

Simultaneous inversion for subsurface parameters and moment tensors

This section estimates the VP , density, and radiation patterns together while keeping
the unknown source positions fixed. Two acquisition geometries are considered here: for
surface acquisition, there are 72 explosive sources with a gap of 2 grid points and 144 multi-
component receivers with a 1-grid interval; for source unknowns, various distributions are
designed to test the inversion in different settings. Specifically, we carry out the inversion
tests where the source number, trajectory inclination, and drilling path extension are taken
into account separately.

As the transmissive ray paths provide the inversion with profound contribution, it is
necessary for us to apply some constraints to the SWD-generated datasets to ensure our
tests are closer to real situations where there is little direct intervention from the transmis-
sion. We scaled the amplitude of SWD datasets to be half as the surface data. We added the
Gaussian noise with 10 dB and 5 dB signal-to-noise ratios (SNRs) to data generated from
isotropic and drilling sources.

Source number test

While introducing the additional ray paths to improve the FWI, the increased nonlin-
earity brought by source unknowns should also be evaluated. In this set of experiments,
we investigate the impact of unknown source numbers along a drilling trajectory of a fixed
length. Figure (6) shows the schematic acquisition geometry of the source number test.
Our main inversion focus is the triangle abnormaly indicated by the black dashed rectangle
in the model’s right half. The horizontal size of the model is considerably larger than the
target inversion zone based on the following two considerations: (1) in practical applica-
tions, there is usually a distance between the drilling sites and the surface sensors; (2) the
far-field assumption should be satisfied in representing force-couple-defined sources with
a point approximation (Aki and Richards, 2002). The surface acquisition, as shown by
the red and green markers, covers the surface of the inversion target. A drilling trajectory
is then added in the deeper section of the left-hand side of our model, and the blue stars
indicate unknown sources. The drilling site on the ground has around 1.5 kilometers offset
from the ground receivers, and various SWD sources are arranged along a deviated trajec-
tory of 900 meters. We have tested the cases where NS = 10, 15, 20, 25, and 30. Random
moment tensors set the initial and true radiation patterns for each unknown independent
point source in a range of -1 to 1.

We first show the results of subsurface properties with the surface-only acquisition in
Figure (7) as a baseline inversion for further comparison with the cases where SWD sources
adjoint. The estimation of both P-wave velocity and density is very crude, as shown by the
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FIG. 6. Schematic acquisition system in source number test.

indistinct structures in the recovered models. The right-hand side portions of the models
are slightly updated, but the other parts where no extra source exists are poorly recovered.
For the misfit calculation, we use the root mean square error normalized by the difference
between the maximum and minimum values of the true data for the misfit:

NRMSE =
RMSE

max (datatrue)−min (datatrue)
. (18)

The high NRMSE values shown in Figure (7) quantitatively suggest unsatisfactory inver-
sions with only surface acquisition settings.
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FIG. 7. Inversion of VP and ρ with surface acquisition. (a) VP inversion with surface acquisition. (c)
ρ inversion with surface acquisition.

The inversion results in Figure (8) show a profound enhancement when including the
SWD data, even though there are only a few drilling sources involved (Figure (8) (a) and
(b)). The abnormaly in the target inversion zone is well recovered, and the intermediate
medium between the extra sources to the receivers is also fairly estimated. The recovery for
both VP and density shows a positive correlation between the improvement and the source
number, as shown by larger extensions of the lower high abnormalies and the gradually
reduced error terms.
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Model-source inversion

We use 3 vertical profiles in the x-position of 3.6, 4.6, and 5.6 kilometers to quantify
the improvement when combining the SWD data. The comparisons are shown in Figure
(9), where the black lines are from true models, the dark green lines are from the baseline
models, and S1-S5 denote five cases in which NS increases from 10 to 30. The NRMSE is
also calculated in each profile. The profiles of all the cases are much more close to the true
cross-sections. In the closer profiles, we get the best velocity inversion when the source
number is 20, but the density profile shows the best result when the source number is 30.
Things are similar in further cases, as more sources do not mean better results in these local
profiles.

The moment tensor inversion results, however, do not necessarily change in accordance
with the number of unknown sources. The cross plots in Figure (10) generally show good
convergence in all cases. Combining the inversions of models and source terms, it is rea-
sonable to infer that the contribution from the increase of SWD sources outweighs the risk
of more significant nonlinearity introduced by more unknown radiation patterns.
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Model-source inversion

Trajectory inclination test

This test examines the influence of how much the drilling trajectory deviates from ver-
tical. We implement a drilling path with a fixed length of 900 m, same as the previous test,
with 30 sources with unknown moment tensor settings. The angle θ in Figure (11), as the
only variable in this section, varies from 0° (vertical) to 90° (horizontal), with an increment
of 22.5°.
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FIG. 11. Schematic acquisition system in trajectory inclination test.

As shown in Figure (12), the layered structures and the main abnormaly of both the
P-wave velocity and density models are depicted after the FWI, emphasizing the help from
additional sources when compared to the baseline inversion. The error is relatively lower in
inversions with a horizontal drilling path, and the high abnormalies are better reconstructed
because of a higher horizontal resolution. The profiles in Figure (13) also display steady
FWI results with different deviations, and all of the cases with extra SWD sources are better
consistent with the true values.

The overall NRMSE gets smaller when the trajectory deviates and reaches its lowest in
the case where θ = 20°, but enlarged again as it becomes closer to horizontal. Generally,
the moment tensor inversions are consistent.
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Model-source inversion

Trajectory extension test

The experiments in this section aim at the possible effect of the change of drilling
path extension. Figure (15) shows the schematic acquisition used in this test. We keep
the inclination to be 45° and NS to be 30 while going through five cases with different
trajectory lengths. The extension L in the first case is 450 meters with clustering sources,
while the drilling length is 1500 meters with a relatively sparse source distribution.
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FIG. 15. Schematic acquisition system in trajectory extension test.

From the overall view in Figure (16), we can see a downgoing trend of the misfit in
the VP , but this trend does not apply to the ρ estimation. The profile that goes through
the shallower low abnormaly shows the best result when we use the largest extension,
as the illumination gets more comprehensive as it gets more comprehensive illumination
when we enlarge the extension. However, it is hard to see a clear misfit tendency for the
other profiles. The moment tensor inversions are stable as the cross plots present similar
consistency between estimated and actual values. There seems to be little clear correlation
between the misfits and drilling path length.
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FIG. 16. Inversion of VP and ρ with surface and SWD acquisitions with different trajectory exten-
sions. The black arrow denotes the gradual increment of L. (a)-(b) inversion with L = 450m. (c)-(d)
inversion with L = 710m. (e)-(f) inversion with L = 975m. (g)-(h) inversion with L = 1250m. (i)-(j)
inversion with L = 1500m.
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FIG. 17. Profiles in source number test. (a), (c), and (e) are P-wave velocity cross-sections, while
(b), (d), and (f) are density cross-sections.
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FIG. 18. Inversion of moment tensors. The black arrow denotes the gradual increment of L, and
the green arrows are from initial values to estimated values. (a)-(c) L = 450m. (d)-(f) L = 710m.
(g)-(i) L = 975m. (j)-(l) L = 1250m. (m)-(o) L = 1500m.
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Model-source inversion

Simultaneous inversion for subsurface parameters, moment tensors and source
positions

Some drilling programs usually have deviations between the designated and the actual
wellbores because of the dip angle, hardness, and other formation or designing properties.
This section considers recovering P-wave velocity, density, source radiations, and positions
with the above simultaneous inversion scheme in a more realistic situation. The estimated
discrete source positions will be connected to depict the estimated drilling path.

The same synthetic models are kept in this experiment. We use a larger offset from the
drilling site to surface sensors for the geometry to eliminate the potential mistakes from
misupdated source positions. The initial well trajectory is shown by the purple line, while
the true path deviates from it as the yellow line in Figure (19). This test assumes that the
SWD sources are radiating independently from their positions.
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FIG. 19. Schematic acquisition system considering source positions.

The FWI for P-velocity and density models are also significantly enhanced with the
intervention of SWD sources, suggesting the robustness of the FWI is kept despite the more
nonlinear inverse problem with the involvement of unknown positions. However, the larger
RMSPE values indicate the models are less effectively updated as all the inversions where
only the radiation exists as source unknowns. This is also reflected by small deviations
in cross plots of moment tensors. However, as shown by Figure (22), the discrete source
positions depict an accurate inversion of the drilling trajectory.
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M12 results. (c) M22 results.
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Inversion with frequency variations

Our multi-band inversion currently uses random moment tensors with constant impul-
sive energy in each frequency, and the treatment of frequencies is quite simplified and
ideal. The experiments in this section are designated to test the FWI performance in sev-
eral scenarios where lower frequencies are missing. We use the most consistent acquisition
in which there is a deviated trajectory with fixed inclination, extension, and source num-
bers (case 3 in the extension and inclination test, last case in the source number test). The
varying parameter is the frequency spectrum. Figure (23) shows four frequency settings,
where F1 - F4 denote weaker energy of the low frequencies. We conduct the simultaneous
inversion for P-wave velocity, density, and moment tensor values while excluding source
positions in the inversion variables to simplify this problem.
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FIG. 23. Frequency components in this section’s tests.

Poorer recovered models are acquired when the inversion is conducted with relatively
higher frequencies, but the shallow low abnormaly is still characterized because of the
increased illumination. Compared with the baseline inversion, where there is a feasible
spectrum, the contribution from the SWD-generated datasets is self-evident. The results
are gradually refined when more low-frequency components are included, although major
errors cluster around unknown sources. The radiation inversions show a similar correla-
tion with the intervention of lower frequency components. This section suggests that, in
practical applications, the SWD is also supportive even with a lack of low frequencies.
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trums. The black arrow denotes spectrums with more comprehensive frequencies. (a)-(b) inversion
with F4. (c)-(d) inversion with F3. (e)-(f) inversion with F2. (g)-(h) inversion with F1.

26 CREWES Research Report — Volume 34 (2022)



Model-source inversion

-1 0 1
-1

0

1

(a)
Err: 28.109%

Inv

Ini

-1 0 1
-1

0

1

(b)
Err: 18.648%

Inv

Ini

-1 0 1
-1

0

1

(c)
Err: 30.130%

Inv

Ini

-1 0 1
-1

0

1

(d)
Err: 13.550%

Inv

Ini

-1 0 1
-1

0

1

(e)
Err: 7.385%

Inv

Ini

-1 0 1
-1

0

1

(f)
Err: 14.242%

Inv

Ini

-1 0 1
-1

0

1

(g)
Err: 11.574%

Inv

Ini

-1 0 1
-1

0

1

(h)
Err: 3.636%

Inv

Ini

-1 0 1
-1

0

1

(i)
Err: 11.378%

Inv

Ini

-1 0 1

M
11

 values

-1

0

1

(j)
Err: 5.294%

Inv

Ini

-1 0 1

M
12

 values

-1

0

1

(k)
Err: 2.591%

Inv

Ini

-1 0 1

M
22

 values

-1

0

1

(l)
Err: 4.539%

Inv

Ini

F
comp

FIG. 25. Inversion of moment tensors. The black arrow denotes the gradual increment of θ, and
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DISCUSSION

The synthetic examples show that a source-model simultaneous inversion is feasible in
a surface + SWD setting. The simulations allow the impact of the additional ray paths to be
understood and analyzed by comparing the FWI results with surface-only and surface-well
acquisitions. In this SWD-FWI setting, we mitigate the nonlinearity by assuming known
isotropic source radiation in the conventional acquisition, which helps in the inversion of
VP and ρ because the source-prior nature of our algorithm will downgrade the subsurface
models’ updating within the limited iterations we use. Better reconstructed VP and ρ mod-
els can be obtained with explosive surface sources with generally radiating SWD sources
along a plausible well trajectory. The enhancement varies by applying different acquisi-
tion situations, which shows a directional preference caused by the arrangement of surface
geophones. The drilling path can also be depicted with the estimation of discrete sources
via this simultaneous model + source inversion algorithm, which suggests the potential in
managing the drilling programs.

We believe in this formulation that the critical elements needed to explain the SWD sig-
nature and begin to use it are in place. This study also suggests some important directions
for further research. First, although we have not allowed it to be a free unknown yet, this
framework can estimate source-related unknowns, thus enabling SWD-FWI technology to
help refine drill position estimates. Moment tensor decomposition can also be applied to
analyze the mechanisms of the bit-rock interaction if force couples can describe the discrete
SWD sources. Such inversion has the potential to help the ahead-of-the-bit estimation in
SWD, though computational speed and expense would need to be reduced for this to be
practically realized. Another challenge is the source frequency spectrum in this problem.
The dominant frequencies of SWD sources with the bit penetration could be higher than
the typical frequency band in FWI, and there are some related issues, as discussed in one
experiment section, to be considered in this simultaneous inversion approach since it is
currently conducted with lower frequencies. However, it is possible to design a more re-
alistic representation considering both the drill-bit-rock mechanism with moment tensors
and frequency dependence.

CONCLUSIONS

This work explores the potential of taking advantage of the seismic-while-drilling data
to compensate for the incomplete surface acquisition in simultaneous full-waveform inver-
sion. Numerical examples demonstrate that the additional ray paths provided in an SWD
dataset help to provide a better FWI result. The inclusion of SWD data improves the inver-
sion of elastic properties, and this leads us to conclude that seismic-while-drilling data of-
fers the potential to enhance inversion results. Besides, the radiation and position unknowns
of the underground sources can also be precisely depicted, which shows a promising pos-
sibility that the drilling application can be monitored while implementing its datasets to
the FWI. Further research is still required to provide more comprehensive conclusions,
especially concerning a more precise moment tensor representation of the drill-bit rock in-
teraction mechanisms and an advanced inversion strategy that will fit a more practical case.
Additionally, the source signature of various types of drill bits should be quantified to detail
the P and S-wave components.
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