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ABSTRACT

Sparse solutions of linear systems play an important role in seismic data processing,
including denoising and interpolation. An additional structure called group sparsity can be
used to improve the performance of the sparse inversion. We propose a robust group sparse
inversion algorithm based on Orthogonal Matching Pursuit with the Radon operators in the
frequency slowness (w − p) domain. The proposed algorithm is used to interpolate seis-
mic data and attenuate erratic noise simultaneously. During each iteration, The proposed
algorithm first picks the dominant slowness group. Then, all the Radon coefficients located
within the currently selected slowness groups are fitting to the data in the time space (t−x)
domain via a robust solver, which is a `1 − `1 ADMM solver. In other words, we adopt
a cost function that directly utilizes the selected coefficients to fit synthesized signals via
`1−`1 norm in the time-space domain. We prove that the proposed algorithm is resistant to
erratic noise, making it attractive to applications such as simultaneous source deblending
and reconstruction of noisy onshore datasets. We compare the performance of the same
method with and without the group sparsity constraint and also with other Radon-based in-
version methods. The result shows that the strong group sparsity inversion performs better
than the traditional sparsity inversion. Both synthetic and real seismic data are being tested
to examine the performance of the proposed algorithm.

INTRODUCTION

Sparse representation is an important tool for signal processing, including seismic data
processing. These applications include primaries estimation (Van Groenestijn and Ver-
schuur, 2009; Lin and Herrmann, 2013),multiple attenuation (Sacchi and Ulrych, 1995;
Herrmann et al., 2000), data reconstruction (Sacchi et al., 1998; Herrmann, 2010; Trad,
2009), and many more. Sparse representation means the seismic signal is sparse (the num-
ber of nonzero coefficients k is much smaller than the total number of coefficients) in some
transform domains like Radon, Fourier and Wavelet.

On the other hand, an additional group structure can be added to the problem, often
referred to as group sparse or group Lasso (Bach, 2008; Yuan and Lin, 2006; Nardi and
Rinaldo, 2008) to improve the performance of the sparse estimation. Many methods have
been proposed in seismic data processing with the idea of group sparsity. Li and Sacchi
(2022) and Naghizadeh (2012) divide the coefficients into different dips in the frequency
wavenumber (f−k) domains for seismic data denoising and interpolation. Vera Rodriguez
et al. (2012) use group sparsity for microseismic data denoising. Trad et al. (2002) use
a similar idea for fast calculation of the hyperbolic Radon transform. Chen et al. (2019)
combines the group sparsity and total variation for seismic signal denoising.

One interesting goal is to develop a robust sparse solver to solve the inversion problem
for seismic data corrupted by erratic noise. Many researchers have been studying this
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problem for a long time. For instance, Guitton and Symes (2003) replaces the `2 norm with
Huber norm for the residual term to cope with the seismic data with outliers. Trickett et al.
(2012) uses a rank reduction filter to remove the erratic noise in the seismic data. More
recently, Li and Sacchi (2021) developed a sparse and robust Radon transform, estimated
via Matching Pursuit, to solve the simultaneous source separation problem. Most of these
methods use robust M-estimators (Maronna, 1976) to replace the `2 norm to make the cost
function robust to the erratic noise . In this paper, we cooperate the robust inversion with
group sparsity to get a better sparse estimation.

Our contribution can be summarized as follows. We first develop a robust algorithm
combining robust inversion and group sparsity. The algorithm works on the linear Radon
transform in the frequency-slowness (f −p) domain. We use the orthogonal Matching Pur-
suit (Tropp and Gilbert, 2007) to build the estimated results iteratively. We divide the Radon
coefficients into groups with different slowness p in the f − p domain. In each iteration,
OMP picks the group mp with the maximum norm. Then we use an `1− `1 ADMM solver
(Wen et al., 2016) to fit the Radon coefficients within all currently selected groups. The
OMP promotes the group sparsity by picking a limited number of best-correlated groups,
and the ADMM solver promotes the sparsity within the selected groups. Therefore, the
proposed method simultaneously promoted sparsity in both groups and coefficients within
the groups. Thus solve the inversion problem with strong sparse constraint. Both 2D and
3D synthetic examples are illustrated to test the robust reconstruction performance of the
algorithm. We also apply the proposed method to the cube of 3D real data example and
compare the performance with the traditional POCS (Abma and Kabir, 2006) algorithm.
The synthetic and real data examples demonstrate the effectiveness and robustness of the
proposed robust reconstruction method.

THEORY

A signal can be represented as follows:

y = Ax+ e, (1)

Where y denotes the signal, x is the coefficients, and A is a synthesis operator or matrix
which can transfer the coefficients into the seismic signal. e represents additive noise in
the signal. In this situation, the sparse approximation problem can be expressed as

min
x
‖x‖0 subject to ‖Ax− y‖22 ≤ δ, (2)

where ‖x‖0 is the `0 norm, which measure the number of nonzero coefficients of x. and
‖.‖22 symbolizes the `2 norm (equal to the square root of the the inner product of a vector
with itself) used to fit the residuals. This problem is a combinatorial, nondeterministic
polynomial time (NP)-hard problem for which finding an exact solution is prohibitively
expensive. Generally, two groups of methods can be used to solve the problem 2. One is
the convex relaxation, replacing the `0 norm with the `1 norm Chen et al. (2001). Which
transfers the problem into a convex optimization problem.

x̂ = argmin
x
‖Ax− y‖22 + λ‖x‖1. (3)
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This problem is also known as Lasso (Tibshirani, 1996), and can be solved by many meth-
ods like FISTA (Beck and Teboulle, 2009), IRLS (Scales and Gersztenkorn, 1988) and
ADMM (Boyd et al., 2011). Another approach is the greedy method like Matching Pur-
suit (MP) (Mallat and Zhang, 1993) and Orthogonal Matching Pursuit (OMP) (Tropp and
Gilbert, 2007; Pati et al., 1993).

In some cases, adding a group structure constraint can yield a better estimation (Majum-
dar and Ward, 2009; Elhamifar and Vidal, 2011). Unlike the standard sparsity assumption,
the sparsity is measured by the number of nonzero coefficients k. A group-sparse vector
can be divided into groups so that few groups contain nonzero coefficients, but the groups
do not need to be sparse.

x̂ = argmin
x
‖Ax− y‖22 + β

N∑
i=1

‖x[i]‖2. (4)

A further refinement, called strong group sparsity, can be made to improve performance
(Vincent and Hansen, 2014; Simon et al., 2013; Huang and Zhang, 2010). For the strong
sparsity problem, the coefficients are not only located within a few groups, but the nonzero
groups are also sparse.

x̂ = argmin
x
‖Ax− y‖22 + λ‖x‖1 + β

N∑
i=1

‖x[i]‖2. (5)

When the erratic noise corrupts the data, we can use M-estimators like Cauchy norm,
Huber norm or `1 norm to replace the `2 norm for the data fitting term. In our case, we use
the `1 norm to replace the `2 norm. Then the problem changes to

x̂ = argmin
x
‖Ax− y‖11 + λ‖x‖1 + β

N∑
i=1

‖x[i]‖2. (6)

To solve the problem 6, we use the linear Radon transform to synthesize the seismic signal.
And the orthogonal matching pursuit with the `1− `1 ADMM to estimate the sparse Radon
coefficients

Linear Radon transform

Linear Radon transform is time-invariant, which means it can be calculated either in
time or frequency domain. For the Radon transform in frequency domain. It can be repre-
sented as the following equation,

M(p, w) =
∑
h

D(x,w)eiwxp, (7)

which can also be written in the matrix form

M = L ∗D. (8)
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FIG. 1. (a) 2D synthetic data. (b) 2D synthetic data with 75% of missed traces. (c) 2D synthetic
data with erratic noise. (d) 2D synthetic with erratic noise and 75% of missed traces.

This equation can extend to 3D form easily,

M(px, py, w) =
∑
h

D(x, y, w)eiw(pxx+pyy), (9)

which in the matrix form can be written as

M = Lpx ∗D ∗ Lpy . (10)

Figure 1 shows a simple synthetic 2D example with three linear events. Part (a) is the fully
sampled clean data. Part (b) is the clean data with 75% of the traces missed. (c) is the fully-
sampled data with strong erratic noise. And (d) is the data with erratic noise and missed
traces. Figure 2 is the corresponding Radon coefficients in the f − p domain. As we can
see from this figure, since the synthetic three linear events have different velocities, all the
Radon coefficients are located around three p values in the f−p domain. The missing trace
and erratic noise will introduce the random noise in the f − p domain. We can see that the
dominant slowness in the f − p domain becomes unclear for the strong erratic noise with
missed traces. Figure 3 shows the `2 norm of each slowness p group. From this figure, we
find that even with the strong erratic noise and a lot of missed traces, we can still determine
the three dominant slowness groups easily.

By using the linear Radon operators in the f − p domain, the problem becomes to
minimize the following cost function.

argmin ‖L∗m− d‖1 + λ‖m‖1 + β

N∑
i=1

‖m[i]‖2. (11)

where L∗ is the forward Radon operator, which transfers the Radon coefficients in the
f − p domain to the t − x domain. m is the Radon coefficients in the f − p domain. The
‖L∗m − d‖1 make the cost function robust to the erratic noise. β

∑N
i=1 ‖m[i]‖2 is use to

promote the group sparsity, and λ‖m‖1 can enhance the sparsity within the groups. To
solve this problem, we use the greedy method; in our case, we use the orthogonal Matching
Pursuit (OMP).
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FIG. 2. The correspond Radon coefficients in the f − p domain of figure 1

FIG. 3. The correspond Energy map of slowness p of figure 1.
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Orthogonal Matching Pursuit

Matching Pursuit (MP) (Mallat and Zhang, 1993) and Orthogonal Matching Pursuit
(OMP) (Tropp and Gilbert, 2007; Pati et al., 1993) are the two most frequently used Greedy
pursuit algorithms. Unlike MP, which updates one coefficient in each iteration, OMP min-
imizes the following cost function for all of the currently selected coefficients in each iter-
ation

x̂
[i]

T [i] = argmin
x̃
T [i]

‖y −AT [i]x̃T [i] ‖22, (12)

where T [i] is the set of the indexes of all the coefficients we have picked until iteration i.
Therefore, the computational cost of OMP is higher than MP. But it usually generates a
superior result. The full algorithm is listed in Algorithm 1.

Algorithm 1 OMP
Input: y, A ,and k
Output: r[k], x̂[k]

Initialization: r[0] = y ,x̂[k] = 0, and T [0] = ∅
for k = 1, 2, ...., K do

l = argmax
j=1,2,....M

|〈A, r[k−1]〉|

T [k] = T [k−1] ∪ {l}
x̂
[i]

T [i] = argmin
x̃
T [i]

‖y −AT [i]x̃T [i] ‖22

r[k] = y −Ax̂
[k]

T [k]

end for

Computing group sparsity solution with OMP and Radon operators

To solve the minimization problem 11, we need to modify the OMP algorithm. Instead
of picking one coefficient each time, we pick a group of coefficients for the basis function
selection part. We divide our coefficients into different groups based on the slowness p.
Then we pick the group which has the maximum `2 norm. And as we can see from figure
3, picking the slowness p based on the summation of the norm can also remove a lot of
effects from the random noise in the f − p domain, which makes the coefficient selection
part more robust. And then, we utilize all the coefficients located with all currently pick
slowness groups pTk by minimizing the following cost function

m̂k
Tk = argmin

m̃
Tk

‖d− LT
n (m̃Tk) ‖1 + λ‖m‖1. (13)

This `1 − `1 minimization problem can be solved by the `1 − `1 ADMM solver (Yang
and Zhang, 2011; Wen et al., 2016), which we will explain later. The full algorithm of the
robust group sparsity OMP is listed below.
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Algorithm 2 GOMP
Input: d, L ,and k
Output: m̂[k]

Initialization: r[0] = d ,m̂[k] = 0, and T [0] = ∅
for k = 1, 2, ...., K do

M = Lr
Pick dominant slowness pk
T k = T k−1 + pk
m̂k

Tk = argmin
m̃

Tk

‖d− L∗n(m̃Tk) ‖1 + λ‖m‖1

rk = d− L∗m̂k
Tk

end for

`1− `1 ADMM

ADMM is an optimization algorithm used in the areas of machine learning and signal
processing a lot. To solve the following optimization problem

‖Ax− y‖1 + λ‖x‖1, (14)

We first separates the `1-norm loss term and the `1-regularization term. Then we uses an
auxiliary variable v to replace the error term; the problem can be reformulated as

argmin ‖v‖1 + λ‖x‖1 subject to Ax− y = v (15)

Using the augmented Lagrangian method, this problem can be solved iteratively follows.

vk+1 = argmin
v

(‖v‖1 +
ρ

2
‖Axk − y − v − wk

ρ
‖22) (16)

xk+1 = argmin
x

(‖x‖1 +
ρ

2
‖Ax− y − vk+1 − wk

ρ
‖22) (17)

wk+1 = wk − ρ(Axk+1 − y − vk+1). (18)

Both 16 and 17 have closed-form solutions, which the soft-thresholding operator can solve.

vk+1 = Shrink(Axk − y −wk/ρ, ρ) (19)

xk+1 = Shrink(xk − µA∗(Axk − uk, ρ/µ), (20)

where uk = y + vk+1 + wk/ρ. µ is scale parameter > 0. Shrink is soft-thresholding
operator where Shrink(x, t)=sign(xi)*max{xi − t, 0}. The detailed mathematical theory
about how to get these closed-form solutions can be found in paper (Wen et al., 2016)

EXAMPLES

In this section, we will test the algorithm on synthetic and real data examples.We com-
puted the signal-to-noise-ratio of the output SNRout = 10 log

‖dc‖22
‖dc−dr‖ where dr is the

reconstructed data and dc is original clean data. We will use the SNR value to compare the
reconstruction performance.
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Simple 2D synthetic examples

With and without group

We first test the erratic noise attenuation performance of the proposed algorithm. We
use the same synthetic data as in figure 1. This test compares the proposed algorithm with
the other three cases.

• `2 − `1 without group sparsity: argmin ‖L∗m− d‖22 + λ‖m‖1.

• `1 − `1 without group sparsity: argmin ‖L∗m− d‖1 + λ‖m‖1.

• `2 − `1 with group sparsity: argmin ‖L∗m− d‖22 + λ‖m‖1 + β
∑N

i=1 ‖m[i]‖2.

Figure 4 shows the denoised results with a different method. As expected, the `2 − `1
inversion, which is not robust to the erratic noise, has the worst performance. The `1 − `1
inversion performs better than the `2 − `1. Since the erratic noises are extreme, the `1 − `1
inversion method still has much noise. Part (c) is the `2 − `1 with group sparsity. As we
can see, even with the `2 − `1 inversion, the performance is better than using the `1 − `1
inversion without group sparsity. And finally, part (g) is the denoised result with `1 − `1
inversion and group sparsity, which has the best performance.

Figure 5 shows the estimated Radon coefficients in the f − k domain, and figure 6
represents the estimated Radon coefficients in the τ − p domain. The proposed algorithm
removed the noise in the τ − p domain and the smear effect of the Radon transform simul-
taneously. This example shows the proposed robust group sparsity algorithm has the best
denoising performance when dealing with erratic noise.

Compare with other Radon-based methods

We also compare our algorithm with other Radon-based inversion methods. In our
method, we work with Radon transform on the f−p domain. There are two more frequently
used approaches. One is working on the τ−p domain (Lin and Sacchi, 2020), which can be
calculated as the inverse Fourier transform of the f − p domain or do the Radon transform
on the time domain directly. The other is to do the sparse inversion on each frequency
slice (Tran et al., 2014). We will apply the `1 − `1 sparse inversion on both algorithms
and compare it with the proposed robust group sparse inversion that works on the whole
f − p domain. Figure 7 shows the final denoising results. Part (a) is the denoising result by
the method that works on each frequency slice. For this method, the sparse inversion tries
to fit each frequency. For one frequency slice, it’s hard to decide which coefficients are
caused by the signal and which are caused by noise. Therefore, it has the worst denoising
performance. Part (c) is the denoising result by the `1 − `1 robust inversion works on the
τ − p domain, the result is identical to the `1 − `1 robust inversion works on the f − p
domain. And again, Part (e) is the result estimated by the robust group sparse inversion,
which has the best performance. And figure 8 is the final result in the τ − p domain.
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FIG. 4. Reconstructed result in the t − x domain. (a) `2 − `1 without group sparsity, snr=2.35 dB.
(b) Errors between a and clean data. (c) `2− `1 with group sparsity, snr=6.9 dB. (d) Errors between
c and clean data. (e) `1 − `1 without group sparsity, snr=5.22 dB. (f) Errors between e and clean
data. (g) `1 − `1 with group sparsity, snr=14.3 dB. (h) Errors between g and clean data.

FIG. 5. Reconstructed result in the τ − p domain. (a) `2 − `1 without group sparsity. (b) `2 − `1 with
group sparsity. (c) `1 − `1 without group sparsity. (d) `1 − `1 with group sparsity
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FIG. 6. Reconstructed result in the τ − p domain. (a) `2 − `1 without group sparsity. (b) `2 − `1 with
group sparsity. (c) `1 − `1 without group sparsity. (d) `1 − `1 with group sparsity.

2D seismic data reconstruction

We now apply our algorithm to seismic interpolation and erratic noise attenuation si-
multaneously. To do the interpolation, we need to add a sampling operator S in our algo-
rithm.

m̂k
Tk = argmin

m̃
Tk

‖d− SL∗n(m̃Tk) ‖1 + λ‖m‖1 (21)

rk = d− SL∗m̂k
Tk (22)

Figure 9 shows the final denoised and interpolated result.

Simple 3D synthetic examples

Our algorithm can extend to 3D with the 3D Radon transform. Figure 10 shows a
simple 3D cube with three linear events. Part (b) is the synthetic data with erratic noise and
also 90% of traces missed. Part (c) is the reconstructed result.

Field data example

Figure 11 shows the application of the proposed algorithm to real data. For this exam-
ple, we compare the result with the POCS. For this real data example, the POCS method
doesn’t work well, and the result of the proposed method is more continuous and smooth.

CONCLUSIONS

We proposed a robust group sparse inversion algorithm which can provide a better
sparse estimation and be robust to the erratic noise simultaneously. The core of the pro-
posed method is based on the orthogonal Matching Pursuit. We divide the Radon coeffi-
cients in the f−p domain into different slowness groups. In each iteration, the algorithm se-
lected the group with the maximum norm. And then, the Radon coefficients located within
all currently selected groups are directly fitting to the seismic data in the t − x domain.
The coefficient optimization part is solved by the modified `1 − `1 ADMM solver, which
makes the algorithm robust to the erratic noise. The tests on both 2D and 3D synthetic
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FIG. 7. Reconstructed result in the t−x domain. (a) `1− `1 with method works one each frequency
slice, snr=2.31 dB. (b) Errors between a and clean data. (c) ` − `1 with method works on τ − p
domain, snr=6.3 dB. (d) Errors between c and clean data. (e) `1 − `1 with method works on f − p
domain and group sparsity, snr=14.3 dB. (f) Errors between e and clean data.
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FIG. 8. Reconstructed result in the τ −p domain. (a) `1− `1 with method works one each frequency
slice. (b) `− `1 with method works on τ − p domain. (c) `1− `1 with method works on f − p domain
and group sparsity.

FIG. 9. Reconstructed result in the t − x domain. (a) Clean data. (b) Synthetic data with erratic
noise and 75% of traces missed. (c) Reconstructed result by the proposed algorithm, snr=13.5 dB.
(d) Errors between clean data and reconstructed data.

12 CREWES Research Report — Volume 34 (2022)



Group Sparsity

FIG. 10. (a) 3D cube synthetic data. (b) 3D cube synthetic data with erratic noise and 90% of
traces missed. (c) The reconstructed result, snr=13.7 dB. (d) Errors between the original data and
reconstructed data.

CREWES Research Report — Volume 34 (2022) 13



Ji et. al

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

(c)

FIG. 11. (a) Six slides of a 3D cube real data. (b) POCS interpolation. (c) Robust group sparsity
interpolation

examples prove the effectiveness and robustness of the proposed method. Furthermore,
compared with the traditional MP and OMP algorithm, the proposed algorithm can save
the total costs a lot since it selects one group with multiple coefficients instead of picking
just one best-correlated coefficient like MP and OMP.
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