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ABSTRACT 

Full waveform inversion (FWI) has been used to estimate high-resolution 

subsurface velocity models. It has become a powerful tool for time-lapse seismic 

inversion, which is promising to monitor reservoir profile changes with injection and 

production, and potentially long-term storage of CO2. To overcome the challenge of 

expensive computational costs for FWI processes, shot subsampling methods and source-

encoding strategies have been used to make the full waveform inversion efficient while 

maintaining the quality of the inversion results with minimum sacrifice. The cyclic 

method subsamples the shots at a regular interval and changes the shot subset at each 

iteration step. Using this method, we can suppress the aliasing noise present in regular-

interval subsampling. FWI using source-encoding strategies has been investigated using 

different methods. In previous work, we have used an amplitude-encoding strategy with 

different bases to accelerate the FWI process. In this work, we incorporate an amplitude-

encoding strategy with a cyclic subsampled data scheme, which first subsamples the data 

cyclically and then composes blended during the iterations. In this way, we can directly 

eliminate much more crosstalk terms introduced by encoded individual shot gathers and 

reduce the data dimension to improve FWI efficiency. We have applied this strategy to 

acoustic and elastic time-lapse FWI in the time domain, and the synthetic inversion 

results recovered the velocity profile changes in the time-lapse models very well with 

reduced computation efforts. 

INTRODUCTION 

The classical time-domain FWI was originally proposed by Tarantola (1984) to 

invert the velocity model by minimizing the l2-norm of the difference between predicted 

and observed data (Symes, 2008, Virieux et al., 2017). This technique has become a 

powerful tool for time-lapse inversion and promising in monitoring reservoir change with 

time. However, FWI suffers from a heavy computational burden. To make FWI more 

efficient, source-encoding strategies have been proposed (Romero et al., 2000; Krebs et 

al., 2009, Schuster et al., 2011, Liu et al, 2021), which reduce the data dimension by 

encoding the individual shot gathers into super-shots. We have applied the amplitude-

encoding strategy (Godwin and Sava, 2013; Hu et al., 2016) to acoustic and elastic FWI, 

which assigns different weights to the shot gathers to compose multiple super-shots. 
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However, when the number of super-shots is small, the introduced crosstalk noise 

between all the individual shots within the super-shots is still significant. 

Alternatively, shot subsampling or shot decimation techniques can be used to 

attain efficiency in a full waveform inversion (Díaz and Guitton, 2011; van Leeuwen et 

al., 2011; van Leeuwen and Herrmann., 2012; Li et al., 2012; Ha and Shin, 2013). These 

techniques use a small number of chosen shot gathers to reduce the computation time 

with no extra crosstalk noise introduced. However, to make sure the information from 

chosen shots is adequate for FWI, the number of shots used in the inversion should be not 

too small and the reduction of data dimension is limited.  

In this work, we use an amplitude-encoding strategy to blend subsampled shot 

gathers into super-shots. In this way, after we chose adequate shot gathers to recover 

subsurface structures, we can further reduce data dimension, and the number of crosstalk 

terms introduced by the encoding scheme could be significantly reduced compared with 

using all the individual shots. To extrude the impact of the time-lapse inversion strategy, 

we use a common parallel strategy (PRS) and apply the subsampled data-based 

amplitude-encoding scheme to both acoustic and elastic time-lapse FWI. Examples using 

down-sampled synthetic data obtained from the Marmousi model show good results. 

In this report, we first introduce the schemes of data subsampling and amplitude-

encoding, then demonstrate the feasibility of our scheme with the synthetic examples of 

both acoustic and elastic FWI using down-sampled Marmousi models.  

SUBSAMPLING THE SHOTS 

The simplest subsampling method is regular subsampling, which statically 

subsamples every nth specific shot shown in Figure 1a. Since some of the information in 

the observed data is lost, this scheme degrades the inversion result. To better take the 

advantage of data information, random subsampling (Díaz and Guitton, 2011) and cyclic 

subsampling (Ha and Shin, 2013) have been proposed. Although the probability of a shot 

being used is the same, the actual number of assignments can vary for each shot in the 

random subsampling methods shown in Figure 1b. Alternatively, a cyclic subsampling 

method uses every shot the same number of times or at least a similar number of times 

(Figure 1c). To avoid distance variability between the selected shots, the selected shots in 

each subgroup are uniformly spaced. 
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Figure 1. The regular, random and cyclic subsampling schemes. The black dots indicate 

the shots used in an iteration (adopted from Ha and Shin, 2013).  

AMPLITUDE-ENCODING FWI 

We review this strategy in an acoustic case with constant density, the acoustic 

wave equation is described by Yang et al. (2014)  

1

v2(x)
 
∂2 p(x,  t ;  xs)

∂ t2
− ∇2 p(x,  t ;  xs) = fs(x,  t ;  xs) 

where fs is the source term. The objective function (data misfit function) of Δ𝐩 is given 

by 

𝐸(𝒎) =
1

2
𝚫𝐩†𝚫𝐩 =

1

2
||𝐩cal − 𝐩obs||

2 

where † denotes the adjoint operator (conjugate transpose).  

In encoding FWI, shot gathers are transformed into super shot gathers by the 

encoding matrix, which is defined as  

𝐁 = [
𝑏1,1 ⋯ 𝑏𝑁𝑠𝑖𝑔,1

⋮ ⋱ ⋮
𝑏1,𝑁𝑠𝑢𝑝 ⋯ 𝑏𝑁𝑠𝑖𝑔,𝑁𝑠𝑢𝑝

]

𝑁𝑠𝑢𝑝×𝑁𝑠𝑖𝑔

 

where Nsup is the number of the super-shots and Nsig is the number of the individual 

shots (Nsup < Nsig). The Nsig synthetic data and observed data are blended into Nsup 

blended data by 

𝐩cal 

sup 
= 𝐁𝐩cal  

𝐩obs 

sup 
= 𝐁𝐩obs  

The ratio between Nsig and Nsup is the factor by which the computational cost is 

reduced. Since usually Nsup is much smaller than Nsig, the encoding FWI would achieve 

much better efficiency due to the reduction of data dimension.  

Then the encoding objective function is given by: 

𝐸(𝐦) =
1

2
𝚫𝐩†𝚫𝐩 =

1

2
||𝐩cal − 𝐩obs||

2 =
1

2
(𝑝𝑐𝑎𝑙 − 𝑝𝑜𝑏𝑠)𝐁

T𝐁(𝑝𝑐𝑎𝑙 − 𝑝𝑜𝑏𝑠) 



Liu et al. 

 CREWES Research Report — Volume 34 (2022) 4 

The matrix 𝐁T𝐁 is referred to as the crosstalk matrix, and when it’s equal to the 

identity matrix, the encoding objective function is equal to the traditional objective 

function. FWI using blended data would produce the same results as in conventional FWI 

cases. Therefore, to make the inversion result from the encoding FWI comparable to that 

from the conventional FWI, the designed encoding crosstalk matrix should be a good 

approximation of the identity matrix (Liu et al., 2021). In this work, we use a sine basis 

as the encoding matrix, which is defined as (Tsitsas, 2010): 

 

TIME-LAPSE INVERSION STRATEGY  

We use the parallel strategy (PRS) following the workflow in Figure 2. We invert 

the baseline and monitor models with the same initial model independently and obtain the 

inverted time-lapse model through the subtraction between two inversion results. 

 

Figure 2. Flowchart of parallel strategy (PRS) of time-lapse FWI. 

SYNTHETIC EXAMPLES 

Down-sampled acoustic Marmousi model 

In this section, we use a down-sampled acoustic Marmousi model to test the 

scheme. The true baseline model is shown in Figure 3a, two reservoirs are located left 

and right at mid-depth in the model, respectively. To mimic the fluid change, 150 m/s 

acoustic velocity changes, are added at the two reservoirs as displayed in Figure 3b to 

obtain the monitor model. A smoothed initial model is displayed in Figure 3c, which is 

used in FWI of both baseline and monitor models.  
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Figure 3: a) True baseline model. b) True time-lapse model. c) The starting model is 

obtained by smoothing the true baseline model. 

The models have a distance of 3500 m and a depth of 1200 m and are discretized 

by 350 by 120 cells with 10 meters grid spacing. On the top of the model, 174 sources are 

evenly distributed at the depth of 20 m and 350 receivers are located at each grid point. 

The source wavelets used for baseline and monitor data sets are identical with a dominant 

frequency of 10 Hz. The time sampling interval is 1.5 ms and the maximum recording 

time is 2 s.  

We subsample 58 shot gathers to compose 10 super-shots with even spatial 

distance from all 174 shots and re-subsample the data cyclically every few iterations. 

Using an amplitude-encoding strategy for all the individual shots, we can get the 

encoding and crosstalk matrices as shown in Figures 4a and 4c. From the crosstalk 

matrix, we can notice many non-zero elements off the main diagonal, which represent the 

coefficients of the crosstalk terms. After applying the cyclic subsampling scheme, we use 

58 shots of all the observed data at each iteration to compose super-shots. In Figures 4b 

and 4d we see the encoding and crosstalk matrices at the first iteration. From the crosstalk 

matrix, we can notice that compared with Figure 4c, many off-diagonal elements are 

reduced to zero. 
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Figure 4: The encoding (first row) and crosstalk (second row) matrices: using all the 

individual shots (left column) and subsampled shots (right column). 

To show the capacity of the time-domain constant-density acoustic FWI program 

used in this study, we first present the inverted baseline model in Figure 5a, and two 

vertical profiles through the two reservoirs at distances of 1300 m and 2700 m, which are 

extracted and plotted in Figure 5b. From the final image after 100 iterations shown in 

Figure 5a, we can see the fine subsurface structures in the Marmousi model are well 

recovered with no significant crosstalk noise introduced. In Figure 5b, we compare the 

inverted and true velocity profiles. In this Figure, the solid black lines are the true 

models, the dashed red lines are starting models, and the yellow lines are inverted 

baseline models. The reservoirs are located at 740 m and 600 m deep. From the 

comparison, we can see the black and yellow lines match very well, even though the fine 

structures at large depths need further updates.  
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Figure 5. a) Inverted baseline model; b) The solid black lines are the true model, the 

dashed red lines are starting models, and the yellow lines are inverted baseline models at 

distance 1300 m (left) and 2700 m (right). 

From the inverted baseline and monitor models, we see the technique does not 

introduce obvious crosstalk noises in the final images. Using a parallel time-lapse FWI 

strategy, we use the same scheme to invert the monitor model, which is shown in Figure 

6b. We show the inverted time-lapse model after subtraction in Figure 6c. We can see the 

well-inverted velocity changes in the two reservoirs.  

 

Figure 6: Inverted baseline, monitor and time-lapse models. 

Down-sampled elastic Marmousi II model 

In this section, we applied the scheme to elastic time-lapse FWI. We used a down-

sampled elastic Marmousi II model with a distance of 4100 m and a depth of 1500 m in a 

grid of 410 by 150 cells with 10 meters size each. This model consists of a 200 m thick 

water layer above. In this work, we consider density constant and only perform FWI for 

Vp and Vs using the IFOS2D software (Bohlen, et al., 2016). 

The true baseline Vp and Vs models are shown in Figures 7a and 7d. Figure 7b 

and 7e show the smoothed initial models for Vp and Vs. As in the acoustic case, we set 

two velocity change areas located at 600 m deep in the model. In the time-lapse model 

shown in Figures 7c and 7e, Vp change is also set to 150 m/s and Vs change is set to 89 

m/s. 
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We deployed 204 sources and 410 receivers along the model surface at the depth 

of 20 m and 30 m, respectively. The source wavelets used for baseline and monitor data 

sets are identical with a dominant frequency of 10 Hz. The time sampling interval is 1.25 

ms and the maximum recording time is 3 s. 

 

Fig 7. Down sampled Marmousi II model: columns from left to right are the true, initial 

and time-lapse Vp and Vs profiles. 

In this experiment, we subsample every 3 shots and compose 40 super-shots. For 

comparison, we display the encoding and crosstalk matrices using all the individual and 

selected shot gathers in Fig 8. 
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Figure 8: The encoding (first row) and crosstalk (second row) matrices: using all the 

individual shots (left column) and subsampled shots (right column). 

For elastic FWI, we use a multi-scale approach and invert the baseline and 

monitor models from 1 Hz to 20 Hz. Also, we first present the inversion results for the 

baseline model. The final images and vertical profiles of Vp and Vs at two velocity 

change areas are shown in Figures 9 and 10, respectively. 

  

Figure 9. Inverted baseline model, a) Vp and b) Vs. 
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From Figure 9, we can see that amplitude-encoding elastic FWI based on 

subsampled data can produce high-quality inversion results with no obvious crosstalk 

noise introduced in the final images as in the acoustic case.  

In Figure 10, vertical Vp (left) and Vs (right) profiles at 2.1 km and 3.0 km of the 

initial model and inversion results are compared with the true models. Within each panel, 

the black line is the true model and the dashed red line is the initial model, the yellow 

lines are the results of amplitude-encoding elastic FWI. We can see results contain small 

details and identify the fine layers with reduced calculation effort. Both of the velocity 

change areas are located at around 600 m deep, which are well resolved in Vp and Vs 

vertical profiles.  

 

Figure 10: Vertical profiles of the elastic parameters within the reservoir areas extracted 

at distances 2.1 km and 3.0 km: a) and c) P-wave velocity, b) and d) S-wave velocity.  

Then we use the same scheme to invert the monitor model. For comparison, both 

inverted baseline and monitor models are shown in the first and second columns in Figure 

11. Last, subtracted time-lapse Vp and Vs models are displayed in Figures 11c and 11f, 

respectively. 

Inverted time-lapse models are plotted at the same scale as the true models. From 

the result of Vp, we can see that except for some artifacts resulting from convergence 

differences between baseline and monitor models, the Vp changes within the two areas 

are well resolved. 



 

 CREWES Research Report — Volume 34 (2022) 11 

Figure 11f shows the inverted time-lapse vs model. We can also see the Vs profile 

change is well-resolved for both areas. What is different is that at some high-velocity fine 

layers at a large depth around the bottom left and right corners of the model, the 

convergence difference between baseline and monitors models shows a bigger impact on 

the Vs profile, which may be better coped with advanced time-lapse inversion strategies, 

such as common model strategy (CMS) (Hicks et al., 2016; Fu and Innanen, 2021).  

 

Figure 11. Inversion results for elastic parameters: columns from left to right are the 

baseline, monitor and time-lapse Vp and Vs profiles. 

We further apply CMS strategy to the time-lapse inversion, the flowchart is shown in 

Figure 12. So we used the averaged inversion result as the initial model. Instead of using 

multi-scale approach to invert baseline and monitor models from 1 Hz all the way to 20 

Hz, we stop the inversion if only the misfit stopping decreasing. Finally, The final time-

lapse model is obtained from a difference of the baseline and monitor models, and the 

time-lapse inversion result comparison between two strategies are shown in Figure 13. b) 

and d) are Vp and Vs profiles by CMS. From the comparison, we can see the CMS 

strategy has better mitigated the artifacts. 

 

Figure 12. Flowchart of common-model strategy (CMS) of time-lapse FWI. 
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Figure 13. Inversion results for elastic parameters: a) and c) are Vp and Vs profiles by 

PRS;  

CONCLUSIONS  

We presented cyclic subsampled data-based amplitude-encoding time-lapse FWI 

in the time domain. FWI examples show that using amplitude-encoding with subsampled 

shots can make the inversion process efficient with minimum sacrifices in the inversion 

results. Based on subsampled shots, the number of crosstalk terms in the crosstalk matrix 

can be significantly reduced. We have applied this scheme to both acoustic and elastic 

time-lapse FWI, both synthetic examples show promising results. In addition, we applied 

common-model strategy to elastic time-lapse FWI and obtain time-lapse models with 

better mitigated artifacts. 
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