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ABSTRACT

Multiparameter FWI is commonly affected by parameter crosstalk. These effects are
described/corrected by the Hessian, which also impact the shape of the objective func-
tion iso-surfaces and the convergence of the optimization algorithms. This study focuses
on finding an intermediate model space where the parameter classes are decorrelated, i.e.,
where the Hessian is an identity matrix, to minimize crosstalk and reach an accurate min-
imum that could be transformed to the ρ, VP and VS model space. Transformation rules
between model spaces were applied in a FWI workflow, using transformation matrices
(T) constructed to satisfy constraints imposed by the Hessian of the intermediate system.
Overall, this FWI method produced relatively good VS estimations, but did not overcome
a reference FWI in the VP and ρ results, since more crosstalk was introduced. However,
improvements on the structure of the Hessians with respect to those from the reference in-
version were brought for some areas of the model grid, which makes the main decorrelation
ideas promising to minimize these coupled effects. The drawbacks were related to a local-
ized approach to compute T, which might need to account, in future work, for crosstalk
contributions of multiple grid cells.

INTRODUCTION

In multiparameter Full waveform Inversion (FWI), inter-parameter coupled effects or
crosstalk might occur (Operto et al., 2013). Crosstalk implies that different physical prop-
erties are confused in the inversion, yielding to poorly accurate results and convergence
slowness (Keating and Innanen, 2019). A common strategy to mitigate these effects in-
volve the analysis of radiation patterns, allowing to identify which patterns overlap for a
range of angles, and thus for which of the involved properties the gradient update will be
similar, giving insights about the leakage that will occur (Keating and Innanen (2019); Mé-
tivier et al. (2015)). Hence, FWI workflows are designed including parameterizations based
on minor correlation of their scattering patterns and, in some cases, the dominant parame-
ter class of a particular set. On the other hand, most local optimization algorithms require
a Hessian, which is a block band-diagonal matrix that quantifies and corrects crosstalk in
the gradients of the objective function through their off-diagonal blocks. Thus, trade-off
suppression could be accounted through manipulation of the Hessian, since no parameter
correlation would exist if the off-diagonal blocks were zero (Operto et al. (2013); Métivier
et al. (2015)).

Moreover, Innanen (2020a,b,c,d,e) published a series of reports explaining: (1) how
re-parameterizing seismic inversion problems is equivalent to performing a coordinate
transform between two systems (2) how Gauss-Newton directions are parallel to Steepest
Descent directions when the Hessian is the identity matrix, producing favorable conver-
gence properties, and (3) how a model space characterized by a Hessian with that structure
promises the minimization of crosstalk.
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In this study, we performed a isotropic elastic Full Waveform Inversion in the frequency
domain, with the main purpose of obtaining crosstalk corrected values of density (ρ), P-
wave velocity (VP ) and S-wave velocity (VS) by inverting for an intermediate set of pa-
rameters, that ideally should not contain any leakage, and then transforming the estimates
back to the original model space. To achieve this, we incorporated the transformation rules
and numerical procedures proposed by Innanen (2020a,b,c,d,e), i.e., the intermediate re-
parameterization was found after solving linear relationships between the models ρ, VP
and VS (baseline or reference system) and a transformation matrix. The crosstalk correc-
tion is included within this matrix, because it is constructed in a way that allows to convert
a local Hessian (extracted from a fixed point) in the baseline system to an identity matrix
in the intermediate system. In that sense, we aimed to understand how the selected point
controls this re-parameterization, as well as what is the scope of accuracy expected.

BACKGROUND: FWI AND MODEL SPACE TRANSFORMATIONS

The most common objective function to minimize in FWI problems, while using local
optimization strategies, is the L2 norm or least-squares (Tarantola, 1984). The wavefield
dependent data fitting in frequency domain takes the form:
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where Nf is the number of discrete frequencies, Ns is the number of sources, d is the
measured data, u is the predicted wavefield and R is the receiver sampling matrix. In the
isotropic elastic approximation of the wave propagation, the medium is characterized by the
density ρ(x,z) and the Lamé parameters λ(x,z) and µ(x,z). In this scenario, the predicted
data is computed through the wave equation described by Pratt (1990):

ω2ρux +
∂

∂x

[
λ

(
∂ux
∂x

+
∂uz
∂z

)
+ 2µ

∂ux
∂x

]
+

∂

∂z

[
µ

(
∂uz
∂x

+
∂ux
∂z

)]
+ fx = 0 (2)

ω2ρuz +
∂

∂z

[
λ

(
∂ux
∂x

+
∂uz
∂z

)
+ 2µ

∂uz
∂z

]
+

∂

∂x

[
µ

(
∂uz
∂x

+
∂ux
∂z

)]
+ fz = 0 (3)

where ω is the angular frequency, ux and uz are the horizontal and vertical particle dis-
placements, respectively, and fx and fz are the horizontal and vertical source terms. These
equations were solved in this study using the second order centered finite difference ap-
proach for the spatial derivatives detailed by Pratt (1990) and adding perfectly matched
layers (Berenger, 1994) to avoid boundary reflections. The finite difference procedure al-
lows to write these wave equations in matrix form as:
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ρω2u+c11∇ (∇ · u)−c44∇×(∇× u)+∇ (c11 − 2c44) (∇ · u)+∇c44
(
∇u +∇uT

)
+f = 0

(4)

with c11 = λ+ 2µ and c44 = µ. Being structured as A(s)u− f = 0; A is the wavefield op-
erator or Helmholtz matrix. Although this is the root parameterization in elastic scenarios,
the wave equation can adopt any other 3 elastic parameters that are somehow related to the
basic parameterization. For instance, in the case of the ρ, VP and VS model space, these
relationships are:

c11 = VP
2ρ (5)

c44 = VS
2ρ (6)

Moreover, Innanen (2020a,b,c,d) explains how each re-parameterization can be seen
as a transformation between cartesian and oblique coordinate systems. In order to change
to a different model space, the objective function must be considered as a scalar quantity,
meaning that it is invariant under transformations. However, the model update is a vector
expressed in their contravariant components, while the gradient and the Hessian tensors ex-
pressed in their covariant components, meaning that they do change under transformations.
To map a contravariant vector from an initial system s to a new system r and backwards,
some rules are necessary:

sυ = tυµr
µ (7)
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All these rules include a transformation matrix T (t in indicial notation) that could be
constructed to satisfy certain constraints in the problem, such as producing iso-surfaces of
the objective function with a particular shape in the transformed model space. Since scalar
quantities do not change under transformation of the systems, the minimization of φ in the
new system will output r models limited by a range of sµ vectors that produce the same
value of the objective function and, because there is only one set of parameters associated
to the minimum cost, finding the minimizer of φ in the r model space (intermediate model
space) is equivalent to find it in the s coordinate system (original model space).
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Additionally, local optimization approaches require the gradient of the objective func-
tion, and this tensor as well as the model updates are affected by the selected parameteri-
zation. The gradient takes the form:
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Working with c11, c44 and ρ as the root parameterization is beneficial to compute the
terms ∂A

∂s
in Equation 11, using the chain rule (Eaid, 2021). On the other hand, depending

on the optimization strategy, second-order information might be included with the Hessian,
but most generally through a Hessian-vector product. The linear form of the Gauss-Newton
approximation of the Hessian is:
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where j and l refer to the parameter class and i and k to the position. This expression
involves the correlation between the scattered wavefield that is caused by a diffractor point
on the parameter si,j and the scattered wavefield caused by a diffractor point on sk,l (Operto
et al., 2013). Operto et al. (2013) and Métivier et al. (2015) illustrate how the full Hessian
is organized in 3x3 blocks, each of size (nz × nx)×(nz × nx), with nz being the number of
samples in the vertical direction and nx the number of samples in the horizontal direction
of the model grid. When the parameter classes are not the same (j 6= l), i.e., off-diagonal
blocks, the full Hessian describes and corrects the existing trade-off. Then, no coupled
effects between parameters of different classes would exists if these values were zero.

Figure 1 demonstrates that if the values of the full Hessian are extracted at a fixed
position, a local 3x3 matrix can be formed, corresponding to a point-wise Hessian and
characterizing the crosstalk between parameters of different classes only at that location.
Moreover, the Hessian-vector product can be written as ∇gi(s)T∆s, representing the rate
of change of the gradient gi(s) by the rate of change of s (model perturbation). Figure
2 illustrates that if there is a perturbation of the parameter classes at one fixed position
and we want to study the change of the gradient in all locations for all parameter classes,
vertical profiles accross the selected location can be extracted and, by reshaping them per
block of the full Hessian, a point probes Hessian can be constructed. This Hessian is also
organized in 3x3 blocks and, although it is larger than the local 3x3 Hessian, it is still very
computable.

Similarly, when objective functions have ellipsoidal iso-surfaces with pronounced ec-
centricities and misalignments, mixing of parameter information will occur due to prob-
lems encountered by the Steepest Descent algorithm to reach the global minimum. Innanen
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FIG. 1. Illustration of a full Hessian, modified from (Métivier et al., 2015), and how a point-wise
Hessian can be constructed from it.

FIG. 2. Illustration of a full Hessian, modified from (Métivier et al., 2015), and how a point probes
Hessian can be constructed from it.

(2020c) proved that, for a quadratic objective function, the Steepest Descent and the Gauss-
Newton updates are parallel, if the Hessian behaves as an identity matrix, meaning that a
more accurate local minimum can be reached with reduction of crosstalk and convergence
improvement (Innanen, 2020a).

Then, we could design transformation matrices that are favorable to meet the mentioned
constraints by solving the following system of equations or transformation rule for the
Hessian (Innanen, 2020c):

tλµHλσ (s) tσυ = Hµυ (r) = δµυ (14)
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with:

T =

 t11 t12 t13
t2∗1 t22 t23
t3∗1 t3∗2 t33

 (15)

In a M dimensional problem for T, this matrix has M(M-1)/2 degrees of freedom. One
way to reduce them is to pre-select and fix the lower triangular terms (marked with aster-
isks) and/or the diagonal entries of T, while computing the other entries. Innanen (2020d)
explains two procedures to solve this system of equations. For this study, the first procedure
was chosen, i.e., solving the system when only the lower triangular terms were fixed.

WORKFLOW AND ITS ADAPTATION FOR COMPUTATIONAL FEASIBILITY

A promising workflow entails searching for a model space where the Hessian is an
identity matrix through the construction of T with Equation 14, and the application of the
transformation rule of Equation 8, performing an efficient gradient descent strategy in this
intermediate system (r model space) to find its minimum point and finally transform the
result back to the original system (s model space) applying Equation 7. For this study,
the Steepest Descent algorithm was preferred in order to stay the closest possible to the
theoretical background. Figure 3 illustrates a scheme of the applied FWI workflow. The
proposed multiscale approach was executed with 8 groups of 4 frequencies, each one start-
ing at 1Hz and increasing its maximum value from 2Hz (first frequency band) to 20Hz (last
frequency band). Additionally, the initial models were homogeneous backgrounds with the
values outside the modeled heterogeneities, and 20 iterations were performed per band.

The main assumption was to work with a point-wise Hessian of the s model space and
find the T that transforms it to an identity matrix in the r model space. This was a first
attempt to make the process computationally feasible, since working with the full Hessian
would imply a huge computational cost. Hence, since we would devise parameterizations
based on a single point, the inversion results could be affected by the selected location to
compute the transformation matrix. On the other hand, to remove degrees of freedom, the
lower triangular terms in T were set to zero.

EVALUATION METRICS

The estimated results and the true models were compared in vertical and horizontal
sections, but also with results from a FWI executed in the reference or baseline system (ρ,
VP and VS), i.e., without applying transformation rules. Additionally, Hessians computed
with the final estimates were analyzed to determine how close they were to the sought iden-
tity matrix. To achieve this, visual inspection of point probes Hessians and an appropriate
evaluation metric were used. The metric corresponded to a 3x3 matrix that resulted after
calculating the norm of each block of the studied point probes Hessian. It’s purpose was
to capture the possible existent crosstalk between parameters of different classes in all the
grid cells and not only at the location selected to compute T. This metric indicates that
the closer to zero the off-diagonal terms, the less crosstalk between parameters of different
classes is encountered in all locations of the model grid. Additionally, some of the blocks
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FIG. 3. Re-parameterized FWI workflow followed in this study.

of the point probes Hessian exhibited sensitivities with different orders of magnitude; thus,
the crosstalk metric and local 3x3 Hessians were normalized.

RESULTS

Twenty-five sources were placed at the top of the model grid, and 98 receivers were
placed at the top and bottom, to enhance illumination of the heterogeneities. Figure 4
shows the selected acquisition geometry as well as the dimension of the model grid and
true values of ρ, VP and VS . The reference inversion was performed with the same fre-
quency bands, initial models, optimization strategy, and number of iterations proposed for
the re-parameterized approach. Figure 5 illustrates the results obtained without applying
transformation rules. Noticeable crosstalk effects are observed around the ρ heterogeneity.
Additionally, very subtle crosstalk is seen below the VP anomalies.

FIG. 4. True ρ, VP and VS models.
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FIG. 5. Models estimated with a baseline FWI, i.e., without re-parameterization.

Figure 6 shows the point probes Hessian calculated on the estimates from the reference
inversion. The point-wise Hessian computed on different grid cells are illustrated in Figure
7, while Figure 8 represents the normalized crosstalk metric after perturbing the parameter
classes at different locations. Overall, at each location, the local Hessians presented a sim-
ilar arrangement of values, very distant from the identity matrix. Moreover, the crosstalk
metrics showed a similar organization of the values, with strong crosstalk between ρ and
VP and between ρ and VS , but much less between VP and VS , in all locations, as is expected
for this model space.

FIG. 6. Point probes Hessian computed on baseline estimates, after perturbing parameters at
location x=50 and z=20. The 3x3 matrix is the local Hessian at the considered grid cell.

The models estimated with the re-parameterized FWI, choosing the location x=50 z=20
to compute T, are shown in Figure 9. This time, much more crosstalk was encountered
around the ρ heterogeneity, as well as at the top and bottom of the VP anomalies. Figure 10
illustrates the results of the normalized crosstalk metric. There was large crosstalk between
r2 and r1 as well as between r3 and r1. However, there was less crosstalk between r2 and
r3, in all locations of the model grid. This means that VS had much more contribution from
the r2 parameter class, while ρ and VP had more contribution from r1 and r3 parameter
classes, bringing their coupled effects after transforming from the r model space to the s
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FIG. 7. Point-wise Hessians computed at different locations of the baseline estimates.

FIG. 8. Normalized crosstalk metrics computed on baseline estimates after perturbing at different
locations to compute the associated point probes Hessians.

model space.

FIG. 9. Models estimated with a re-parameterized FWI after selecting location x=50 and z=20 to
compute T.

A point probes Hessian associated to the final estimates, in the r model space, is shown
in Figure 11. The identity matrix structure was observed only at and close to the grid cell
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FIG. 10. Normalized crosstalk metric on estimates obtained after selecting location x=50 and z=20
to compute T (r model space). Parameter classes were perturbed at location x=50 and z=20 to
compute the associated point probes Hessians.

chosen to compute T, not in the entire model grid, as would be ideally preferred to minimize
crosstalk. Outside this small area, different correlation patterns appeared in the blocks of
the Hessian. Hence, this explains why the crosstalk metric summarized noticeable trade-off
between some model parameters in all the grid cells.

FIG. 11. Point probes Hessian computed on estimates obtained with a re-parameterized FWI after
selecting location x=50 and z=20 to calculate T (r model space). The 3x3 matrix is the local Hessian
at the considered grid cell.

Additionally, the re-parameterized FWI was performed selecting different grid cells to
compute the transformation matrix. Figure 12 shows the estimated model parameters for
three different locations. Moreover, Figure 13 indicates that no matter the grid cell selected,
the optimization algorithm always reached the same local minimum, producing results that
did not overcome the baseline inversion. Only the estimation of the VS heterogeneity was
more accurate with the re-parameterized inversion, but in terms of VP and ρ the estimated
values of the anomalies were very close to those obtained with the reference FWI and much
more crosstalk was introduced rather than minimized.
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FIG. 12. Models estimated with a re-parameterized FWI using different grid locations to compute
T: (a) x=20 and z=20, (b) x=50 and z=50, (c) x=80 and z=80.

FIG. 13. Horizontal and vertical sections extracted from the models obtained with re-parameterized
FWI using different pixels to compute T.
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Figure 14 demonstrates that for grid cells (to compute T) close to the sources, the iden-
tity matrix was observed only around the selected pixel, but for the rest of the locations the
matrix was close to the identity, yet not enough to make the iso-surfaces of the objective
function spherically symmetric, since still crosstalk was produced. Conversely, as this lo-
cation moves down, the identity structure was kept close to the selected pixel, but it got lost
as we approached shallower depths, meaning that the objective function iso-surfaces were
not circular anymore and more misalignments and eccentricities were introduced. Thus,
selecting locations close to the bottom produced more crosstalk than shallower pixels.

FIG. 14. Point-wise Hessian matrices at different locations of the model estimates in the r system
after inverting with different pixels to compute T.

CONCLUSIONS

The application of the transformation rules and numerical procedures published by In-
nanen (2020a,b,c,d,e) into a FWI workflow did allow to find a model space where the Hes-
sian was the identity matrix, but only in locations close to the grid cell chosen to compute
the transformation matrices (T), generally losing this structure as we get distant from the
location, exposing different crosstalk patterns outside this small area, and thus producing
coupled effects between parameters of different classes. Moreover, the Steepest Descent
algorithm reached the same local minimum when selecting different locations to compute
T; hence, all models were resolved similarly, generating more accurate VS estimates, but
not better results than those from the reference inversion for VP and ρ, since more crosstalk
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was introduced. In that sense, the crosstalk metric showed that the trade-off between VP
and ρwas generated by existent coupled effects between the intermediate parameter classes
r1 and r3. Finally, although working with a transformation matrix based on a single point
did not overcome the baseline inversion, the obtained results might indicate that a different
numerical procedure to compute T should be a matter of future investigation, aiming to
produce a more constant identity structure at all locations by considering the contribution
of crosstalk in multiple grid cells and not only at a fixed point.
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