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ABSTRACT

An important step in seismic data processing is noise attenuation, which typically
improves the subsurface seismic image and signal-to-noise ratio (SNR). In seismic records,
coherent noise, which correlates spatially or temporally, are more difficult to attenuate or
process as it can interfere with signals and be mistakenly recognized as signals. Through
incorporating data covariance matrix into the misfit function, both the model parameters
and noise can be estimated. When implementing this, the data covariance matrix with
random noise can be simplified to be a vector. However, the data covariance matrix with
coherent noise still need to be completely computed and stored. We find the serial data-error
correlations can be characterized by adding the forward model with a autoregressive error
model. As autoregressive error models do not estimate error with point estimates, the
inverse of data-error covariance matrix does not need to be computed. The order of the
autoregressive process required to fit the data is determined by the residual data-fitting
examination. To avoid overfitting, estimates with several different orders were conducted
and adopted in the following rounds of FWI.

INTRODUCTION

The potential advantage and significant impact of seismic data in exploration, production,
and development are increased with the aid of appropriate and acceptable noise attenuation
strategies. The interpretation of data for an interested area’s geology has been significantly
impacted by improvements in signal processing methodologies. The term "noise" in seismic
exploration refers specifically to an undesired or unintelligible portion of recorded seismic
signals for a variety of reasons. These undesirable events may be regarded as signals, but
they typically provide insufficient or conflicting information about the subsurface and are
referred to as random noise and coherent noise. Without regard to the noise source, the
physical characteristics of noise typically fall into two categories: the first is coherent noise
(Ground roll, Guided Waves, Multiples, and Power Line), and the second is random noise.

The main components of seismic data are signals and various types of noise. Any
recorded waves that obstruct the desired signal are considered noise, according to the
general definition. Separating signal from noise can be difficult and problematic at times due
to the variety of noise types. But for high resolution imaging, effective noise suppression
is crucial. Removing the noise from seismic data is a crucial step toward interpretations
with high confidence. To obtain reliable processing results, usually various types of noise
are handled differently and may call for the application of additional strategies. It is in fact
very difficult to reduce high-amplitude noises like ground roll when processing seismic data.
Though the coherent noise gets attenuated to some degree, it is difficult to get removed
completely.

The covariance matrix characterizes the difference of each pair of elements of a provided
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vector. It not only includes the variances on the diagonal but also contains the correlation
relationship between elements on the off-diagonal. As covariance matrix extends the
variance with an additional dimension, the calculation of misfit with covariance matrix
introduces more information of data residuals.

The least squares (L2) norm of the misfit between the observed and predicted data is the
most commonly used penalty function for FWI (Tarantola, 2005). In this misfit function,
the observing data, containing remnant noises after denoising, are treated as the true data.
During the iterations, penalty function is minimized to obtain subsurface model parameters
which contribute to the observing data. When the real data are seriously contaminated by
noises, that noise will tend to produce model artifacts, or false structures added to the model
in order to explain the noise. This has motivated us to include the noise estimation in FWI
by incorporating the data covariance matrix into the misfit function(Cai and Zelt, 2019).
The various types of remnant noises can be estimated through the data covariance matrix
and updated during the inversion. As implemented in frequency domain, the data covariance
can be calculated frequency by frequency. If source number and receiver number are not
too large, the size of the data covariance matrix will not be very large. However, when the
model size is large, it is challenging to incorporating such a large covariance matrix into the
misfit computation.

Here, autoregressive (AR) models (Andel, 1971; Lütkepohl, 2013; Shibata, 1976) are
brought in to characterize the serial data-error correlation. In such way, the inverse or
determinant of the data covariance matrix does not need to be computed. AR model can
describe the correlation relationship with few parameters. However, the data information
is traded off between the forward-modeling model and the AR error model (Dettmer et al.,
2012). Thus, several orders of AR models were tested.

GENERALIZED MISFIT FUNCTION WITH AUTOREGRESSIVE DATA-ERROR
MODELS

In Bayesian inversion(e.g., Dettmer et al., 2007), the likelihood formulation includes
the data uncertainty distribution, which embodies both modeling errors and measurement
errors. In theory, the likelihood can be formulated and applied with arbitrary uncertainty
distributions. However, in practice, the error distribution is unknown in advance. Therefore,
a mathematically simple distribution (e.g., Gaussian) is usually assumed initially.

Different approaches can be adopted to estimate the covariance matrices. If the error
is assumed to be random, the data covariance matrix can be approximated as diagonal,
C−1

D = σ2I, where I is the identity matrix and σ is the standard deviation of the random
error. In this case, as σ is a scalar, the negative log likelihood is similar to the conventional
L2 norm misfit function. A more sophisticated approach, beyond assuming that the statistics
are simple, or known, is to analyze the data residuals to incorporate error correlations into
the inversion. The data covariance matrix is estimated from the data residuals in a first past
through FWI, assuming uncorrelated errors. The data covariance matrix can be estimated
from the autocovariance of the data residual after some fixed number of iterations:

cj =
1

N

N−j−1∑
k=0

(
dj+k

obs − d̄
) (

dk
obs − d̄

)
, (1)
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for the jth datum, where d̄ is the mean of the samples. As we do not have many observing
data samples, the synthetic data generated using the conventional FWI result were utilized
to approximate the sample mean. These values are arranged in the covariance matrix CD.
The FWI misfit function incorporating the data covariance matrix CD is

E =
1

2N

[
(dpre − dobs )T C−1

D (dpre − dobs )
]
, (2)

where N is the number of data, and dpre and dobs are the predicted and observing seismic
data, respectively.

For each frequency, the dimension pf covariance matrix is (Ns×Nr)2. In most cases,
this size is within the tolerance of the computer memory capacity.

The AR data error model can replace the covariance matrix through characterizing the
correlation relationship with few parameters. AR models are usually applied in time-series
analysis and its general expression is

dt = c+

p∑
i=1

aidt−i + εt (3)

where t represents data index, p is the AR model order, ai are the parameters for AR
model, εt is the uncorrelated Gaussian noise term. The model and its order are commonly
abbreviated as AR(p).

To apply the AR models in FWI inversion, the misfit function can be written

E =
1

2N

[
(dpre − dobs − d(a))T

(
σ2I
)−1

(dpre − dobs − d(a))
]
, (4)

where a is the vector of AR parameters, I is the identity matrix, σ is the standard
deviation for uncorrelated Gaussian noise. In such way, the correlation part is removed from
the data covariance matrix.

Assuming the errors to be independent of model parameters, the gradient of the misfit
function incorporating data covariance matrix with respect to the ith model parameter is

∂E(m)

∂mi

=
1

N

(
∂dpre

∂mi

)T

C−1
D (dpre − dobs) , (5)

where ∂dpre /∂mi is the Fréchet derivative, and we observe that the wavefield residuals
have been weighted by the data covariances before back propagation. Data residual regions
which, through the iterative estimation, appear to contain large errors, are in this calculation
down-weighted and contribute less to the inversion results.

When the AR mdoel is applied, the gradient is

∂E(m)

∂mi

=
1

N

(
∂dpre

∂mi

)T

(dpre − dobs − d(a)) . (6)

The complete AR model is given by σ = (σ, a). Usually, the order of AR mdoel should be
chosen to be small enough to avoid unnecessary complexity or overfitting.
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SYNTHETIC EXAMPLES

Figure 1 shows simulated examples of several orders’ AR processes to display that the
correlations can be modelled with AR models.

FIG. 1. The histogram and autocovariance of data residuals. (a) Histogram of real part data residual
, (b) histogram of imaginary part data residual, (c) autocovariance of the data residual in real.

In the 1st round FWI, inversion with the conventional misfit function without considering
noise estimation was conducted for both noise-free data and noisy data. The true models
and initial models are shown in Figure 3.

We firstly applied this method in acoustic FWI in frequency domain. we added a
combination of random and correlated noise. Correlated data error (Figure 2 a) was generated
by multiplying an Gaussian random array with the Cholesky decomposition of a constructed
data error covariance matrix with non-zero decaying off-diagonal terms. We combined
purely random noise with this correlated noise to obtain the input complex noise.

After the 1st round FWI, we checked the data residuals. Figure 6 shows the data residual
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FIG. 2. The creation of complex noise. (a) Random noise sequence one, (b) sequence two, (c)
correlation matrix.

FIG. 3. True models and initial models.(a) (c) (e) are three true models for inversion, (b) (d) (f) are
the corresponding initial models for inversion.

sample. In our processing, the data residuals vector length is much longer.

Based on the inversion results above, we implemented the second round FWI with the
generalized misfit function. We generated autoregressive models with orders equal to 2 and
3. This time, the data covariance matrix does not need to be calculated, as the autoregressive
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FIG. 4. Noise-free inversion results and noisy data inversion results using conventional misfit after
50 iterations of the 1st round FWI. (a) (c) (e) are inversion results for noise-free data, (b) (d) (f) are
inversion results for noisy data.

FIG. 5. The real and imaginary part of the noise-free and noisy data of one model. (a) Noisy data
(real), (b) noise-free data (real), (c) noisy data (imaginary), (d) noise-free data (imaginary).

model replaced the covariance matrix in the misfit.

The inversion results are shown in Fig.9. By comparison, when AR model order equals
2, the imaging resolution does not improve much. When AR model order equals 3, the
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FIG. 6. A data residuals sample of the imaginary-part data. (a) noise-free data, (b) noisy data, (c)
data residual.

FIG. 7. Inversion results of the FWI with conventional misfit function and generalized misfit function.
The left column is the inversion result using conventional misfit after 80 iterations, the right column is
the inversion result using generalized misfit function with the same iteration number and AR model
order equals 2.

imaging resolution shows some improvements.
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FIG. 8. Inversion results of the FWI with conventional misfit function and generalized misfit function.
The left column is the inversion result using conventional misfit after 80 iterations, the right column is
the inversion result using generalized misfit function with the same iteration number and AR model
order equals 3.

CONCLUSIONS

In this study, we develop a strategy based on the proposed generalized misfit function to
avoid data covariance matrix computation and storage while estimating the general noise
during FWI. Through adopting autoregressive models, the 2D matrix can be simplified
into a vector, which greatly reduced the computation and memory requirement. From
the numerical tests above, we found the selection of AR model order can influence the
characterization of correlation, which in turns influence the inversion results. However,
an intrinsic trade-off exist between correlated error estimation and data features which are
related with velocity models. Thus, we conducted several rounds of FWI, with the first one
ignoring the correlations to judge the effects of AR model on the results. We hope to apply
this method to some small-sized real data tests.
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