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ABSTRACT

Based on the previous surface-wave full-waveform inversion (FWI). A full-waveform
inversion using trench-deployed surface waves and two wells’ Vertical Seismic Profiling
(VSP) data was conducted to generate a high-resolution S- and P-wave velocity models of
the near surface at Containment and Monitoring Institute Field Research Station in Alberta.
In this preliminary inversion, a sequential inversion was conducted by firstly inverting Vs
using surface-wave FWI, and secondly inverting Vp using the VSP FWI. There are two
datasets collected in August 2022 for the main CO2 monitoring line, line 13. They possess
the same frequency range, with linear and low-dwell sweep, respectively. In this study, we
compared these two datasets in detail. The inversion results are from the DAS data generated
using the low-dwell sweep. Optical transport method was adopted to mitigate the cycle
skipping problem mainly in surface wave inversion.

INTRODUCTION

CaMI FRS

The Containment and Monitoring Institute Field Research Station (CaMI-FRS) in Newell
County (Figure 1), Alberta, Canada, is a unique facility designed to support the development
of monitoring and verification technologies related to carbon capture and storage, and other
containment and conformance requirements (such as CO2 enhanced oil recovery)(Lawton
et al., 2019). At the FRS, small and controlled amounts of CO2 are being injected into the
shallow Basal Belly River Sandstone Formation at 300 m depth. A variety of geophysical
sensing technologies have been deployed at or near the surface of the 1 km by 1 km facility,
or within one of the two observation wells, to facilitate development of monitoring methods.
This includes a 3D array of 3C geophones (Lawton et al., 2015); 3 permanent mounted
vibratory sources (Spackman and Lawton, 2018); 7 broadband seismic stations (Stork et al.,
2018); and a 5 km loop of both straight and helically-wound distributed acoustic sensing
(DAS) fibre, and 2 observation wells (Gordon and Lawton, 2017, 2018; Hall et al., 2017;
Lawton et al., 2018; Hall et al., 2018).

DAS is a novel technology for seismic acquisition that measures phase changes of
back-scattered laser pulses (Rayleigh scattering) induced by transient vibrations incident on
optical fibers (Posey et al., 2000; Masoudi et al., 2013). The phase changes are proportional
to axial strain changes along finite segments of the fiber, referred to as gauge length.
Therefore, strain rate (or strain) changes along the fiber are recorded. Compared to standard
geophones, DAS has a series of advantages including dense spatial sampling, low-cost, easy
installation, etc. Recent studies also revealed that the optical fibers show high sensitivity to
low-frequency signals (Lindsey et al., 2017; Jin and Roy, 2017). It is particularly useful for
real-time, high-resolution, and long-term seismic monitoring applications. For examples,
DAS has been successfully applied to down-hole reservoir monitoring (Masoudi et al., 2014;
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FIG. 1. The location of CaMI Field Research Station

Daley et al., 2016), near-surface characterization and S-wave velocity VS imaging (Dou
et al., 2017; Ajo-Franklin et al., 2019), illuminating seafloor faults and ocean dynamics
(Lindsey et al., 2019).

The DAS fibre includes a 1.1 km horizontal section in a trench that is considered in our
work. In 2018, a surface wave data set was recorded for source positions along the 1.1 km
trenched segment of the DAS fibre. These data provide us with an opportunity to study
the estimation of S-wave velocity models using multiple surface wave modes, sensed by
the DAS fibre, by applying a TD Bayesian inversion methodology. In August, 2022, more
datasets were collected from the field data tests. Over 100 shots were collected from the line
13 using both linear sweep VP and low-dwell sweep VP, with the frequency range of 2-150
Hz. 10 shots with high Signal-to-Noise Ratio (SNR) were selected from these data. The
geometry is shown in Figure 4.

Surface-wave FWI

High-amplitude, dispersive surface waves, that decay exponentially with depth and have
the majority of their energy contained within a depth of only about half a wavelength from the
free surface, are the dominant seismic traces in land surveys. Surface waves are frequently
treated as noise in seismic exploration studies for imaging deeper structures, despite their
use in other fields such as ultrasonic acoustics, geotechnical engineering, nondestructive
testing, archaeological studies, near-surface geophysics, and global seismology (Socco et
al., 2010). Migration imaging using weaker reflected signals necessitates the mitigation
of this noise, but it can be difficult due to the multiple modes of propagation of surface
waves, each of which has unique dispersive properties. In the DAS dataset collected from
the field, we found there is no obvious reflection waves at the horizontal components due to
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DAS acquisition principle. Thus we resort to use multimode surface waves as our signals to
obtain the near-surface velocity profile.

Surface wave multichannel analysis (Park et al., 1999; Xia et al., 1999) and spectral
analysis (Nazarian and Stokoe, 1984) are common techniques for near-surface inversion.
Construction of local 1D profiles can be facilitated by dispersion curve analyses using
f-k or Radon transforms for a multichannel array, but they are inherently incapable of
handling lateral variations. FWI is a more versatile method for handling surface waves
because, in theory, it can create high-resolution models using the entire wavefield captured
by seismograph. By utilizing all of the wave modes present in the data, full waveform
inversion (FWI) of surface wave data tries to recover the elastic properties of the near-surface.
However, in FWI, when the initial model is not close to the true model, cycle skipping due to
the non-convexity of FWI problem can happen, which is related to the oscillatory nature of
seismic data. The cycle skipping issue is amplified by the surface wave’s dispersive nature
and its shorter wavelengths. Alternative misfit functions have been suggested as a solution
(Borisov et al., 2018; Yuan et al., 2015; Masoni et al., 2013; Pérez Solano et al., 2014).
Following a layer-stripping methodology, Masoni et al. (2016) move from narrow-offset
high-frequency components, which provide information about the shallower parts of the
near-surface, to wide-offset low-frequency components, which do the same for the lower
part of the near-surface.

An alternative method to mitigate cycle skipping is optical transport (OT). The idea is
to take advantage of the inherent convexity of optimal transport distances with respect to
translation and dilation. Engquist and Froese firstly introduced the idea of using optimal
transport for seismic inversion (2014). Optimal transportation is the basis of the Wasserstein
metric (Villani, 2003). Here, we treat our seismic signal data sets as density functions of two
probability distributions, which are represented by the distributions of two equal-mass sand
piles. Different strategies for moving one pile into the other result in different costs when
compared to the same cost function. The optimal map is the plan with the lowest cost, which
is determined by the Wasserstein metric. The metric is frequently referred to as the "earth
mover’s distance" in computer science. We will concentrate on quadratic cost functions
in this section. The quadratic Wasserstein metric is the corresponding misfit. Geophysics
researchers began focusing on other optimal transport-related misfit functions following the
publication of Engquist and Froese’s (2014) paper (Métivier et al., 2016a, 2016b, 2016c).
The Kantorovich-Rubinstein (KR) norm in their papers is a relaxation of the 1-Wasserstein
distance, which is another optimal transport metric with the absolute value cost function.
The KR norm has the benefit of not requiring information to satisfy nonnegativity or mass
balance conditions.

VSP FWI

In order to obtain a velocity model at deeper zones with high solution and accuracy,
larger offsets are usually required and a higher domain frequency (Sirgue, 2004; Mulder,
2008; Operto, 2009). However, for surface acquisition, the maximum offset and domain
frequency are limited. Which can result in low resolution of the inversion result close to the
model’s edges (Hou, et al., 2012).
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The vertical seismic profiling (VSP ) data are often used as a tool for high-resolution
imaging in areas where surface seismic resolution is low. VSP data can potentially provide
higher-resolution images compared to surface seismic data because VSP receivers are closer
to the target, and the reflected energy travels only once through the weathering layer, leading
to fewer high-frequency losses (Blias., 2015). In addition to the obvious disadvantage of
VSP having a limited illumination zone constrained by the well location.

METHOD

Full-waveform inversion in isotropic-elastic media

In a typical FWI formulation, model parameters are iteratively updated by minimizing
the direct waveform-difference (WD) between the synthetic data ui and observed seismic
data di, which can be formulated as a L-2 norm misfit, e.g.,

Φ (m) =
1

2

Nr∑
r=1

∫ t′

0

∫
V

[ui (xr, t; m)− di (xr, t)]2 dxdt, (1)

where m is the model vector, xr indicates the rth receiver location with a maximum number
of Nr, t′ is the maximum recording time and V denotes the whole volume containing
all subsurface positions x. In purely elastic media without considering anisotropy and
attenuation, VS sensitivity kernel (or gradient) of the misfit function can be calculated by
cross-correlating the forward and adjoint wavefields based on the adjoint-state method (Liu
and Tromp, 2006; Plessix, 2006):

KVS = −
Nr∑
r=1

∫ t′

0

∫
V

2ρV 2
S

[
∂ju

†
i (∂iuj + ∂jui)− 2∂iu

†
i∂kuk

]
dxdt, (2)

where ρ is the mass density, u†i indicates the adjoint displacement wavefield, the subscripts
i, j and k take on the values of x and z for 2D media. In equation (2), we ignore the
dependence of wavefields on time, space and receivers for sake of compactness. We apply
l-BFGS optimization and line search methods to calculate the search directions and step
lengths (Nocedal and Wright, 2006) for updating the model iteratively. In this study, the WD
misfit function is applied to surface-waves recorded on surface-trenched fibers at CaMI.FRS
for obtaining a near-surface VS model.

Optimal Transport

OT-based misfits can be interesting for FWI as they exhibit a wider convexity with
respect to time shifts. Various formulations of OT applied to FWI exist, and all are related to
Wasserstein distances. The p-Wasserstein distance for two PDFs ρ1(s, r, t) and ρ2(s, r, t) is

JpWp
(ρ1, ρ2) = min

T

∫
decpp (e,Eρ1ρ2(e)) ρ2(e) (3)

subject to the constraint Ed1d2 ∈ T the set of maps on e that rearrange ρ2 to ρ1.

e denotes a data coordinate space vector and cp denotes the Lp distance between vectors
in the data coordinate space. Equations above seek at the minimum cost to transport mass
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from ρ2 to ρ1 from the cpp point of view. Note that with seismic data being recorded in
space and time, these dimensions need to be normalized within the Lp distance with a ratio
involving an apparent velocity (Messud and Sedova, 2019).

An important aspect of the OT formalism is that ρ1 and ρ2 are required to be PDFs, i.e.
positive with equal masses, implying that OT cannot be readily applied to seismic data. Yang
et al., (2018) and Qiu et al., (2017) proposed using ad-hoc transformations of the observed
and computed data to make them positive with the same mass. They chose the p=2 case in
the first equation in this subsection, i.e. the squared 2-Wasserstein distance. Since solving
equations above in the multi-dimensional data coordinate space case is computationally
demanding, most of their applications consider a mono-dimensional coordinate space, where
e is parameterized by time only (source and receiver positions being fixed). Then, equations
above are solved for each trace independently.

Bearing in mind the properties of the 1-Wasserstein distance, Métivier et al. (2016a,
2016b, 2016c) chose p=1 in the first equation. As proposed by Métivier et al., (2016a),
by reformulating the problem using the Kantorovich–Rubinstein (KR) dual formulation
and adding a bounding constraint it is possible to use the seismic data directly without any
transformation. Rather than minimizing the first equation for Ed1d2 ∈ T , we look for a
λ-bounded 1-Lipschitz function,ϕ(e, maximizing the so-called KR norm

JKR (dobs, d[m]) = max
ϕ

∫
deϕ(e)∆d[m](e) (4)

subject to
|ϕ (e1)− ϕ (e2)| ≤ c1 (e1, e2) and|ϕ(e)| ≤ λ. (5)

ϕ is the solution of the maximization problem and can be demonstrated to represent
the adjoint-source (Métivier et al., 2016b; Messud et al., 2021). The first constraint on ϕ
in equation above is called 1-Lipschitz for the metric c1. It imposes that changes in ϕ are
sufficiently slow, which emphasizes low frequencies in ϕ . The second constraint, controlled
by the parameter λ, makes it possible to stabilize the problem when seismic traces are used
directly. This approach does not require any transformation of traces and has the advantage
of an efficient numerical implementation.

FIELD DATA PROCESSING

The CaMI.FRS is located 190 km southeast of Calgary, near Brooks, Alberta. Figure 1a
shows the location map of CaMI.FRS. The region is dominated by the Upper Cretaceous
Belly River Group, including the Foremost, Oldman and Dinosaur Park formations. The
Foremost formation is composed of inter-bedded sandstone, siltstone, carbonaceous shales
and coal seams. The water-bed sandstone reservoir at depths of 295-301 m approximately,
corresponding to the Basal Belly River Sandstone (BBRS) formation, is currently used as
the target for CO2 sequestration. The BBRS consists of several stacked composite regressive
cycles dominated by shoreline sandstones and is directly overlain by mudstones, coals and
fine sandstones of the McKay Coal Zone, which forms the cap rock for the reservoir. The
dataset collected from linear sweep VP of a typical shot, which include data collected from
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FIG. 2. The DAS data collected for line 13 using linear sweep VP.

FIG. 3. The DAS data collected for line 13 using low-dwell sweep VP.

the straight fiber, the helical fiber, two well straight fiber, and one well helical fiber is shown
in Figure 2. The dataset of a low-dwell sweep VP is shown in Figure 3.

From the seismograms, we can find there is no obvious waveform differences between
these two datasets. The recording time of low-dwell dataset is a bit later than the linear-
sweeping one.

The geometry of the ten shots data selected are shown in Figure 4.

In this figure, the fiber used for recording data is on the right of the three wells shown in
green squares.

We firstly compared the two datasets collected from this year, shown in Figure 5 and
Figure 6.

The slight differences between these two dataset are also the recording time.

From the comparison above, it is obvious that the datasets using the linear-sweep VP
and low-dwell sweep VP are similar in waveforms. The differences of the recording time
may be due to different source locations, difference wavelets or different sweeping start
time.
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FIG. 4. The geometry of the selected ten shots and corresponding DAS fiber.

FIG. 5. The straight-fiber DAS data collected for 6 shots using linear sweep VP.

Conversion of DAS signals to displacement data

During DAS recording, the interrogator unit injects coherent laser pulses into the optical
fiber. Phase changes of back-scattered light from consecutive pulses are measured. The
phase changes are proportional to the changes in axial strain along finite sections of the fiber,
referred to as gauge length. Therefore, the DAS system can be considered as a sequence
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FIG. 6. The straight-fiber DAS data collected for 6 shots using low-dwell sweep VP.

FIG. 7. The frequency spectra comparison of these two datasets.

of single-component seismic sensors, measuring strain rate variations with dense spatial
sampling. The strain rate measurement of DAS can be expressed as

∂tεxx =
1

L

[
vx

(
z +

L

2

)
− vx

(
z − L

2

)]
, (6)

where vx is the tangential particle velocity, L is gauge length, and z is the center of the
gauge.

According to the adjoint-state method (or Born approximation) (Tromp et al., 2005; Liu
and Tromp, 2006), the inputs for calculating sensitivity kernels in FWI are displacement
fields of the seismic signals. The DAS-recorded strain rate data should be converted
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FIG. 8. The trace comparison of linear-sweep data and low-dwell sweep data.

into displacements for the inversion experiments. Converted DAS data can closely match
geophone measurements in both amplitude and phase (Daley et al., 2016). In particular,
Daley et al. (2016) showed that the strain rate signal can be converted to equivalent velocity
units via scaling by apparent velocity. Considering a propagating harmonic plane-wave, its
displacement and particle velocity fields in x direction are

ux = Ue−iω(t−x
c ), and (7)

vx =
dux
dt

= −iωUe−iω(t−x
c ), (8)

where U indicates amplitude of the plane-wave, c is apparent velocity, i is imaginary unit,
and ω is angular frequency. Therefore, strain is given by (Benioff, 1932; Mikumo and Aki,
1964)

εxx =
∂ux
∂x

= ∂tux
dt

dx
= ±∂tux

c
, (9)

where “±" is the direction of wave propagation. Therefore, the DAS signal can be converted
to geophone-signal units via scaling of apparent velocity followed by time integrations.

Wavelets and filtering

The autocorrelation of the low-dwell sweep is shown in Figure 9, which is also a
zero-phased Klauder wavelet.
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FIG. 9. The autocorrelation of the low-dwell sweep.

FIG. 10. The original and filtered Klauder wavelet.

In the processing of the FWI, the wavelet and observing data were filtered to make sure
the synthetic and observing data are using the same frequency bands.

Preliminary inversion results

We conducted the inversion with several steps. Low-dwell DAS data were used in the
FWI processing.

At first, we conducted surface-wave full waveform inversion using the fundamental-
mode Rayleigh waves with optimal transport method. The initial model and inverted Vs
model is shown in Figure 11 and Figure 12

Based on the obtained the Vs model, a VSP FWI was conducted using the DAS data
collected from the straight fiber in the two wells. The inverted Vp model is shown in
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FIG. 11. The initial model for surface-wave FWI.

FIG. 12. The inverted Vs model of surface-wave FWI.

Figure 13. O shown in the x-axis represents the NE end point of the DAS trench fiber. These
are the preliminary inversion results of the surface-wave FWI and VSP FWI. Given more
time, a more detailed and through real data processing will be implemented.

CONCLUSIONS

The two datasets collected using linear sweep VP and low dwell sweep VP have the
same frequency range through comparison. Their waveforms are different slightly. This
is may be due to the difference of the wavelet or changes of the source locations. If the
difference is caused by wavelet changes, a better wavelet estimation should be conducted
before the inversion. If it is caused by the source location changes, a calibration on both
datasets should be done.

For surface-deployed straight fiber, only single-component high-amplitude surface wave
data are collected. Thus, a rough Vs profile with limited depth can be obtained through a
surface-wave FWI. However, engineering and researchers are more interested in the Vp
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FIG. 13. The inverted Vp model of VSP FWI.

profile in some cases. The straight-fiber DAS data collected from the wells can help invert
the Vp profile with a high resolution. In this study, we adopted a sequential inversion
strategy to firstly invert the Vs using surface-wave FWI with optical transport. Secondly, we
conducted VSP FWI using the DAS datasets from the two wells to invert Vp based on the
Vs profile obtained from the first round FWI.

DISCUSSION

There are some detailed questions in the inversion with respect to DAS data. With this
type of real data processing, many aspects need to be considered during the inversion. For
example, in surface wave full-waveform inversion, though the data has maximal sensitivity
with respect to Vs rather than other model parameters. The accurate of other parameters
including Vp and density still have influence on the inversion result of Vs. The strategy of
dealing with multimode surface waves, and the consideration of attenuation estimation also
have impacts on the inversion accuracy of Vs. If we convert the DAS data to displacement
or velocity data using a traditional method, the polarity reversal problem should also be
addressed. Another challenge for joint surface-wave and VSP FWI is that the resolutions of
inverted models are different. The accurate building of initial model, frequency filtering,
and wavelet estimation can all influence the inversion result. A good inversion result of the
real dataset need to consider all the influencing factors above and need to make sure all the
model parameters are well estimated through FWI or not.
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