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ABSTRACT

Geophysical and machine learning algorithms are based on finding the best weights
that predict a set of observations using a set of measured attributes. A good example
of this is the prediction of seismic reservoir parameters, such as density or porosity,
from a set of seismic attributes. Many problems can be written as a linear regression
model in which the weights can be determined using a generalized inverse. Although
this involves a linearly weighted combination of the input attributes, we can apply a
nonlinear function to the attributes themselves, which allows us to get a much better fit
on the output. In this study I will consider two different forms of the generalized
inverse, the primal and dual, and show the dual form leads to several very powerful
analysis techniques, called kernel regression methods, that go well beyond the multi-
linear regression techniques used in many applications. [ will illustrate these
techniques using two simple datasets, one with only three points and the other with ten
points, and then apply them to seismic reservoir analysis.

INTRODUCTION

In geophysical inversion and machine learning, we often try to find a weighted sum of
a set of D attributes that predict some type of observation such as a well log curve.
Mathematically, the attributes can be represented as N D-dimensional vectors. The two
fundamental problems in machine learning are regression and classification. In
regression, we try to predict the observations in a point-by-point way using the D
attributes (note that there is usually a bias weight, meaning there are D+1 weights). In
classification, we divide the N points into K classes, and try to find linear or nonlinear
boundaries between the classes. In this study, I will focus only on the regression
problem.

Regression methods can be broken into two categories: linear and nonlinear. There is
only one linear approach, and that is where we are going to start today. However, there
are a variety of nonlinear regression methods, such as polynomial regression and the
radial basis function approach, also called kernel regression. Linear regression is also
the simplest polynomial regression approach and uses a first order polynomial. In this
study I will discuss three types of polynomial regression methods: linear, quadratic,
and cubic, applied to a simple three-point problem and a more complex ten-point noisy
sine wave. [ will start with the primal solution and then discuss the dual solution, which
will lead directly to kernel regression. I will finish by applying all these methods to a
seismic reservoir prediction problem.
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PRIMAL AND DUAL REGRESSION SOLUTIONS

In both geophysics and machine learning, the simplest linear data model is written:

y=2Xxw, ()
Y1 1 x, X1 Wo
1 x X w
where y = X = 2! 2 andw=|
Yn Loy o X Wp

In the model given in equation 1, y is a vector of N observations, X is matrix consisting
of D columns of attributes, or features, each with N samples, plus a column of N ones,
and w is a vector consisting of D+1 weights, where wo is called the bias. Examples of
this model include AVO analysis, predicting a reservoir parameter from multiple
attributes, seismic tomography, and so on. In most cases, N is much greater than D, so
we use the least-squares solution given by:

w=(X"X+a1,,) X' y=x'y, )

where X7X is the inner product, or autocorrelation, of X, an D+1 x D+1 square matrix,
X"y is the cross-correlation of X and y, an D+1 length vector, and Alp+:, where A is a
pre-whitening term and /u+/1s the D+1 x D+1 identity matrix, is called pre-whitening
in geophysics and ridge regression in statistics. Equation 2 is called the primal solution.
As also shown in equation 2, another way to think of computing w is with the D+1 x N
size matrix X', called the generalized inverse. The generalized inverse interpretation
shows us that each of the D+1 weights is created by a weighted sum of the N
observations.

The pre-whitening, or ridge regression, form of the inverse also allows us to derive the
dual form of the solution (see Appendix) which is

w=X"(XxX"+21,) y=X'y. 3)

In equation 3, XX7 is the outer product of X, an N x N square matrix, and Aly is a pre-
whitening term that now uses the N x N identity matrix. With the proper amount of pre-
whitening the dual generalized inverse, X', is identical to the primal generalized matrix.

Although equation 3 gives us a second way of computing the weights, it usually doesn’t
help us because we must invert an N x N matrix rather than a smaller D+1 x D+1 matrix.
But by using what is called the kernel trick, or kernel substitution, this outer product
matrix leads to several nonlinear regression methods. In the next section the concept
of polynomial regression will be introduced to explain these concepts, as well as a
simple numerical example.
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POLYNOMIAL REGRESSION

Suppose we have measured N points for a single attribute, or feature, x (D = 1) and N
observations in y, where:

X N
x=|: |andy=| : 4)

XN YN

In polynomial regression, we want to find a set of weights which will transform x into
an estimate of y (which I will write as y with a hat), or:

P=wotwx+w,x o w xl (5)

Equation 5 is called a p™ order polynomial fit to the points.

A simple example, and one which I will use to illustrate all our methods, uses N =3
and contains the numbers 1, 2, and 3 in a slightly different order in the two vectors:

X, 1 b2 1
x=|x,|=|2|andy=|y, |=|3|.
X, 3 Vs 2

The cross-plot of these two vectors, shown in Figure 1, raises several questions:

1. Is there a straight line (i.e.: p = 1) that will give an exact fit to these points?
. Is there a polynomial fit (i.e.: p > 1) that will give an exact fit to these points?
3. Will we get a better fit by increasing the order of the polynomial to larger
values?
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Figure 1: A cross-plot of the x and y vectors given above.
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To answer these questions, let’s expand the previous equation for the three points in
our example:

Y =Wy W, +wox . A wx]

Yy =Wy + WX, +Woxs +.. wexs (6)

_ 2 P
Vi =Wy WX F WX WX

We now have N = 3 equations with p+1 terms, where there are three different possible
situations:

1. If p+1 <N, this is called the over-determined case.
2. Ifp+1=N, this is called the even-determined case.
3. Ifp+ 1> N, this is called the under-determined case.

I will illustrate these three cases using the three-point example, which leads to linear,
quadratic, and cubic curve fitting. First, if we let p = 1 this leads to the following set
of three linear equations with two unknowns, which is an over-determined case:

Y =W, twix
Vo =W, T wx, (7)

Y3 =W, T WX,

11
These equations can be put into the same form as equation 1 using X =1 2 |and
1 3

W,
w= { 0} . Note that X is a non-square 3x2 matrix so must be inverted using either the
w

primal or dual solution given in equation 2 and 3. The first form of the primal solution
can be written as follows with zero pre-whitening:

w=(X"X) XTy=dc, (8)

where 4 = XX is the called autocorrelation matrix and ¢ = Xy is called the cross-
correlation vector. The solution for our simple numerical example is:
-1

s
S AP
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Figure 2 shows the linear solution for this problem, where the blue regression line is:
pow =1+, ©9)

For each point x on the x-axis in Figure 2, the predicted y value can be found by:

=1 x][wo}=w0+w1x=1+£. (10)
w 2

1
1
For example, the point $(2.5)=[1 2.5] {0 5} =2.251s shown as the open circle in

figure 2.
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Figure 2: The linear regression fit to the three points in Figure 1, with a predicted point at x =2.5.

As shown in equation 2, an alternate way to arrange the primal solution is:
w=[(XTX)_1 XT}szTy (1

where X is called the generalized inverse. The generalized inverse gives the same
solution as we got in the previous approach but notice that the solution to the weights
is now a weighted sum of the inputs given by

1_1 1 4 1 2 i+1_i 1
13 I 11 13 3 3 13 3|
"= 11 2 3 3= ] 1 3|7 1 RNk

-1 = 201 |=—= 0 = |[2| |-=+0+1| |2

2 2 2 2 2

Let’s now go back to the linear least-squares problem and see its dual form. For the
linear problem, the N x N matrix XX” looks like this:

11 2 3 4
. 111

XxT={1 2 =13 5 7.
123

13 4 7 10
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If we take the determinant of XX7, we get:

det(XXT):

ENEVS I ]

3 4
5 7|=2(50-49)—3(30-28)+4(21-20)=2-6+4=0.
7 10

Remember that a determinant of 0 means that XX” is not invertible. To solve this
problem, all we need to do is add some pre-whitening, in this case 107:

w:{wo}:[XT(XXT)_I+10‘6I3}y. (12)

W

Now the dual solution now gives us the same solution as the primal solution, or:

11 106 0.5000061 —0.9999987  0.4999966 1
w=4|1 2 % —-0.9999987  2.0000003 —1.0000007 |;| 3
1 3 0.4999966 —1.0000007  0.5000021 2

41 _2m
_[ 303 35,
_10125
2 2

(By the way, don’t expect to get the same answer as above if you enter those numbers
into a computer program, since they are truncated from full precision values). It is
obvious that inverting the 2 x 2 matrix in the primal form is more efficient than
inverting the 3 x 3 matrix in the dual form. But if we write the outer product matrix in
its general form, we find that:
1 x {11 1+x'  1+xx, l+xx
Xx"=1 x, [ }= 1+x,x,  1+x;  1+x,x,

XX X 2
1 x I+xx, I+xx, 1+x;

Notice that this means that the matrix multiplication can be written in an alternate way,
where each term is computed analytically by the equation
K, =1+xx,. (13)

This is called the kernel matrix and is a fundamental idea in this talk. But before looking
at the general case of the kernel matrix, let’s move to quadratic polynomial regression.
Letting p = 2 leads to the following set of three equations with three unknowns, which
is the even-determined case:

N =W, twx, + szlz
Yy =W, +wx, + 14/2)c22 (14)

— 2
V3 =W, + W) X5 + W, X5
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These three quadratic equations can be put into the same form as equation 1 using

1 1 1 w,
X=|1 2 4|andw=|w |. Since X is now square, it can be inverted directly,
1 39 W,
w,] [T 1 1771 [ 4
giving | w, [=|1 2 4 3 |=| 6.5 |. The resulting fit is shown in Figure 3, where
w, 1 3 9] |2 -1.5

the blue line fit is given as follows:

y=—4+65x-1.5x, (15)
4
Note that the point $(2.5)=[1 2.5 6.25]| 6.5 |=2.875is shown as the open circle.
-1.5
20 Dualdratic Fiegreslsion
N N
N
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Figure 3: The best quadratic regression fit to the three points in Figure 1.

Notice in Figure 3 how rapidly the quadratic fit becomes negative to the left and right
of the points, which might not be the best fit if we observe more points. Also, note that
both the primal and dual solutions will give the same answer without needing any pre-
whitening:

w=(X"X) XTy=X"(Xx") y=x"y. (16)

If we apply the less efficient, but equally valid, dual solution to the quadratic fit and
write the outer product matrix in its general form, we get:

1 x, x|[1 1 1 +x)+x  T+xx, +x70  1+xx+xx]
XXT=|1 x, X2|x x x|=/l+xx+xx 1+x7+x  1+xx,+xx]
2 2 2 2 2.2 2.2 2 4
I ox; Xy |lx x5 x5 I+ xx, +x5x;  1+xx, +x5x) 1+ x5 +x;
(17)

CREWES Research Report — Volume 34 (2022) 7



Russell

This suggests that the kernel matrix be written as follows, which is very close to the
correct answer except for two extra xix; terms:

K, =(1+xx,) = Xx7, (18)

. 2
s1nce(1+xl.xj) =1+2xl.xj +x1.2xJ2..

Before leaving this simple problem, let’s look at the cubic polynomial, since it will
teach us the important concept of over-fitting. If we let p = 3, we get the following set
of three cubic polynomial equations with four unknowns, or the cubic polynomial:

_ 2 3
Vi =Wy W, WX +wix;
— 2 3
Vo =W, F WX, + WXy + WX, . (19)
_ 2 3
V3 =W, F WX, + W,y X; + Wy

This is now an under-determined problem, since the number of unknowns exceeds the
number of input points. These three equations can be put into the same form as equation

o
1 1 1 1
W,
lusingX=|1 2 4 8 |,andw=| '|. The cubic fit can then be computed using
w
1 39 27 ’
W;

the primal generalized inverse as follows:
W= = [( XTX)_I XT}y , (20)

However, there is a big problem lurking in equation 20. The problem is again that the
determinant of X”.X is equal to zero:
3 6 14 44
. 6 14 36 114
det (X7 X) = det =0
14 36 98 308

44 114 308 986

This means that the covariance matrix cannot be inverted. If you code up equation 20
on a computer, some packages will tell you there is problem, but others will do the
calculation and come up with spurious results. To solve this problem, we add a small
amount of pre-whitening to the main diagonal of the matrix before inversion, giving:

w=[(XTX+/1]pH)l XT}y, 1)

8 CREWES Research Report — Volume 34 (2022)
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Using A =10, we get the following result:

W, 0.768
; 0.575

w=| M :[(XTX+10_6I4)1XT]V:
W, 1732
W, ~0.539

The resulting fit is shown in Figure 4 and is as follows:

y=-0.768+0.575x+1.732x> - 0.539x". (22)

Cubic regression
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Figure 4: The cubic regression fit to the three points of Figure I using a pre-whitening term.

Notice that the curve in Figure 4 fits the points well and looks reasonable. But is it?
Let’s expand the previous plot by extending both the x and y axes to -2, as shown in
Figure 5. Notice that the cubic fit takes a sharp turn upwards just as the x-axis goes
negative. The reason for this is that a cubic polynomial will always intersect the x-axis
at three points, unlike a quadratic that intersects at two points and a linear fit that
intersects at one point. This is called over-fitting, and it means that we have used too
many parameters to do the fitting, in this case four parameters for three points.

Cubic regression
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X

Figure 5: An expanded view of figure 4, where we now see that we have over-fitted the three points.
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If we use a small value of A, there is never any harm in always applying ridge
regression, even when the matrix being inverted is well conditioned. For example, if
we go back to the linear regression equation with two parameters and apply ridge
regression with the same pre-whitening value of 10”!, we get an equally good fit:

. o, [3.000001 6 |'[6] [10
w=(X"X+2L,) X'y= = : (23)
6  14.000001| [13] [0.5

However, there is an even more important reason to apply a pre-whitening term. As
mentioned in the first section, adding a pre-whitening term allows us to derive what is
called the dual solution to the regression problem (see the Appendix).

Note, however, that the cubic solution the dual form gives the correct answer without
pre-whitening
—0.768

T () e 0.575
w= ( ) v=l o | (24)

-0.539

Now let’s write the outer product matrix for the cubic regression problem in its general
form (note that it is invertible since it is a 3 x 3 matrix):

2 4 6 2.2 3.3 2.2 3.3
I+x +x +x T+xx, +x7x +x,x;,  1+xx,+x7 x5 +xX;
T _ 2.2 3.3 2 4 6 2.2 3.3
XX =1+ x,x, +x,x +x,x, 1+x; +x5 +x, 1+ x,0x, +x5x5 +x5x35 |- (25)
2.2 3.3 2.2 3.3 2 4 6
I+xx +x5x +x5x,  1T+xx, + x50 + XX, 1+ x5 + x5 + x5

This suggests that the kernel matrix be written as follows, which has two extra xix; and
2.2

Xi“x;” terms:
3 T
K, (1+xx,) =Xx", (26)

: 3 :
since(1+x,x;) =1+3xx, +3xx’ +x/x. I think we can see a pattern here as we move

to higher polynomials, so let’s next look at the general theory of linear basis function
models and kernels.

LINEAR BASIS FUNCTION MODELS

The linear basis function model (Bishop, 2006) is an extension of a linear model where
x is replaced with the nonlinear basis function f{x), or:

By = (5 F W) Wy By (1) = D W, (6 i =V 7)

10 CREWES Research Report — Volume 34 (2022)
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Note that polynomial regression is a basis function that can be written:
¢j (x,)= xi‘j ) (28)

A second basis function is the Gaussian:

(Xl. —H ')2
¢j (x,)= CXP{—TJ > (29)
where ¢ = mean, and ¢~ = variance .
A third basis function is the hyperbolic tangent:
¢,(x;) = tanh[b +cx,]. (30)

To solve for the weights, we set up the problem as follows, where ® is an N x M+1
dimensional matrix containing the basis functions:

y=0w, (31)
$(x) ¢(x) ... ¢,(x) » Wy
where ® = %(;XZ) ¢1(x2) ¢M€x2) = ):2 and w= Vtﬁ
(xy) G(xy) ... @,(xy) Yy Wiy

Notice that ® can be thought of in two ways, as a combination of N M+1- dimensional
row vectors, or as a combination of M+1 N-dimensional column vectors, or

P o
| @ | _
= : _[¢colo B - ¢colM]’ (32)
Doy
¢0(xi) ¢j (xl)
where @' = Q(:X[) ;and @, = ’ (:XZ) :
¢M ()Cl.) ¢j (XN )

To solve for the weights, the ridge-regression primal solution is:
w=(DTO+AL,,) Dy, (33)

and the ridge-regression dual solution is:
w=0 (0" +11,) . (34)

CREWES Research Report — Volume 34 (2022) 11
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Going back to the row and column notation of equation 32, notice that the elements of
the M+1 x M+1-dimensional matrix product ®’® can be written:

T T
¢colO col0 te ¢colO colM
o'o=| : (35)
T T
¢colM coll te ¢calM ‘colM

and the elements of the N x N-dimensional matrix product ®®’ can be written:

rowN

T T
¢rowl rowl ce ¢row1
OP" = : - : (36)

T T
¢r0wN ¢rowl te ¢VUWN

rowN
Since all this theory has been quite abstract, let me illustrate it with the linear regression
of the simple three-point problem discussed in the last section, which is given by

equation 28 written as ¢, (x,) = x/, where j=0,1 and i = 1,2,3. This leads to:

0 1
XX I x
S R S O
O=|x, x|[=|1 x
0 1
X, X I x

In the column interpretation, this gives:

3

Btos 9 P
CI)TCI) — |:¢c¢;10 col 0 ¢C(;IO cullj| — . l3=1 , (37)

ol1¥col 0 ol17coll

2
Z X; fo
i=1 i=1

X

1
where @, =|1|,and @, =| x, |. In the row interpretation, this gives:
1

X3
T T T 2
¢r0wl rowl ¢rowl row?2 ¢r0w1 row3 1 + xl 1 + xl'xZ 1 + x1x3
T _ T T | 2
PO = ¢mw2 rowl ¢mw2 row2 ¢row2 row3 | T 1+ XX 1+ X5 1+ XoX3 s (3 8)

T T T 2
¢r0w3 rowl ¢"ow3 row?2 ¢row3 row3 l + x3'x1 1 + 'x3'x2 1 + x3

1 1 1
where @ | :[ }, o, :{ }, and @] . :[ } This new notation allows us to re-
xl x2 x3

write equation 10 for the computation of a point on the regression line in a new way:

P(x) =g, (0w, (39)

12
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1
row
X

1
where @ (x) :{ } . As before, for x = 2.5 this gives $(2.5)=[1 2.5][0 5} =2.25,

which is the identical expression. But, as I will show in the next section, this will lead
us to a completely different interpretation of regression, called kernel substitution.

Note that our linear regression example is simply a re-expression of what we saw in
the previous section, but with a more general interpretation given by the basis function
approach. But let’s now expand it by using the Gaussian basis function of equation 29.
Using the values (1= 1, to=2,and 6=0.1 gives the following matrix solution for the
3-point problem (since x1 =1 and x2 = 2):

o T _ T
exp ——(xlzo_'Lzll) exp ——(xlzo_'sz)
- 2: - 2: 1 0
O =|exp —% exp —% =10 1]. (40)
- . - 21 00
_ 2 _ 2
exp _—(x320-,L211) exp _—(x320-,1212)
This then leads to the following weights using the primal solution:
1 00 : 1
-1
w=(d'®d) d'y= 3(=| _|. 41

The full solution is shown in Figure 6 and is a double Gaussian that fits the first two
points but ignores the third point

Two Gaussian Basis Functions
7 7 ; 7 7

40
| i i i i | i
L R e
! ! ! i ! ! !
30 r . ! . '
| | | | | |
T S i s o
i i i i i i
H H H H H H H
: ' : : : : :
, ! ! ! | i
L e R
v
0o

0.0 05 10 15 20 25 30 35 40
X

Figure 6: The Gaussian basis function fit using means th =1, th =2 and o= 0.1.

Because we chose mean values equal to the first two x values note that:
y)=w,(H+we,(1)= exp[O] +3exp [—50] =1+0=1, and

Y(2)=w,0,(2)+wp,(2) = exp[—SO] +3exp[0] =0+3=3.

CREWES Research Report — Volume 34 (2022) 13
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Now let’s add a third mean, giving the following square matrix:

_(xl_lul)z_ _(xl_:uz)z_ _(xl_:u3)2__
=P 200 | =P . 200 =P . 200 ]
[ (x, _lu1)2 | | (x, _:uz)z | | (x; _:uz.)z |
@ =|exp| 21| exp|——2-E2 | exp| 23
P 200 | P | 207 P | 207 |
(x, =44’ | I (X =4, | | (x, = 4’ |
exXp| ———— exXp| ———— exXp| ————
P 20° P | 207 | P . 207 ]

Using values of y1 =1, 1o =2, 13 =3, and o= 0.1 gives the same solution for the dual,
primal, and full inverse, since M = N:

1 0 off1] [1
w=d'y=/0 1 0| 3|=|3 (42)
0 0 1([2] |2

The full solution is shown in Figure 7 and is a triple Gaussian that fits all three points.

Three Gaussian Basis Functions
7 7 7 7 7

40
| | | | | H H
35 -t e -
| | | | | i |
71 IS S SRS ARSI YN S SN, S——
! ! : ! ! !
BT e e B e it S
| | | | | 1 1
> 20 ™
i | | i ! !
10 oo T
| | | | |
1 1 1 1 1
00

0.0 0.5 10 15 20 25 30 i5 40
X

Figure 7: The Gaussian basis function fit using means th =1, th =2 and 13 =3, and 0= 0.1

To see that this fits at the two x values of 1, 2, and 3, note that:

y(1) =exp[0]+3exp[-50]+2exp[-200] =1,
¥(2) = exp[-50]+3exp[0]+2exp[-50] =3, and
¥(3) = exp[-200]+3exp[-50]+2exp[0] = 2.

To simplify the mathematics, [ used o= 0.1 in our previous examples, but the fit was
too “spiky”. Figure 8(a) shows the fit with o= 1.0, which is much smoother, but fits
the points. Figure 8(b) shows the fit with o= 10, which is almost the same as the linear
fit and does not fit the points.
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20 Three Gaussian Basis Functions, sigma =1 0 Three Gaussian Basis Functions, sigma = 10
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x X

(@) (b)

Figure 8: The three mean Gaussian basis function fit using (a) o= 1, and (b) o = 10.

Before leaving this section, it is important to note that all the examples used in this
section assumed that we only had one seismic attribute, or D = 1 in the notation of the
first section. We can easily extend this theory to multiple attributes by assuming that

each of the N samples xiis a D dimensional vector given by x/ =[x, ... x,]. Note

that this vector is a single row vector from the matrix X defined in equation 1.

Having looked at linear basis function models in this section, let us now look at the
related subject of kernel functions.

KERNEL FUNCTIONS

In the previous section we found that the ridge-regression dual solution for the linear
basis function model was given by:

w=0 (0" +11,) . 43)
gH(x) a(x) ... 9,(x) N W,
where @ = ¢0(:x2) ¢1(x2) ¢M€x2) = )jz Cand w = Vt’l
A(xy) a(xy) . B, (xy) Yy Wiy

An alternate way to write equation 43 is as follows:

w=0" (K+11,) "y, (44)

where K = ®®" is called the Gram matrix. In some cases, the Gram matrix can be
created by the matrix multiplication ®®?. However, it can also be created using what
is called a kernel function. This is sometimes called kernel substitution, or the kernel
“trick”, and allows us to build N x N matrix representations of the kernel matrix without
having to use a matrix multiplication. Note the strong resemblance of the kernel
function to the basis functions discussed in the last section except for one important
fact: the kernel function is symmetric. That is, is involves the inversion of a full N x N
matrix, where N is equal to the number of input points or observations.
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Thus, we can think of basis functions as a subset of kernel functions, where we can use
fewer basis functions than the number of points (that is M < N). The simplest example
of a kernel function is the polynomial kernel, which is written:

K, =k(x,x,)=(1+xx,)", (45)

where p is the order of the polynomial. We have already seen this kernel in equations
13 and 38 for the linear polynomial (p = 1) where we found that this function gives the
same solution as the matrix multiplication. However, in equations 18 and 26 we found
that this function does not give the same solution as matrix multiplication for the
quadratic (p = 2) and cubic (p = 3) cases.

Yet another way to write equation 44 is:
w=d'a, (46)
wherea=(K+A1,)" y=[a, - a,]is a vector of what are called the dual

variables. Recall that in equation 29 we saw that we can apply the weights to an
unknown point x using the basis vector associated with the point:

P(x) =g, (W, (47)

where, although we illustrated @’ (x)using linear regression, it could be implemented

by any basis function. But what if we only know the functional form of the kernel, and
not the basis function matrix ®? This is where the kernel “trick” shows its true
usefulness, since we can rewrite equation 47 using the dual variables as

Y(x)=k(x,x,)a, (48)
where k(x,x,)is now written in functional form like equation 45. If we expand

equation 48, we see that it is the sum of the N products between the dual variables and
the kernel functions between x and x;, or

y(x)=ak(x,x)+...+ayk(x,x,). (49)
For example, if we use the polynomial kernel function, we can write
k(x,x;)=(1+xx,)". (50)

Let me again illustrate this with our simple three-point linear regression problem shown
in Figure 2. Since p = 1, we can write

1+x7  l+xx, l+xx 2 3 4
Kl.,_/.=1+xl.xj= 1+ x,x, 1+x§ I+xx, [=[3 5 7], (51)
l+xx, l+xx, 14+x] 4 7 10

which we have seen before and know is uninvertible because its determinant equals 0.
We therefore need to compute the dual variables using a small value of pre-whitening:

-5-10°
a=(K+10°1,) y =| 1-10° |, (52)
-5-10°
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1 1
where x =| 2 |, and y =| 3 |. I have used the “approximately equal to” sign in equation
3 2

52 because the exact values of @ must be computed to computer precision, and using
the numbers shown above would result in a value of zero. Calculating the estimated
v value at an x value of 2.5, using full precision, we get the same value that we saw in
Figure 2:

y(x)=a,(1+2.5)+a,(1+5)+a,(1+7.5)=2.25. (53)

Let us now move to the three-point quadratic solution. Now, p = 2, so we can write

(1+xl2 )2 (1+xx5,)  (1+xx)
2 2 2
K, =|(1+x,x) (1+x§) (I+x,x,)" |, (54)
(1+x3xl )2 (1+x3x2 )2 (1 + x32 )2
which can be expanded to give
142x" +x 1+2xx,+xx 1+2xx+xx | [4 9 16
K, =|1+2x,x+xx  1+2x+x,  1+2xx+x0x [=| 9 25 49 |, (55)
14+ 2x,x, +x5x7 14 2x,x, + X5 x5 14 2] +x; |16 49 100
which is invertible does not need pre-whitening to compute the dual variables:
—20.875
a=K'y=l 265 |. (56)
—9.625

Calculating the estimated y value at an x value of 2.5 we get the same value that we
saw in Figure 3:

$(x) =—20.875(1+2.5)° +26.5(1+5)* —9.625(1+ 7.5)° = 2.875. (57)

The general polynomial kernel is shown below, where p is the order of the polynomial:

(1+x12 )P (1+x1x2)P (1+x1x3)p

K,A:(1+x1x2)P (1+x22)P (1+x,%,)" (58)

(1+xx,)"  (1+xx,)" (1+x§ )P

This will allow us to compute polynomial fits of any order without having to build the
initial matrices by adding columns.
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Figure 9 shows the three regression fits for the three-point example, with solid lines for
the kernel regression fits and dashed lines for the standard regression fits. The fits look
identical for the linear and quadratic cases, but there is a slight deviation for the cubic
fit due to the extra terms discussed earlier.

Polynomial Kernel Regression - p = 1,2,3

o ! ! : :
A : : | |
A ! ! : !
AR ! ! ! '
Ay ! ! ! !
1 1 1 1
it it S S L
\ : ! : :
\ ! ! ! !
i i i i
S W A A A R
K ! ! ! !
b, ' ! : !
n=an | i
: : : : :
] 1 1 ] 1
i i i i i
-2 } } } }
-2 -1 0 1 2 3 4

X

Figure 9: Polynomial kernel regression with the three-point example for p = 1,2, and 3.

Let’s next apply kernel regression to the ten-point noisy sine wave example seen in
Figure 10, which was created by generating a single period of a sine wave, corrupting
it with Gaussian random noise and shifting it up by adding 1.0. Its x and y values are:

x" =[1,2,3,4,5,6,7,8,9,10], and
y" =[1.07,1.22,1.93,1.77,1.24,1.04,0.39,-0.1,0.41,0.49]

Noisy Sine Wave

25 7 7 T T 7
i ; : | i

S
H ’ i H H
i i i i i

I s e A B S M —
O s s
® [l i ] ]
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1 1 | [ ] ' [ !
H H i | ¢
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il R T = T ¢ -
| | i 5 5
-0.5 t t t t
0 2 B 6 8 10

Figure 10: A noisy sine wave example with 10 points.

Figure 11 shows the polynomial kernel regression fits for a noisy sine wave example,
using p =1, 2, and 3.
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- Polynomial Kernel Regression . p = 1,2,3
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Figure 11: Polynomial kernel regression with the noisy sine example for p = 1,2, and 3.

Figure 12 shows the polynomial kernel regression fit for the noisy sine wave example
using p = 10. Since p = N, the number of points, the fit is now perfect for each point.
However, note the wild downward and upward swings at each end of the fit, which
means that we have only done an exact fit within the range of points shown here. This
is therefore an example of overfitting.

Polynomial Kernel Regression : p = 10
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Figure 12: Polynomial kernel regression with the noisy sine wave with p =10.

Next, let’s move to Gaussian kernel regression, which is also called the radial basis
function neural network (RBFN), and can be written as:

('xi—xj)z

20° )

K; =exp| -

For our three-point problem, this can be written out in full as
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(x,—x, )2 (x, — X )2 |
1 exp| ———22-| exp| ———37
p{ 20° p_ 20 |
(x, _x1)2 I (x, _x3)2 |
K=|exp| ———— 1 exp| ————1||, 60
p{ 207 p_ 20 (60)
(3 1) (3 xz)
ex ex 1
I p{ 20° P70 ]
x, —x,)°

since exp[—( }:1 . The results of the Gaussian kernel inversion are applied

20°
to predict the unknown from the known points as follows:

y(x)=a@ +ap, +...+a,f,, (61)

where ¢ = exp{ (2_—)2)}, =1...,N,anda=(K+1I, )_1 y. For the three-point
o

problem, this can be written as follows for each computed value:

j/(x)zalexp{—%}+azexp{ (x 22;_ x)° }+a3exp{ (x 32 2) } (62)

The results of applying the Gaussian kernel to our three-point example is shown in
Figure 13 for sigma values of 0.1 and 1.0. Notice that we get a perfect fit to the points
and that the values never go below zero. A value of 1.0 gives a much smoother result
than a value of 0.1.

4 Gaussian Kernel Regression - sigma = 0.1 B Gaussian Kernel Regression - sigma = 1
7 7 7 T T T T
] ] ]
!

S N S A SN

-1 0 1 2 3 4 -1 0 1 2 3 4
X X

Figure 13: Gaussian kernel regression for the three-point example for o= 0.1 and 1.0.
Next, let’s move to the tanh kernel, which can be written as follows, (where I have set
both b and ¢ to 1 in the earlier formulation):

K, =tanh[1+xx, . (63)

For our 3-point problem, this can be written out in full as:
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tanh[lﬁ-xﬂ tanh[l+xx,] tanh[l+xx,]
K =|tanh[l+x,x,] tanh [1+x§] tanh[1+x,x, ] |. (64)
tanh[l+x,x,] tanh[l+x,x,] tanh [1+x32}
Notice that like the polynomial kernel, and unlike the Gaussian kernel, the tanh kernel

involves the products of the values, not their differences. The results of the tanh kernel
inversion are applied to the unknown points as follows:

yx)=a@ +a,p, +...+a,,, (65)
where ¢, =tanh[b+cxx,]|, i=1,...,N, and a = (K + A1, )_1 y. For the three-point

problem, this can be written as follows for each computed value, where we have set b
to 0 and ¢ to 0.25:

$(x) = q, tanh[0.25xx, | + @, tanh [0.25xx, | + a, tanh[0.25xx; | . (66)

The result of applying this function is shown in Figure 14. Notice that we get a perfect
fit to the points but that, unlike the Gaussian fit, the solution swings towards negative
numbers at the start and end of the plot.

tanh Kernel Regrassion
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Figure 14: tanh kernel regression for the three-point example.

The result of applying Gaussian Kernel regression to our noisy sinusoidal example with
o= 0.5 is shown in Figure 15. Notice that we get a perfect fit to the points and that the
fit before and after the observed points looks reasonable.
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Gaussian Kernel Regression
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Figure 15: Gaussian kernel regression for the three-point example

Figure 16 shows the result of applying tanh kernel regression to our noisy sinusoidal
example with b = ¢ = 1.0. Notice that we get a perfect fit to the points and that the fit
before and after the observed points looks reasonable.

tanh Kernel Regression
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Figure 16. tanh Kernel regression for the noisy sine wave example.
THE GENERALIZED REGRESSION NEURAL NETWORK

Next, I will discuss a technique called the Generalized Regression Neural Network
(GRNN), which is like the kernel methods we have been discussing except than no
matrix inversion is involved. Recall that Gaussian kernel regression was written:

y(x)=ad+a,p +...+ayd(x,), (67)
()Cl. _x)2

where @ =exp| —
¢ p{ 20°

},i:l,...,N, anda=(K+AL,) y.
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The GRNN is written
j}(x)zyl¢]+y2¢2+"'+yN¢N(xi), (68)

>

(x,—x)’ }

where ¢, = exp{— Py
o

In other words, the GRNN is a weighted sum of the input points where the weights
themselves are normalized Gaussian kernels. This can also be written as:

Y(x) =k .k, A vk (X)), (69)
_ (xi - x)2
CXP{ 7262

where k, = 5 are the kernel functions. In matrix/vector format we have
2.9
i=1
J(x)=y'K1, (70)
M k, 0 1
wherey=| : |,K=|: "-. : |, and1=|:|. The three-point problem is written:
Yy 0 - ky 1
[ ] g 0 01
j;(x):w 0 ¢ 0|1}, (71)

26 [0 0 o]

2
where @ = exp{— (X[2 f) } . The results in the following sum:
o

exp{_ (xlz— X’ } exp{_ (5, =) } exp{_ (5, =) }
P =y gy byt L)

Figure 17 shows the result of applying the GRNN method for the three-point example
using o= 0.25. Note that the method extrapolates both the first and last values at the
start and end of the plot.
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GRNN Result
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Figure 17: The GRNN method for the three-point example using o = 0.25.
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Figure 18 shows the result of applying the GRNN method to the noisy sine wave
example using o= 0.25. Again, notice that the method extrapolates both the first and
last values at the start and end of the plot.
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Figure 18: GRNN regression for the noisy sine wave example.

Finally, Figure 19 shows the comparison of all our results for the noisy sine wave
problem. Again, they all fit the observed points perfectly. Also, the biggest difference
is in how the interpolated values are computed as we move away from the first and last
observed points. The worst extrapolation is using the polynomial fit, which shows wild
swings. The best fit is given by the GRNN, which extrapolates the first and last points
exactly.
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EI:]F"cnlg,r = blue, Gaussian = red, tanh = green, GRNN = black
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Figure 19: A comparison of all the regression fits for the noisy sine wave example.
REAL DATA EXAMPLE

Finally, I will apply several of the techniques we have discussed thrughout this paper
to the prediction of reservoir parameters from seismic attributes (Hampson et al., 2001).
I will use a channel sand example from the Western Canadian Sedimentary Basin, in
which we predict pseudo-density logs. This involves finding a linear or nonlinear
relationship between a set of M seismic attributes and some reservoir parameter of
interest. The simplest such relationship is the linearly weighted sum of attributes A4;
given by

P=w,+wA4 +w,4, +---+w,A4,. (73)

The training samples consist of well log curves that intersect the seismic volumes, so
the primal least-squares solution for N samples is:

w=[d"4+21] AP, (74)
Wo
where A = a pre-whitening factor, / is the M+1 x M+1 identity matrix,w=| : |,
Wy
1 4, A, P
A= : |and P=
1 4, Ay, P,

We modify the MLFN network shown in Figure 2 to solve the reservoir prediction by
having the input consist of M attributes and the predicted output be the reservoir
parameter. Any number of neurons can be used in the hidden layer (a rule of thumb is
to use 2/3 the number of input attributes). The weights are initially set to random values
and then undated using backpropagation.
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For the RBFN approach to reservoir prediction (Ronen et al.,1994), the equation to
compute the weights is similar to equation 8 except that the @ matrix is written

w=0"'P, (75)
b G 44
where®=| @ -, I |4 =exp|-
P P

vectors from matrix 4, and HA,. -4, H 1s the “distance in M-dimensional attribute space.

, A =[A4,,...,A,,] are the column

For each output sample, we apply the weights as follows:

S |4, - 4]
P =) wexp| -2 | 76
0 IZZI: 1 p 20_2 ( )
In the GRNN (Hampson et al., 2001) approach, we compute the results as follows for
the reservoir prediction problem:

oo AT
il 20°

s Al 7
;exp - 020_2’

Figures 20 through 21 show the application of these four methods to a channel sand
example from the Western Canadian Sedimentary Basin, in which we predict pseudo-
density logs. Figure 20(a) shows a vertical cross-section from the input seismic
volume, with the acoustic impedance log spliced in at its location. Figure 20(b) shows
a vertical cross-section from the inverted acoustic impedance volume. In both figures,
the channel sand is located below a time of 1070 msec.
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(a) (b)
Figure 20: Vertical cross-sections from (a) the seismic volume, and (b) the inverted acoustic
impedance volume, where the channel sand is shown at a time of 1070 msec on both figures.
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Figure 21(a) shows one line from the density volume predicted using multi-linear
regression, with the density log spliced into the section. Figure 21(b) shows one line
from the density volume predicted using the MLFN.

= Multi linear regression Density (kg/m3) - Backpropaganon Network Density (kg/m3)

Xine 14 16 w & & o » 2 B N ” »

e , 08,08 | 2600 | | . 5% ! . | 2600

- nllv"““"“"" \

Time (ms)
g

(a) (b)
Figure 21: Vertical cross-sections from (a) the multi-linear regression result, and (b) the
backpropagation method, where the channel sand is shown at a time of 1070 msec on both figures.

Figure 22(a) shows one line from the density volume predicted using the RBFN, with
the density log spliced into the center of the section. Finally, Figure 22(b)shows one
line from the density volume predicted using the GRNN, again with the density log
spliced into the center of the section. Note the extra resolution at the channel sand in
the MLFN, RBFN and GRNN results over the inverted section
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Figure 22: Vertical cross-sections from (a) the RBFN and (b) the GRNN, where the channel sand is
shown at a time of 1070 msec on both figures.
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CONCLUSIONS

In this study I considered two different forms of the generalized inverse, the primal and
dual, and showed how the dual form led to several very powerful kernel regression
methods, that go well beyond the multi-linear regression techniques used in many
applications. [ illustrated these techniques using two simple datasets, one with only
three points and the other with ten points, and then applied them to a seismic case study
from the Blackfoot area in Alberta.

Regression methods can be broken into two categories: linear and nonlinear. There is
only one linear approach, and we started by applying linear regression to the three-
point problem, which did not fit the points exactly. There are a variety of nonlinear
regression methods, and I stared with polynomial regression. Linear regression is the
simplest polynomial regression approach and uses a first order polynomial. I also
applied the quadratic and cubic polynomial regression techniques to the three-point
problem and found that both gave a perfect fit to the three-point example, although the
cubic method overfit the problem, since it had more weights that observed points. I
then introduced the concept of the linear basis function model, in which three basis
functions were considered: polynomial, Gaussian and hyperbolic tangent, or tanh. I
then solved for the linear basis function weights using both the primal least-squares
solution the dual least-squares solution. This lead directly to kernel regression, and we
looked at three types of kernel regression techniques: polynomial kernel regression,
Gaussian kernel regression, also called the radial basis function neural network, and
the tanh kernel regression technique. The polynomial regression network performed
very well on both the three-point problem and the ten-point noisy sine wave problem,
where we were able to perform a fit to the data using a tenth order polynomial.

I also introduced the generalized regression neural network, or GRNN, and showed that
although its application involves a Gaussian kernel it does not require the inversion of
the kernel and instead applies the result “on-the-fly” to the data.

I finished by applying all these methods to a seismic reservoir prediction problem,
which involved predicting density from a set of multiple seismic attributes. In this case
study, I used multi-linear regression, the RBFN and GRNN kernel-based algorithms,
and also the multi-layer feed forward, or MLFN, method which is also called the
backpropagation method. The theory of MLFN was not discussed in the study today
but it is a well described method in the literature. All the methods gave similar results,
but each had its own advantages and disadvantages. The most robust was multi-linear
regression, but it underpredicted the density log. The other three methods gave better
fits to the density log but were in danger of overfitteing and produced spurious artefacts.
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APPENDIX
THE DUAL REGRESSION SOLUTION

Polynomial regression using the covariance, or inner product, matrix X”X with ridge
regression is called the primal solution and is written:

w:(XTX+/U

p+l

) X7y, (A1)

where X is an N row by p+1 column matrix, and the autocorrelation matrix 4 = X7.X is
a square p+1 x p+1 matrix. The term A is a pre-whitening factor that is multiplied by
the p+1 x p+1 identity matrix /,+1. To derive the dual solution, we start by bringing the
inverted term back to the left side:

(X' X+A1,,)w=X"y. (A2)
This can then be re-arranged as
X' Xw+Aiw=X"y. (A3)

Subtracting the first term on the left-hand side from both sides and multiplying by the
inverse pre-whitening factor gives

w:/l_l(XTy—XTXw). (A4)
Factoring out the transpose of X then gives
w=X"1"(y—Xw). (A5)
Note that equation A5 can be rewritten as
w=X"a, (A5)

where a = 1" (y—Xw) contains parameters which are called the dual variables.

Notice that we can also multiply both sides of the expression for a by I, giving
da=y—Xw. (A6)
Now comes a “trick”, where we re-substitute the X7a form into w in equation A6:

Aa=y-Xw=y-XX"a, (A7)
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where a = 1" (y—Xw) contains parameters which are called the dual variables. We

then can group the terms as
(XXT+/1)a:y, (AR)
We now re-substitute this into the definition of w to get:

a=(Xx"+a1,)" y. (A9)

Finally, re-substitute into the weight equation to get the final form of the dual regression
solution:

w=X'a=X"(XX"+2L) y. (A10)
Recalling that the equation for primal regression is

w:(XTX+/U

p+l

—1 r
) Xy, (Al11)
we can combine equations A10 and A11 to show that

X (xx" A1) =(XTX 4L,

) X7 (A12)

That is, the weights can be computed using either an inverse containing the N x N
matrix XX7 or the p+1 x p+1 matrix X7X.
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