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ABSTRACT

Uncertainty analysis is an important aspect of quantifying the results of the inversion
problem. In this report, we compare the uncertainty analysis given by two methods for full
waveform inversion. The first method is by using the approximation of the inverse Hessian
to perform the uncertainty analysis, as the approximation of the inverse Hessian is closely
related to the posterior model covariance matrix. The second method is based on a ma-
chine learning-based method, which uses the Bayesian neural network (BNN) to generate
elastic models and then performs the inversion. In the BNN, each trainable weight is repre-
sented as a Gaussian distributed probability distribution function (pdf). When BNN is well
trained, we can forward calculate the BNN several times and perform the statistic analysis
for the prediction results and give the uncertainty analysis for the generated models. Our
numerical results suggested that both methods can generate promising inversion results and
reasonable uncertainty quantification when compared with the true model errors.

INTRODUCTION

Full-waveform inversion (FWI) addresses the geophysical inverse problem of estimat-
ing subsurface model parameters from observed waveform data. In most geophysical ap-
plications, FWI is introduced as an iterative, local optimization problem that attempts to
minimize the least-squares residuals between observed and synthetic data. Mathemati-
cally, the inverse problem is ill-posed, leading to a non-uniqueness of the solutions. It
remains challenging to solve inverse problems piratically due to limitations in data acqui-
sition, measurement uncertainties and the non-uniqueness of the solution (Tarantola, 1984;
Lailly, 1983).

Estimations of the resolution or uncertainty in seismic inversions have a long history in
geophysics and can be analyzed with mathematical tools such as the posterior covariance
matrix. The posterior covariance matrix is closely related to the inverse Hessian (Fichtner
and Trampert, 2011; Zhu et al., 2016). However, for practical problems with millions of
parameters, it is unfeasible to store such vast matrices. With least-squares QR factorization
Zhang and McMechan (1995) modify classic inversion algorithms with least-squares QR
factorization to handle large-scale inverse problems. The spatial resolution lengths with a
Gaussian approximation to the resolution matrix were introduced by An (2012). Trampert
et al. (2013) sample the tomographic models for resolution lengths with random probing
and analyze the direction-dependent resolution lengths of waveform tomography by Ficht-
ner and Leeuwen (2015) autocorrelating the randomly sampled Hessian. Rawlinson et al.
(2014) also gives a detailed explanation for the uncertainty estimation for the seismic in-
version problem.

Randomized singular-value decomposition (SVD) also attracted attention to geophysi-
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cists, Halko et al. (2011), with the development of matrix probing theories in applied math-
ematics. The Bayesian inference workflow for waveform tomography is formulated by
Bui-Thanh et al. (2013) by deriving an approximation to the posterior covariance matrix by
decomposing the data-misfit Hessian into eigenvalues and eigenvectors with randomized
SVD. Zhu et al. (2016) improve the efficiency of the Hessian computation by exploiting
point-spread function (PSF) tests. More recent ensemble-based approaches have been in-
troduced to tomography problems by Jordan (2015) with the utilization of the Kalman Filter
(KF) theory (Kalman, 1960; Evensen, 1994). Liu and Peter (2019) used the Square-root
variable metric-based elastic FWI to quantify the uncertainties for Vp and Vs. The theory
part of this report is referred to the paper of Liu and Peter (2019) to provide a recent review
of uncertainty estimations.

This report will first give a brief review of how we can use the inverse Hessian approx-
imation to give the uncertainty quantification for the two parameters of elastic FWI. As the
inverse Hessian approximation in this paper is calculated by the Quasi-Newton method,
which requires starting point given manually, we discuss how this initial guessing of the
inverse Hessian could influence the final uncertainty quantification. Next, we briefly intro-
duce the BNN-based EIFWI, which uses the BNN to generate elastic models. Uncertainty
analysis can be given by forward calculating the well-trained neural network several times
can perform the statistical analysis of the generated elastic models. Then, we will compare
the uncertainty quantification given by these two methods.

REVIEW OF THE BAYESIAN INFERENCE

Bayesian inference of FWI

In the FWI workflows, Bayesian inference allows us to incorporate the prior informa-
tion into waveform tomography to estimate posterior uncertainties of the inverted results.
To review, we start with a short glance at the forward problem. For a forward modeling
problem we have:

d = g(m). (1)

d is the observed data calculated with physics model m, via the operator g. g is usually
nonlinear. The forward problem gives what should be observed for a particular model,
whereas the inverse problem calculates the particular physics models for a set of observa-
tions. Equation 1 relates the physics model and the data observations. In this paper, the
operator g represents the numerical solution of the isotropic elastic wave equation based
on the finite difference method using stress-velocity format (Virieux, 1986).

We first make the assumption that the prior model probability distribution function
(PDF) is Gaussian distributed (Gauss, 1877). Thus the prior model probability distribution
function (PDF) can be expressed as:

ρ(m) ∝ exp(m−mprior)
TCT

m(m−mprior), (2)

where mprior is the prior model, with its mean being the (initial) model m0, and Cm is the
prior model covariance matrix. Due to the central limit theorem, the choice of Gaussian
priors is very difficult to avoid.
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In Bayesian inference, the inherent discrepancy between the observed and synthetic
data is also considered to be distributed as Gaussian noise. We represent the likelihood
function of the data as

ρ(d|m) ∝ exp

(
−1

2
(d− g(m))TC−1

d (d− g(m))

)
. (3)

Cd is the data covariance matrix indicating the data uncertainties. According to the Bayesian
inference, the solution to an inverse problem yields the PDF, which is defined as:

ρ(m|d) ∝ ρ(d|m)ρ(m), (4)

which the term ρ(m|d) indicates the probability of m when the data d is observed, indi-
cating the posterior probability. ρ(d|m) is the likelihood, and ρ(m) is the prior probability.
ρ(m) is related to the model misfit, and the ρ(d|m) is related to the data misfit. Combining
equation 1 and 2 we have the posterior distribution :

ρ(m|d) ∝ exp(−f(m)), (5)

where the f(m) is the objective function in the least-square sense, namely

f(m) =
1

2
(d− g(m))TC−1

d (d− g(m)) + (m−mprior)
TC−1

m (m−mprior) (6)

Note that even with the data error and the model prior are Gaussian distributed, the posterior
distribution could not be Gaussian distributed, due to that the forward modeling g(m) is
non-linear in the likelihood function of equation 3. One simple approach is to linearize
the forward modeling operator around the maximum posterior (MAP) model (Gouveia and
Scales, 1998; Petra et al., 2014). This indicates that the posterior PDF as:

ρ(m|d) ∝ exp

(
−1

2
(m− m̄)TC−1

m (m− m̄)

)
(7)

with the MAP model being:

m̄ = mprior + (GTC−1
d G+C−1

m )−1GTC−1
d (d−Gmprior) (8)

and the posterior covariance being:

Cm = (GTC−1
d G+C−1

m )−1 = (Hd +C−1
m )−1 (9)

The term G in equation 8 and 9 are the Fréchet derivatives: G = ∂g(m)
∂m

. In equation
9, we also have Hd = GTC−1

d G, which is known as the Gaussian Newton approximation
method to the data-misfit Hessian (Pratt, 1999; Virieux and Operto, 2009). The direct
calculation of the Fréchet derivatives is too expensive to achieve. An efficient way of
calculating the Fréchet derivatives is to calculate the gradient by using the adjoint state
method, (Tarantola, 1984, 1986; Tromp et al., 2005), which uses the zero-lag correlation
between the forward modeling waveform and the backpropagation wavefield to calculate
the Fréchet derivatives. The isotropic elastic wave equation is self-adjoint, meaning that
the forward modeling operator and the backpropagation operator for solving the forward
modeling wavefield and the backpropagation wavefields can be the same. The covariance
matrix of Cm reflects the key information of the uncertainty information of the inverted
models. According to equation 8, and 9, the effective quantification of the uncertainty by
using the Bayesian inference relies on the efficient way of the estimation of the Hessian
Hd.
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Inverse Hessian approximation

In the Newtown’s method, the model update δm in each iteration is related to the gra-
dient g through the inverse of the Hessian H−1 by:

δm = −H−1g ≈ −Bg, (10)

where the matrix B is the approximation of the inverse Hessian: H−1 ≈ B. Gauss-Newton
method is one of the most popular optimization methods to perform full-waveform inver-
sion (Pan et al., 2016; Chen and Sacchi, 2020). In this study, we are particularly interested
in the Quasi-Newton method to calculate the inverse Hessian approximation, which is a
relatively less computationally intensive way of explicitly evaluating the inverse Hessian
approximation.

The standard Davidon–Fletcher–Powell (DFP) method (Fletcher and Powell, 1963)
gives an iterative approach to update the inverse Hessian:

Bk+1 = Bk −
Bkyky

T
kBk

yT
kBkyk

+
sks

T
k

yT
k yk

(11)

Here the Bk is the inverse Hessian approximation at k iteration. If k = 0, B0 is the initial
guessing of the inverse approximation Hessian. sk = mk+1 − mk, which is the model
update vector. yk = gk+1 − gk, which is the gradient update vector. A stable and practical
algorithmic form modified from the DFP method is the vector-version SRVM, which is a
positive definite approximation to collect the information about the inverse Hessian over
all the n iterations Tarantola (2005):

Bn+1 = B0 +
n∑

k=0

(
sk∆sTk
yT
k sk

− Bkyk∆yT
kBk

gT
kBkyk

)
(12)

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solv-
ing unconstrained nonlinear optimization problems (Fletcher, 2013). Like the related DFP,
BFGS determines the descent direction by preconditioning the gradient with curvature in-
formation. It does so by gradually improving an approximation to the Hessian matrix of
the loss function, obtained only from gradient evaluations (or approximate gradient evalua-
tions) via a generalized secant method. The inverse Hessian approximation given by using
the BFGS approximation is formulated as follows:

Bk+1 =

(
I− sky

T
k

yT
k sk

)
Bk

(
I− yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

, (13)

where I is the identity matrix. In the following articles, we will both use the SRVM method
and the BFGS method to perform the inverse Hessian approximation in numerical testing.

Randomized SVD for the approximation inverse Hessian

Equation 11, 12, 13 can all be considered as the low-rank approximation of the inverse
Hessian. Randomized SVD, (Liberty et al., 2007; Halko et al., 2011), provides an effi-
cient way to factorize large matrices into their corresponding eigenvalues and eigenvectors,
especially for matrices with low-rank property.
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Given a symmetric M×M matrix Z and a set of M× Nr random vectors X, where M
is the model size and Nr estimated rank order of matrix Z. As shown in algorithm 1, the
single-pass randomized SVD algorithm processes the matrix Z as follows:

Algorithm 1 Single-pass randomised SVD algorithm
1: Y = ZX
2: QR = Y
3: A

(
QTX

)
= QTY

4: UΛUT = A
5: V = QU
6: Z = VΛVT

With the use of the randomized SVD algorithm, the inverse Hessian can be decomposed
as:

H−1 = VΛVT , (14)

where the V is the eigenvector matrix vector with the dimension of M × Nr, and Λ being
the eigenvalues matrix with Nr diagonal elements.

Practical assessment of the posterior covariance

The equation 6 provides an elegant perspective on the objective function, connecting
the least-squares inversion with the Bayesian inference. However, for practice inversion
method, equation 6 is not always explicitly used, and it can be defined as:

f(m) =
1

2
(d− g(m))TC−1

d (d− g(m))+

ϵδmTC−1
m δm+ ηδmTDTDδm,

(15)

where the δm = m−m0 is the model perturbation. The Cd is the data covariance matrix
and the Cm is the prior model covariance matrix, with m0 being the prior mean model for
a Gaussian distributed prior mprior. D is the smoothing operation. With ∂f(m)/∂m = 0
the above equation becomes:

m̄ = m0 + (GTC−1
d G+ ϵC−1

d )−1 + ηδDTD)−1GTC−1
d (d−Gm0), (16)

In which m̄ is the inverted model (also known as the MAP model), and G is the Fréchet
derivative, and the D is acting as the smoothing operator. So, we can rewrite the practical
form of the posterior covariance matrix as follows:

CM = (GTC−1
d G+ ϵC−1

m )−1 = (Hd + ϵC−1
m )−1 (17)

The above equation differs from equation 9 by adding a pre-factor ϵ. According to Liu and
Peter (2019), after rewriting equation 12, the model covariance matrix can be approximated
as:

CM ≈ H−1Cm (18)
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We will also use this equation to evaluate the uncertainty of the inversion results for the
elastic FWI.

After obtaining a low-rank SVD approximation to the posterior covariance Cm, we can
draw and compare a Gaussian random sampling on Cm, and CM , and the sampling of the
prior and the posterior distribution can be expressed, respectively as

mprior = m0 +C1/2
m n, (19)

mpost = m̄+C
1/2
M n, (20)

n being the 2-D Gaussian random sampler of zero mean and unit variance

C
1/2
M = H−1/2C1/2

m = VΛ−1/2VTC1/2
m , (21)

where V and Λ are the eigenvectors and eigenvalues of H−1, respectively. This way, we
can assess the prior and posterior model uncertainties through visual comparisons of the
random samplings on the prior and posterior distributions.

Isotropic elastic FWI elastic gradient update

The gradient for the FWI parameters can be calculated by using the zero-lag correlation
between the observed data and the synthetic data (Tarantola, 1984; Köhn et al., 2012).
For the elastic isotropic FWI, parameterized by λ,µ, and ρ, the gradients for these three
parameters can be calculated with the flowing equation:

∂E

∂λ
= −

∑
sources

∫
dt

(
∂ux

∂x
+

∂uz

∂z

)(
∂Ψx

∂x
+

∂Ψz

∂z

)
,

∂E

∂µ
= −

∑
sources

∫
dt

(
∂ux

∂z
+

∂uz

∂x

)(
∂Ψx

∂z
+

∂Ψz

∂x

)
+ 2

(
∂ux

∂x

∂Ψx

∂x
+

∂uz

∂z

∂Ψz

∂z

)
,

∂E

∂ρ
= −

∑
sources

∫
dt

(
∂2ux

∂t2
Ψx +

∂2uz

∂t2
Ψz

)
.

(22)
While the term u denotes the forward-modeled wavefield for the actual model parameters,
the wavefield Ψ is generated by propagating the residual data. The gradients for Vp, Vs ,
and ρ can be written as:(

∂E

∂Vp

)
= 2ρVp

(
∂E

∂λ

)
(
∂E

∂Vs

)
= −4ρVs

(
∂E

∂λ

)
+ 2ρVs

(
∂E

∂µ

)
(

∂E

∂ρvel

)
=

(
V 2
p − 2V 2

s

)(∂E

∂λ

)
+ V 2

s

(
∂E

∂µ

)
+

(
∂E

∂ρ

) (23)

BNN-based Implicit elastic FWI

In this section, we use a probabilistic interpretation of neural network learning by im-
plementing a coordinate-based Bayesian neural network (BNN), denoted as Nbnn(C; θ). In
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each BNN layer, denoted as bl, where l is the index for the number of layers in the BNN, for
simplicity in this study, we assume each element of the weight and bias vectors to follow
the Gaussian distribution, and be characterized with the corresponding mean value and the
standard deviations. During the forward calculation in the neural network, realizations of
the weights and biases are drawn randomly from their current probability distributions. For
example, assume that wi, and the bias bi are the ith values in weight vector wl and bias
vector bl in the lth layer. wi is defined as:

wi = wµi
+ log(1 + eδwi )wϵi , (24)

and bi is defined as:
bi = bµi

+ log(1 + eδbi )bϵi , (25)

where wµi
and bµi

are the mean values of wi and bi probability distribution respectively,
and wϵi and bϵi are a random values generated with the Gaussian distribution, i.e., wϵi ∼
N(0, 1), bϵi ∼ N(0, 1). wµi

and bµi
are the values which determine the mean of the prob-

ability distribution for parameter wi and bi respectively. δwi
and δbi influence the standard

deviation for the parameter wi and bi. Each value in the weight vector w and bias vector b
is obtained through the above process. We regard the wµi

, δwi
, bµi

and δbi as the training
parameters, since these values directly determine the shape of the Gaussian distribution
of the parameters. For simplicity, the training parameters are all noted as θ. After all the
training parameters in each layer are realized, the output of the BNN is obtained with the
following equation:

Nbnn(c; θ) = (bn ◦ bn−1 ◦ · · · ◦ b1)mstd +mmean. (26)

The training of the BNN is based on the methodology of the variational inference.
In variational inference, we seek to find the parameters θ of a distribution on the weights
p(w|θ) that minimizes the Kullback-Leibler (KL) divergence with the true posterior p(w|D)
on the weights.

The BNN implicit FWI formulation involves the following training process. First, we
obtain the weights and bias as described above. Second. we use the weights to calculate
the outputs of the network, which are the elastic property models Vp,Vs, and ρ. Third,
use the same recurrent neural network (RNN) as discussed previously to carry out forward
modeling via F (û, Nbnn(c; θ)) = f and obtain the synthetic data d̂syn. Fourth, we calculate
the logp(wi|θ), logp(wi), and logp(Dj|w). For the FWI problem, the term logp(Dj|w)
can be denoted as logp(dobss,t,r|w), where the dobss,t,r represents the observed data at time t
and receiver r for one shot index s. As the weights w directly determines the geophysics
parameters m, and the synthetic data vector dsyns,t,r is also calculated according to the wave
equation with m, we can conclude that p(dobss,t,r|w) ∝ p(dobss,t,r|d

syn
s,t,r). Thus, for the implicit

FWI problem, we can use logp(dobss,r,t|d
syn
s,r,t) to replace logp(dobss,r,t|w). Thus, the loss function

we use for BNN IFWI is defined as:

ϕ(θ) ∝ ϕ(θ)EIFWI =λ

n∑
i=1

[logp(wi|θ)− logp(wi)]−

Ns∑
s=1

Nt∑
t=1

Nr∑
r=1

logp(dobss,r,t|d
syn
s,r,t),

(27)

CREWES Research Report — Volume 34 (2022) 7



Zhang et. al

where the Ns, Nt, and Nr are the maximum number of the shots, receiving time and
the receivers. Fifth, we use a gradient-based method to update the weights: θ = θ −
α△θϕEIFWI, where the t is the iteration time, and △θϕEIFWI is the partial derivative of the
loss with respect to the parameter θ. λ is the value that controls the contribution of the
(logp(w|θ)− logp(w)) term, the network complexity term, in the loss function. α is the
step length for the gradient based optimization method. The calculate of the gradients are
also implicated with the automatic differential method.

NUMERICAL TEST

In this section, we will use part of the full Marmousi model as the Vp and Vs models
to perform the inversion. The size of the model is 100 × 200. The grid length we use
here is dx = dz = 20. The inversions are all carried out in the time domain. We assume
that all the sources are well known, and we use Ricker’s wavelet as the source, with the
main frequency 10Hz. All the sources and receivers are located on the model’s surface,
with a shot interval of 600m and a receiver interval of 20m. We use the Wolfe condition to
calculate the step (Nocedal and Wright, 1999).

Figure 1 (a) and (b) are the true Vp, Vs models respectively. Figure 1 (c) and (d) are in-
version results for Vp and Vs after 500 iterations after using the BFGS method. We can see
that the inversion is successful. Most of the structures of the elastic model have been cor-
rectly updated, especially for the anomaly located in the center of the models. The deeper
part of the model is less updated, and due to that, we have limited acquisition illumination.
If the acquisition system is cross-well, which means that we have shots on one side of the
model and receivers on the other side of the model, we could have better illumination for
the deeper part of the model. Figures 1 (e) and (f) illustrate the uncertainty analysis of the
FWI for the Vp, and Vs. Figures 1 (e) and (f) are the standard deviation of the posterior
sampling for parameter Vp, and Vs using equation 21. Figure 1 (g) and (h) are the absolute
model errors for the Vp, Vs respectively, which is the difference between the true models
and MAP models. Our assumption for a successful uncertainty quantification is that the un-
certainty should match well with the absolute model error. From the comparison between
the third and the fourth rows, we can see that the errors of the center anomaly align well
with the standard deviation uncertainty indicating the correct quantification of the uncer-
tainty for the shallower part of the elastic model. However, the model errors for the deeper
parts of the model are poorly reflected in the standard deviation plots. This may be because
the inverse approximation Hessian is constructed with the gradients and the model updates
of the FWI. If the model updates and the gradients have small updates in the deeper part
of the model, then the uncertainty quantification according to such a Hessian also has few
information uncertainty updates for the deeper part of the model. A reasonable guess for
the uncertainty for the deeper part of the model should be larger than the shallower part.

To improve the uncertainty quantification of the uncertainty analysis for FWI, we for-
mulate the diagonal of the initial Hessian by using the following formula:

Bp
diag[ix, z] = exp

[
−1

2

(
a
z − nz −∆l

∆l/2

)2
]
, z ∈ (0, nz) (28)

Bp
diag[ix, z] represent one column of the guessing of the initial Hessian for parameter p ∈
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FIG. 1. FWI uncertainty analysis with B0 = I. (a) true Vp. (b) true Vs. (c) Vp inversion result. (d) Vs

inversion result (e) Vp standard deviation. (f) Vs standard deviation. (e) Absolute Vp model error. (f)
Absolute Vs model error.

(Vp, Vs). After calculating each column of the Bp
diag, we need to diagonal the Bp

diag and put
it into the main diagonal term of the initial Hessian Bk0 for the corresponding p parameter.
a is the hyper-parameter of this method. In this test, we choose it to be a = 12 and
∆l = nx. Figure 2 shows the inversion results and the uncertainty quantification by using
this initial guessing of the Hessian. Figure 2 (c) and (d) are inversion results by utilizing
the Hessian with the initial guessing with equation 28. With the same inversion strategy
but with different initial Hessian Guessing, we can see that the deeper part of the models is
better recovered, while the shallower part of the models remains relatively the same. Figure
2 (e) and (f) shows the standard deviation of the Vp, and Vs uncertainty quantification using
the initial Hessian suggested. We observe the better characterization of the uncertainties

CREWES Research Report — Volume 34 (2022) 9



Zhang et. al

FIG. 2. FWI uncertainty analysis with B0 formulated with equation 28. (a) true Vp. (b) true Vs. (c)
Vp inversion result. (d) Vs inversion result (e) Vp standard deviation. (f) Vs standard deviation. (e)
Absolute Vp model error. (f) Absolute Vs model error.

for the high-velocity structure on the right corner of the Vp model. Also, the acquisition
footprints in Figure 1 are also mitigated. The deeper part of the uncertainties for the Vs

model is also better revealed.

BNN FWI inversion results

We perform the forward calculation using the well-trained BNN 1000 times and obtain
a set of the 1000 models for all the Vp, Vs, and ρ models. As the weights are drawn from
the well-trained posterior probability distribution function, each forward calculation gives
relatively different velocity models. Then we calculate the mean and the standard deviation
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FIG. 3. FWI uncertainty analysis with incline Guessing. (a) true Vp. (b) true Vs. (c) Vp BNN FWI
result. (d) Vs BNN result (e) Vp BNN FWI standard deviation. (f) Vs BNN FWI standard deviation.
(e) Absolute Vp model error. (f) Absolute Vs model error.

of the velocity models to give the uncertainty analysis of these velocities generated with
BNN. If the velocity model agrees with each other at a certain location of the model, the
uncertainty for this point is low (and vice-versa). We will compare the standard deviation
of the prediction sets for the elastic models with the absolute model error. If the standard
deviations match well with the model error, then we consider that this is a valid uncertainty
quantification. The third row of Figure 3 illustrates the standard deviation, and the last
row demonstrates the absolute model uncertainty. We can see that the standard deviations
estimated by the BNN match well with the absolute model error. We can see that most
of the prediction errors are positioned in the center anomaly of the model and the deeper
layers, and these model errors are all correctly reflected on the standard deviation plots. For
instance, the largest model error for Vp in Figure 3 (g) is located below the anomaly, and
we can also observe that the standard deviation below the anomaly is large. We can also
clearly see more noise is presented on these model errors, especially for the deeper part of
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the model, indicating that we should have high uncertainty in these areas, indicating the
successful uncertainty quantification of the FWI.

Both the uncertainties given by the inverse approximation Hessian and the BNN have
the ability to characterize the inverse results for the model uncertainty of FWI. BNN method
have good ability to characterize overall uncertainty of the elastic model, but noise can be
observed in the MAP model and the uncertainty quantification model. Inverse Hessian
approximation method is noise free, but have some limitation on estimating the uncertainty
of the model where it have weekly illuminated, and a modification of the initial guessing
could help to release this issue.

CONCLUSION

We compare the uncertainty analysis given by the inverse Hessian approximation method
in conventional FWI with the uncertainty analysis given by the BNN. Both of the method
have successfully capture the main characterization of model error, though with difference
uncertainty pattern. In the uncertainty analysis, using the inverse Hessian approximation
method, we improve the uncertainty analysis by changing the initialization of the inverse
Hessian. The deeper part of the model have better uncertainty analysis by utilization such
a method.
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