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ABSTRACT

We propose the Auto-adjoint time domain elastic full waveform inversion in this re-
port, which is a FWI framework accelerated with CUDA using adjoint sources calculated
with automatic differential method. In this FWI framework, the forward modeling and
the adjoint modeling are accelerated by CUDA, and the adjoint sources are calculated by
the automatic differential method. These two features allows us to perform time domain
FWI with GPU acceleration and explore how different kinds of objective functions can in-
fluence the inversion results effectively. We study the objective function behavior for the
ℓ-2 norm. ℓ1-norm, Global-correlation based, Envelope based, objective function, and ℓ-1
norm between the real and imaginary part of the synthetic data and the observed data (ℓ1
RI objective function). According to the numerical test we did in this paper, the ℓ1 RI ob-
jective function has better ability to tolerate the noise when poor initial model is used for
inversion, compared with all the other objective functions we considered.

INTRODUCTION

Full-waveform inversion (FWI) is a challenging data-fitting procedure based on full-
wavefield modeling to extract quantitative information from seismograms. For the gradient-
based FWI, the most important components are the efficient forward and backward model-
ing methods, and the optimization methods to update the parameter models. The forward
and backward modeling method could be achieved using the same finite difference method
if we use self-adjoint wave equation. The gradient of the parameters can be calculated
by using the zero-lag correlation between the forward modeling wavefields generated with
the wavelet source, and the back propagated wavefield generated with the adjoint-sources
Tarantola (1986). The utilization of the different kinds of objective functions accounts for
using the corresponding kinds of adjoint-sources to perform the backpropagation result-
ing in different kinds of gradients for updating the parameter models. Thus, the study of
objective functions is an important aspect of FWI.

The least-squares objective function remains the most commonly used criterion in FWI,
although it theoretically suffers from poor robustness in the presence of large isolated and
non-Gaussian errors Brossier et al. (2010). The ℓ-1 norm is not based on the Gaussian
statistics in data space, and it was first introduced in the time domain with Tarantola (2005).
Djikpéssé and Tarantola (1999) used the ℓ1-norm to successfully invert the field data in the
Gulf of Mexico. Huber (1973) combines the advantages of the ℓ1 and ℓ2 norm to release
the nonlinearity of the objective function. The small residuals would be updated according
to the ℓ-2 norm, and the large residuals would be updated with the ℓ1- norm. Therefore,
the hybrid objective function has the ability to tolerate the outliers’ noise in data. The
correlation-based Liu et al. (2017), instantaneous phase-based Choi and Alkhalifah (2015),
Envelope based objective functions (Wu et al., 2014) are all introduced by researchers to
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overcome the difficulties of FWI when the initial models are poor, and there is noise present
in the observed data. In this study, we will first give a brief introduction to the commonly
used objective functions and then perform the numerical tests to perform the inversion with
poor initial models and the occurrence of noise in the observed data.

OBJECTIVE FUNCTIONS

ℓ2 norm objective function

The ℓ2 norm objective function calculates the ℓ2 norm between the observed data
dobs(t), and the synthetic data dsyn(xr, t,m), where the xr represents the position of the
receivers, and m represents the model parameters.We can also consider this as the wave-
form difference (WD) objective function. t represents the discrete time. The mathematical
expression of the ℓ2 norm is:

ϕ(m) =
1

2

∑
xr

∫ T

0

||dsyn(xr, t,m)− dobs(t)||2dt (1)

The ℓ2 norm objective function is one of the most commonly used objective functions.
The ℓ2 norm objective function is easy to calculate, and we assume that the data noise
is Gaussian distributed when the ℓ2 norm objective function is used to calculate the data
misfit function. This assumption is very hard to avoid due to the Central Limited Theorem.

ℓ1 norm objective function

The ℓ1 norm objective function calculates the absolute error between the observed data
and the synthetic data. When using the ℓ1 norm objective function, we assume that the data
noises are Laplacian distributed. The mathematical expression of the ℓ1 norm objective
function is formulated as:

ϕ(m) =
∑
xr

∫ T

0

||dsyn(xr, t,m)− dobs(t)||dt (2)

The data residuals are normalized according to their amplitudes, which gives clear insight
into why the ℓ1 norm is expected to be less sensitive to large data residuals.

Huber norm objective function

Huber (1973) introduce the Huber norm by introducing a threshold that controls the
transition between the ℓ1 norm and ℓ2 norm. The Huber loss function is strongly convex
in a uniform neighbourhood of its minimum; at the boundary of this uniform neighbour-
hood, the Huber loss function has a differentiable extension to an affine function. These
properties allow it to combine much of the sensitivity of the mean-unbiased, minimum-
variance estimator of the mean (using the quadratic loss function) and the robustness of the
median-unbiased estimator (using the absolute value function).

ϕ(m) =


1
2

∑
xr

∫ T

0
||dsyn(xr, t,m)− dobs(t)||2dt, if |α| ≤ ϵ∑

xr

∫ T

0
||dsyn(xr, t,m)− dobs(t)||dt, if |α| > ϵ

, (3)
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where α is the absolute difference between the obsvered data and the synthetic data.

Global correlation objective function

The global correlation norm for waveform inversion was used Sen and Stoffa (1991),
and Stoffa and Sen (1991), who applied it to separate-source inversion with simulated an-
nealing and genetic algorithms. Choi and Alkhalifah (2012) used the global correlation
between observed and modelled data as an alternative objective function for the inversion
of the marine streamer data. Through the global correlation norm, we measure the similar-
ity between the observed and modelled data and update the velocity model in the direction
of maximizing the similarity. The Global correlation objective function based objective
function is formulated as:

ϕ(m) = −
∑
xr

∫ T

0

dsyn(xr, t,m) ∗ dobs(xr, t,m)√
EobsEsyn

dt, (4)

where the Eobs and Esyn are the energy of the observation data trace and the synthetic
data-trace: Eobs =

∫ T

0
d2
obs(xr, t,m)dt. Esyn =

∫ T

0
d2
syn(xr, t,m)dt. Choi and Alkhalifah

(2012) suggested that the global correlation-based objective function is theoretically the
same as the least-square norm of the normalized wavefields.

Zero mean global correlation objective function

(Dong et al., 2020) propose Zero mean global correlation objective function (ZMGC)
for the FWI, to tackle the situation when the observed data lack low-frequency components
or when the estimation for the wavelet is incorrect, which can be considered as a variation
of GC-based objective function. The formula of the ZMGC objective function is:

ϕ(m) = −
∑
xr

∫ T

0

(dsyn(xr, t,m)− ¯dobs) ∗ (dobs(xr, t,m)− ¯dsyn)√
ErobsErsyn

dt. (5)

Erobs =
∫ T

0
(dobs(xr, t,m) − ¯dobs)

2dt. Ersyn =
∫ T

0
(dsyn(xr, t,m) − ¯dsyn)

2dt. ¯dsyn and
dobs are the mean value of the traces.

Envelope based objective function

Wu et al. (2014) found that the envelope fluctuation and decay of seismic records carry
ultra-low-frequency (ULF, i.e., the frequency below the lowest frequency in the source
spectrum) signals that can be used to estimate the long-wavelength velocity structure. We
then developed envelope inversion for the recovery of low-wavenumber components of
media (smooth background) so that the initial model dependence of waveform inversion
can be reduced.

ϕ(m) =
1

2

∑
xr

∫ T

0

||Asyn(xr, t,m)−Aobs(xr, t,m)||2dt, (6)
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where Asyn and Aobs are the envelope of dsyn and dobs are the envelope of the signal. The
envelope of the signal can be calculated by using the Hilbert transform:

A(t) =
√

d2(t) + d2
H(t)

p

, (7)

where d(t) is any arbitrary data vector which varies with time t, and dH(t) is the Hilbert
transform of data d. A(t) is the envelope of the data d(t). p is the power for the envelope
data, and it can be any positive number. According to Wu et al. (2014), p = 2 is a relatively
good choice for large-scale seismic waveform inversion problems.

Milti-scale Z transform objective function

The multi-scale Z transform objective function is formulated as:

ϕ(m) =
1

2

∑
xr

∫ ωmax

0

||ℜ(Zsyn)−ℜ(Zobs)||2dω (8)

where Z is the discrete Z transform of the data, and ℜ means to take the real part of the
transformed data. The discrete Z transform of the and time series data d = [d(0), . . . d(N)],
where the N is the length of the data vector d, can be calculated with:

Z =


1 1 1 . . . 1

1 zd
−1e−2πi/N zd

−2e−4πi/N . . . zd
−N+1e−2πi(N−1)/N

1 zd
−1e−4πi/N zd

−2e−8πi/N . . . zd
−N+1e−4πi(N−1)/N

...
...

...
...

...

1 zd
−1e−2πi(N−1)/N zd

−2e−4πi(N−1)/N . . . zd
−N+1e−2πi(N−1)2/N




d(0)

d(1)

d(2)
...

d(N)

.
(9)

zd ≥ 1 is the damping factor. If zd = 1, this operation calculates the cross-correlation of the
seismic data with a series of different frequencies sine and cosine functions, which makes
the Z the discrete Fourier transform. If zd > 1, we are calculating the cross-correlation
of the seismic data with a series of different frequencies sine and cosine functions with
a damped amplitude which is the Laplacian transform. A larger value of zd represents a
larger damped property. By controlling the values of the damping factor zd, we can achieve
the multi-scale inversion strategy for full waveform inversion.

ℓ1 RI objective function

The motivation for introducing this objective function is to better take the phase infor-
mation into the inversion to tackle the local minimum and the cycle skipping problem. The
phase information is closely related to the kinematics property in the wavefield, so it has
great potential to be used in FWI for overcoming the local minima problem. The phase of
the observed data and the synthetic data can be calculated with the following equations:

ϕsyn = arctan
ℜ(Fsyn)

ℑ(Fsyn)
, ϕobs = arctan

ℜ(Fobs)

ℑ(Fobs)
, (10)

where Fobs and Fsyn are the Fast Fourier transform of the observed data and the synthetic
data. ℜ means taking the real part of the data, and ℑ means taking the imaginary part of
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the data. However, the phase suffers from the wrapping problem, which is introduced by
numerical calculation using equation 10. In order to reduce this problem; we try to avoid
the arc-tangent calculation. Due to the fact that the arc-tangent function is a monotonically
increasing function. Thus we propose the ℓ1 RI objective function:

ϕ(m) =
∑
xr

∫ ωmax

0

||ℜ(Fsyn)−ℜ(Fobs)||+ ||ℑ(Fsyn)−ℑ(Fobs)||dω. (11)

We can see that the ℓ1 RI objective function calculates the ℓ1 norm distance between the
real and the imaginary part of the Fourier transform between the synthetic data and the
observed data. From the above equation, we can see that the calculation of the objective
function performed in the frequency domain can calculate the ℓ1 norm distance, for the real
and the imaginary part of the data, between the synthetic data and the observed data.

AUTO-ADJOINT EFWI FRAMEWORK

Figure 1 shows the inversion framework of the Auto-adjoint EFWI. F is the forward
modelling operator. The forward modeling operator is achieved in the form of the recurrent
neural network (RNN) accelerated by CUDA. Dsyn, and Dobs are the synthetic data and
observed data respectively. OBJ is the objective function value calculated according to the
objective function we choose. ADengine is the automatic differential engine which is used
to calculate the adjoint sources for backpropagation. B stands for the backpropagation op-
erator. which is accelerated by CUDA, which is also programmed in the form of the RNN.
The only difference between the F and B are the source terms. OPT is the optimization
method which gives the direction for the elastic models for model updating. And m is the
updated model which can be used for the next iteration. The major difference between the
Auto-adjoint EFWI and the conventional FWI AD engine, which allow us to efficiently
formulate and test different kinds of objective functions performance for the FWI.

F (CUDA)

B(CUDA)

Dsyn

Dobs

OBJ

𝑓𝑎𝑑𝑗

𝑓𝑤

m OPT

AD 
engine

FIG. 1. The inversion framework of Auto-adjoint EFWI.
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Objective function list

Name Acronym Expression X

ℓ2 norm WD 1
2

∑
xr

∫ T

0
||dsyn(xr, t,m)− dobs(t)||2dt

ℓ1 norm ABSWD
∑
xr

∫ T

0
||dsyn(xr, t,m)− dobs(xr, t,m)||dt

Huber
norm

HWD


1
2

∑
xr

∫ T

0
||dsyn(xr, t,m)− dobs(t)||2dt, if |α| ≤ ϵ∑

xr

∫ T

0
||dsyn(xr, t,m)− dobs(xr, t,m)||dt, if |α| > ϵ

α is the absolute difference between observed
data and synthetic data. ϵ is a hyper-parameter
threshold.

Global Cor-
relation

GC −
∑
xr

∫ T

0

dsyn(xr,t,m)∗dobs(t)√
EobsEsyn

dt,where the Eobs

and Esyn are the energy of the trace. Eobs =∫ T

0
d2
obs(t)dt. Esyn =

∫ T

0
d2
syn(xr, t,m)dt.

Zero mean
Global Cor-
relation

ZMGC −
∑
xr

∫ T

0

(dsyn(xr,t,m)− ¯dobs)∗(dobs(t)− ¯dsyn)√
ErobsErsyn

dt.

Erobs =
∫ T

0
(dobs(t) − ¯dobs)

2dt. Ersyn =∫ T

0
(dsyn(xr, t,m)− ¯dsyn)

2dt. ¯dsyn and ¯dobs are
the mean value of the traces.

ℓ1 real and
imaginary

ℓ1 RI
∑
xr

∫ ωmax

0
||ℜ(Fsyn) − ℜ(Fobs)|| + ||ℑ(Fsyn) −

ℑ(Fobs)||dω, where Fsyn and Fobs are the FFT
of dsyn and dobs. ℜ stands for real part. ℑ stands
for imaginary part.

Envelope EN 1
2

∑
xr

∫ T

0
||Asyn(xr, t,m) − Aobs(t)||2dt, where

Asyn and Aobs are the envelope of dsyn and dobs.

Multi-scale
Z transform

MZ 1
2

∑
xr

∫ ωmax

0
||ℜ(Zsyn) − ℜ(Zobs)||2dω, where

Zsyn and Zobs are the discrete Z transform of
dsyn and dobs with damping coefficient zd > 1 .

OBJECTIVE FUNCTION BEHAVIORS FOR FWI

In this section, we use the methodology introduced by Gholami et al. (2013) to display
how the different kinds of objective functions vary with respect to parameters. We will dis-
play how the objective functions based on ℓ2-norm, ℓ1-norm, GC-based objective function,
EN-based objective function, the ℓ1 RI objective function, and the MZ objective function
vary with the isotropic elastic media parameters Vp, Vs and ρ. The contour of the Huber
norm objective function is very similar to the ℓ1-norm, and the contour of ZMGC-based
objective function is similar to the GC-based objective function, so the contour of these
two objective functions is not displayed.
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Figure 2 shows the contour plot of the objective function behaviours for the variation of
Vp and ρ, when we regard Vs as the constant value. In this figure, ρ changes from 500kg/m3

to 2500kg/m3 and Vp changes from 2250km/s to 4500km/s. Figure 2 (a)-(f) are the
objective function for the WD, ABSWD, GC, ℓ1 RI, EN, MZ based objective function
respectively. The center of the contour shows the global minimum of the inversion. We
observe that the new objective function, the ℓ1 RI, correctly reflects the global minimum of
the model. Also, we can see that all the objective functions show fewer local minimums.
The objective function for the EN and MZ method is less steep compared with the others.
The ℓ1 RI objective function has the steepest convergence rate, indicating that it could have
a faster convergence rate for the Vp and ρ parameter when Vs is considered as constant. In
Figure 2, the second row shows how the objective function changes when we fix Vp, Vs and
changes the ρ. We observe that all the objective functions are very smooth in this example.
The same phenomenon could be seen when we change the value of Vp and fix the value of
ρ and Vs which is the third row of figure 2. Few local minimums can be observed on all of
the contours, indicating that with the absence of Vs variation, the simultaneous inversion of
the Vp and ρ shows less likely to be trapped into the local minima.

FIG. 2. The Contour of FWI different objective functions when the value of Vs is fixed (1.35km/s)
and vary the value of Vp (from 2.25km/s to 4.5km/s) and ρ (from 0.5g/cm3 to 2.5g/cm3). (a)-(f) are
the 2D contour of the WD, ABSWD, GC, ℓ1 RI objective function, EN, and the MZ based objective
function. (g)-(l) 1D profile of normalized different objective function when ρ and Vs are fixed and
varies the value of Vp. (m)-(r) 1D profile of normalized different objective function when Vp and Vs

are fixed and varies the value of ρ.

Figure 3 (a)-(f) illustrates the contour plot of how the objective functions of WD, AB-
SWD, GC, ℓ1 RI, EN, and MZ based objective function, when we fix the value of ρ and
vary the value of Vp (from 2250m/s to 4500m/s ) and Vs (from 400m/s to 2500m/s)
in EFWI. The center of the contour shows the global minimum of the inversion. We can
observe several local minimums around the global minimum in the contour map of WD,
ABSWD, GC, and ℓ1 RI objective function, while no local minimum is observed in Figure
3 (e) and (f), indicating that the inversion using the EN and MZ objective function has the
ability to release the local minimum problem in EFWI, as abundant low-frequency infor-
mation is contained in the adjoint sources to generate gradient with large scale information.
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When Vs is varying from 0.4km/s to 1.25km/s, we observe few local minimums for the
ℓ1 RI objective function compared with WD, ABSWD, GC based objective function, indi-
cating that Vs could be better recovered by using the ℓ1 RI objective function. If we fix Vs

and ρ and change the value of Vp, all the objective functions in the second row of Figure
3 are very smooth and have no local minimum. In Figure 3, the third row illustrates the
1D objective function variation when we fix Vp and ρ, and changes the value of Vs. We
can see that the WD, ABSWD, GC, and ℓ1 RI-based objective function have several local
minimums, while the value of EN and MZ objective function has few. It means that the Vs

has much more influence on the presents of the local minimums in the objective functions
compared with Vp.

FIG. 3. The Contour of FWI different objective functions when the value of ρ is fixed (1.5g/cm3)
and vary the value of Vs (0.4km/s to 2.5km/s) and Vp (from 2.25km/s to 4.5km/s). (a)-(f) are the
2D contour of the WD, ABSWD, GC, ℓ1 RI, EN, and the MZ objective function. (g)-(l) 1D profile of
normalized different objective function when ρ and Vs are fixed and varies the value of Vp. (m)-(r)
1D profile of normalized different objective function when Vp and ρ are fixed and varies the value of
ρ.

Figure 4 shows how the objective function responds to the variation of Vs and ρ if we
regard Vp as the fixed value. We can see a lot of local minimums on the contour in the
figures 4 (a), (b), and (c) for WD, ABSWD, GC, and ℓ1 RI as well. Also, the "true valley"
in the center of the image in the contour is very narrow. This can make inversion wonder out
of the true convergence region if we do not have a good starting point. However, compared
the WD, ABSWD, and GC, the ℓ1 RI objective function has fewer local minimums when
Vs varies from 0.4km/s to 1.25km/s indicating that ℓ1 RI objective function is less likely
to be trapped into the local minimum during the update of the Vs. The contour given by
the EN and MZ objective function shows a wider convergence region and showing no local
minimum. The second row in Figure 4 shows how the objective functions respond to the
variation of density when we fix Vs and Vp. It shows that there are no local minimums for
all these objective functions. However, if we change the value of Vs and fix the Vp and
density, only the MZ objective function contains no local minimums in the third columns
of Figure 4. Thus, with all the discussions above, we can conclude that the variation of Vs
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plays a much more critical role in the presence of the local minimums than other isotropic
elastic parameters.

FIG. 4. The Contour of FWI different objective functions when the value of Vp is fixed (3.3km/s)
and vary the value of Vs (from 0.4km/s to 2.5km/s) and ρ from (0.4g/cm3 to 2.5g/cm3). (a)-(f) are
the 2D contour of the WD, ABSWD, ℓ1 RI, EN, and the MZ objective function. (g)-(l) 1D profile of
normalized different objective function when Vp and Vs are fixed and varies the value of ρ. (m)-(f)
1D profile of normalized different objective function when Vp and ρ are fixed and varies the value of
Vs.

OPTIMIZATION

gradient calculation

FWI can be considered as an iterative optimization method, which uses the first-order
gradient information, or the second-order Hessian information to update the model parame-
ter iteratively to obtain the inversion results. To obtain FWI results, we need to calculate the
gradients first. According to Tarantola (1986); Köhn (2011), the sensitivity kernels, which
is the partial derivative of the objective function with respect to the model parameters, for
the density ρ, shear modulus µ, and bulk modulus κ, can be expressed as:

Kρ(x) = −
∫ T

0

ρ(x)∂ts
†(x, T − t) · ∂ts(x, t)dt, (12)

Kµ(x) = −
∫ T

0

2µ(x)∂tD
†(x, T − t) · ∂tD(x, t)dt, (13)

Kκ(x) = −
∫ T

0

κ(x)[∇ · s†(x, T − t)][∇ · s(x, t)]dt, (14)

where the s(x, t) is the forward modeling wavefield, and s†(x, T − t) is the adjoint wave-
field. D = 1

2
(∇s+∇s)†− 1

3
(∇· s)I and D† are the traceless strain deviator and its adjoint,
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respectively. The adjoint wavefields are generated with the adjoint sources according to the
objective function we use. In this study, we focus on the inversion for parameter VP , VS and
density ρ. The sensitivity of the ρ is illustrated in equation 12, while the FWI sensitivity
kernel for Vp, and Vs are:

KVp(x) = 2

(
κ+ 3/4µ

κ
Kκ(x)

)
(15)

KVs(x) = 2

(
Kµ −

4

3

µ

κ
Kκ(x)

)
(16)

Different parameterizations can be used to perform the full waveform inversion (Köhn,
2011; Pan et al., 2018). The gradient calculations of the parameters in different parameter-
izations can be calculated by using the Chain’s Rule.

Gradient based method

After obtaining the gradient method, we use the following equation to update the elastic
parameters:

mk+1 = mk +∆m, (17)

where the ∆m is:
∆m = −ηp, (18)

where the p is the direction of the model update. There are several ways for us to calculate
the direction of the model update. For instance, in the steepest decent optimization method,
the direction p is the negative value of the gradient Tarantola (2005). The conjugate gradi-
ent method is also one of the most popular optimization methods (Mora, 1987; Tarantola,
1986; Crase et al., 1990), in which the direction p is the linear combination of the gradient
at iteration k. Also, there are several ways of performing this linear combination, for in-
stance, the Fletcher–Reeves formula (Fletcher and Reeves, 1964), Polak–Ribiére formula
Polak and Ribiere (1969), Hestenes-Stiefel formula (Hestenes and Stiefel, 1952), the Dai-
Yuan formula (Dai and Yuan, 1999). These formulas are equivalent to a quadratic function,
but for nonlinear optimization, the preferred formula is a matter of heuristics or taste.

Newton based method

In the newton based optimization-based method, the update of the elastic model can be
written as:

∆m = −ηH−1g, (19)

where H−1 is the inverse Hessian, which is very hard to calculate explicitly. Finite ap-
proximations of the Hessian and its inverse can be computed using quasi-Newton methods
such as the BFGS algorithm named after its discoverers Broyden, Fletcher, Goldfarb, and
Shanno. The main idea of this method is to update the approximation of the Hessian or
its inverse Hessian at each iteration of the inversion, taking into account of the additional
knowledge provided by the gradient. For large-scale problems such as FWI in which the
cost of storing and working with the approximation of the Hessian matrix is prohibitive,
a limited-memory variant of the quasi-Newton BFGS method known as the L-BFGS al-
gorithm (Clark, 2010; Nocedal and Wright, 1999). The more accurate, although more
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computationally intensive, Gauss-Newton and Newton algorithms are described in Akcelik
(2002); Askan et al. (2007); Askan and Bielak (2008).

Line search method

In each iteration of FWI, in order to properly update the elastic models in equation 18
and 19, we need to properly estimate the step length η to update the elastic models. Accord-
ing to Nocedal and Wright (1999), the Wolfe condition is one of the most commonly used
line search conditions used for the nonlinear optimization method. The Wolfe condition is
formulated as follows:

ϕ(mk + ηkpk) ≤ϕ(mk) + c1ηkg
⊤
k pk

g(mk + ηkpk)
⊤pk ≥c2g

⊤
k pk

(20)

with 0 < c1 < c2 < 1. The value of c1 = 0.001 and c2 = 0.999 is suggested for the
Newton based method. c1 = 0.001 and c2 = 0.6 is suggested for gradient based method.
The first equation in equation 20 is also called the Armijo condition, which makes sure that
the objective function must decline at a certain rate in each iteration. The second condition
is known as the curvature condition, and together, they are the Wolfe condition. The line
search method makes reasonable decisions for the step length, ensuring that the inversion
converges at a certain rate for each iteration. However, extra forward modeling (at least
one) and backpropagation (at least one) are needed to evaluate the proper step lengths.
However, this is usually hard to avoid. For instance, the step length that satisfies the Wolfe
condition is the necessary and sufficient condition for the conv

Gradient based method without line search

The optimization method we use in the following numerical tests is Adam’s algorithm
(Kingma et al., 2020). Adams’s algorithm is suitable for full waveform inversion. First is
in Adam’s algorithm, the direction for each parameter is calculated through their gradient
and momentum. When the inversion is trapped in the local minimum, when the update
direction is calculated with the gradient only, as the gradient value at the local minimums
is zero, the direction would be zero, which makes the inversion unable to escape from the
local minimums. If the update direction is calculated with the gradient and the momentum
in the local minimums, when the gradient is zeros, the momentum is unusually not zero,
which could lead to the inversion out of the local minimums. The second advantage is
related to inversion efficiency. In Adam’s algorithm, the line search is not required. The
step length is given manually before the beginning of the inversion. The step length used
to update the model can decrease as the increase of iteration number.

NUMERICAL TESTS

In this section, we will use the Marmousi model to illustrate the validation of our pro-
posed objective function. The grid length of the model is 30 × 30. The grid size of the
model is 130 × 225. The source we use to generate the observed and synthetic data is
Ricker’s wavelet, with a listening time of 3 seconds, using time interval dt = 0.002s. We
use the Ocean Bottom Cable (OBC) acquisition system to receive the seismic data, which
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means that all the sources are on the surface of the model, and the receivers are located on
the bottom of the sea floor. In our elastic model, we have a water layer with a depth of
300m, and ten layers of water are used as the water layer.

Numerical tests

In this section, we will test the performance of auto-adjoint EFWI using good initial
models with a sufficient amount of low frequencies in the observed data. In this test, we
will use the Gaussian smoothing method to obtain the initial models. We use the Gaussian
smooth parameter σG = 10 to smooth the true models to obtain the initial models. The
source wavelet used in this test is Ricker’s wavelet with a main frequency 7Hz. We will use
the different objective functions, WD, ABSWD, EN, GC and ℓ1 RI objective functions, to
perform the FWI and compare the inversion results.

FIG. 5. Inversion results for Vp. (a) true Vp. (b) WD Vp inversion result. (c) ABSWD Vp inversion
result. (d) EN Vp inversion result. (e) GC Vp inversion result. (e) ℓ1 RI Vp inversion result.

FIG. 6. Vertical inversion profiles for Vp. (a) Vertical inversion for Vp at 2000m in distance of the
model. (b) Vertical inversion for Vp at 3000m in distance of the model.

Figure 5, 7, and 9 shows the inversion results for Vp, Vs, and ρ, respectively. In each of
the figures above, (a) is the true elastic model. (b),(c),(d),(e) and (f) are the inversion results
using WD, ABSWD, EN, GC and ℓ1 RI objective functions, respectively. The GC-based
objective function failed to give detailed information about the deeper part of the model,
but the shallower part of the model is correctly inverted. Comparing with the result in the
deeper part of the model, which is (2.0km-2.6km) of the model. The ℓ1 norm and ℓ1 RI
objective function can better recover the deeper part of the model. To further prove the
validity of the out method. The vertical profile of the inversion results for Vp, Vs and ρ at
300m and 3500m in a distance of the models are also plotted in Figures 6, 8, and 10. We
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FIG. 7. Inversion results for Vs. (a) true Vs. (b) WD Vs inversion result. (c) ABSWD Vs inversion
result. (d) EN Vs inversion result. (e) GC Vs inversion result. (e) ℓ1 RI Vs inversion result.

FIG. 8. Vertical inversion profiles for Vs. (a) Vertical inversion for Vs at 2000m in distance of the
model. (b) Vertical inversion for Vs at 3000m in distance of the model.

FIG. 9. Inversion results for ρ. (a) true ρ. (b) WD ρ inversion result. (c) ABSWD ρ inversion result.
(d) EN ρ inversion result. (e) GC ρ inversion result. (e) ℓ1 RI ρ inversion result.

FIG. 10. Vertical inversion profiles for ρ. (a) Vertical inversion for ρ at 2000m in distance of the
model. (b) Vertical inversion for ρ at 3000m in distance of the model.

CREWES Research Report — Volume 34 (2022) 13



Zhang et. al

can also see that the predictions for the shallower part of the models are correct, while the
ℓ1 and the ℓ1 RI give a better estimation for the deeper part of the models.

Poor initial model test

In this section, we will use the poor initial models to perform the inversion to see the
performance of different objective functions. We will use Gaussian smooth using parameter
σG = 20 to smooth the true models to obtain the initial models. The larger σG are, the
smoother the figure would be, and we obtain poorer initial models.

FIG. 11. Stress test inversion results for Vp. (a) true Vp. (b) WD Vp inversion result. (c) ABSWD Vp

inversion result. (d) EN Vp inversion result. (e) GC Vp inversion result. (e) ℓ1 RI Vp inversion result.

FIG. 12. Stress test inversion profiles for Vp. (a) Vertical inversion for Vp at 2000m in distance of
the model. (b) Vertical inversion for Vp at 3000m in distance of the model.

Figures 11, 13, and 15 illustrates the inversion results using the poor initial models. In
the above figures, still (a) is the true model, and (b)-(f) are the inversion results for WD,
ABSWD, EN, GC, and ℓ1 RI-based objective functions. With the poorer initial model. We
can clearly see that the inversion results are poorer compared with the results in the previous
section. Take the inversion results for Vp as an example. The inversion results using WD
are poor in the deeper part of the model, and there are some artifacts in the upper right part
of the model. The inversion results for EN only recover the large-scale information of the
model and fail to give detailed information about the inversion results. The Vp inverted by
using the GC is still poor for the deeper part of the model, and only the upper part of the
model is inverted. The inversion results for the ℓ1 RI and ℓ1 objective functions are very
similar, and both the deeper and the shallower parts of the model are inverted. To further
prove the advantages of using the ℓ1 RI-based objective function for the FWI. Figures , ,
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FIG. 13. Stress test inversion results Vs. (a) true Vs. (b) WD Vs inversion result. (c) ABSWD Vs

inversion result. (d) EN Vs inversion result. (e) GC Vs inversion result. (e) ℓ1 RI Vs inversion result.

FIG. 14. Stress test inversion profiles for Vs. (a) Vertical inversion for Vs at 2000m in distance of the
model. (b) Vertical inversion for Vs at 3000m in distance of the model.

FIG. 15. Stress test inversion results ρ. (a) true ρ. (b) WD ρ inversion result. (c) ABSWD ρ inversion
result. (d) EN ρ inversion result. (e) GC ρ inversion result. (e) ℓ1 RI ρ inversion result.

FIG. 16. Stress test inversion profiles for ρ. (a) Vertical inversion for ρ at 2000m in distance of the
model. (b) Vertical inversion for ρ at 3000m in distance of the model.
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FIG. 17. Stress test inversion profiles for model loss with respect to iteration time. (a) Model misfit
for Vp. (b) Model misfit for Vs. (c) Model misfit for ρ.

plot the vertical profile for the Vp, Vs, and ρ inversion results at 200m and 3800m latterly of
the model. We can still see that the inversion results given by ℓ1 RI (purple line) are closer
to the true models. To further prove the validity of the ℓ1 norm objective function. We
plot the Mean Squares Error (MSE) between the inversion results and the true models for
each parameter at each iteration in Figure 17. In figure 17, we can see that the ℓ1 RI-based
objective function has the best convergence rate, and EN has the slowest convergence rate.

Bad initial model test with noise

In this test, We will add Gaussian noise into the observed data to test the performance
of different objective functions. The signal to noise ratio (SNR) we use in this test is
SNR = 10, where the SNR is calculated with (Li et al., 2016):

SNR = 10log10
||s||2

||n||2
, (21)

where ||s||2 is the energy of the observed data trace and ||n||2 is the energy of the noise in
the data. The noises are added to both the x and y components of the data to perform the
inversion.

FIG. 18. Stress test inversion results Vp. (a) true Vp. (b) WD Vp inversion result. (c) ABSWD Vp

inversion result. (d) EN Vp inversion result. (e) GC Vp inversion result. (e) ℓ1 RI Vp inversion result.
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FIG. 19. Stress test inversion profiles for Vp. (a) Vertical inversion for Vp at 2000m in distance of
the model. (b) Vertical inversion for Vp at 3000m in distance of the model.

FIG. 20. Stress test inversion results Vs. (a) true Vs. (b) WD Vs inversion result. (c) ABSWD Vs

inversion result. (d) EN Vs inversion result. (e) GC Vs inversion result. (e) ℓ1 RI Vs inversion result.

FIG. 21. Stress test inversion profiles for Vs. (a) Vertical inversion for Vs at 2000m in distance of the
model. (b) Vertical inversion for Vs at 3000m in distance of the model.

FIG. 22. Stress test inversion results ρ. (a) true ρ. (b) WD ρ inversion result. (c) ABSWD ρ inversion
result. (d) EN ρ inversion result. (e) GC ρ inversion result. (e) ℓ1 RI ρ inversion result.
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FIG. 23. Stress test inversion profiles for ρ. (a) Vertical inversion for ρ at 2000m in distance of the
model. (b) Vertical inversion for ρ at 3000m in distance of the model.

FIG. 24. Stress test inversion profiles for model loss with respect to iteration time. (a) Model misfit
for Vp. (b) Model misfit for Vs. (c) Model misfit for ρ.

Figures 18, 20, and 22 shows the inversion results for this stress test. In these figures,
(a) is still the true model and (b)-(f) are the inversion results by using the WD, ABSWD,
GC, EN and ℓ1 RI objective functions. Taking the inversion results for Vp as an example. In
the inversion results for WD based objective function, Figure 18b, we can see that, due to
the presence of the noise, the upper right part of the model has been poorly inverted, and the
deeper part of the model has been badly blurred. The inversion results given by ℓ1 norm can
better invert the upper right part of the model, while the bottom part of the model also has a
low resolution. Similar to the test in the previous section, EN gives large-scale information
on inversion results, and the high wavenumber components of the elastic model are rarely
updated. GC-based objective function failed to give the apparent update for the deeper
structure of the model. Compared with all the inversion results, ℓ1 RI objective function
gives the best inversion results, we admit that this result is no better than the noise-free
case, but we can see that both the shallow and deep structure of the elastic model has been
correctly updated compared with the other objective functions. Similar inversion patterns
can be observed for Vp, Vs and ρ inversion. To better illustrate the advantages given by
the ℓ1 RI objective function. We also plot how the MSE model error varies with iterations
in Figure 24. We can also see that among all these objective functions. The ℓ1 RI-based
objective function has the best convergence rate.

CONCLUSIONS

We propose the Auto-adjoint time domain elastic full waveform inversion in this report,
which is an FWI framework accelerated with CUDA using adjoint sources calculated with
the automatic differential method. In this FWI framework, the forward modeling and the
adjoint modeling are accelerated by CUDA, and the adjoint sources are calculated by the
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automatic differential method. These two features allow us to perform time domain FWI
with GPU acceleration and explore how different kinds of objective functions can influence
the inversion results effectively. We study the objective function behaviour for the ℓ-2
norm. ℓ1-norm, Global-correlation based, Envelope based, objective function, and ℓ-1
norm between the real and imaginary part of the synthetic data and the observed data (ℓ1
RI objective function). According to the numerical test we did in this paper, the ℓ1 RI
objective function has a better ability to tolerate the noise when the poor initial model is
used for inversion, compared with all the other objective functions we considered.
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