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ABSTRACT

A brief tutorial of the ideas behind the adjoint-state method for gradient calculations in
full waveform inversion. In particular, the geometry of the problem is focused on, which
allows us to distinguish between the use of Lagrange multipliers in this setting and those
used for linear constrained optimization problems.

INTRODUCTION

If you are like me, you appreciated interpretable, visualizable ways of thinking when
complex calculations are necessary. When discussin FWI, my own feeling over the years
has always been that the adjoint-state method for computing the gradient lacked the “vi-
sualizability” of other approaches. Also, for those of us who were familiar with linear
constrained optimization problems prior to learning the adjoint-state method, the appar-
ently very different roles played by the Lagrange multipliers in those settings was a source
of confusion. So, I present here a slightly scattershot tutorial — or perhaps better yet set of
excursive remarks — on those two problems and their relations.

PRIMER: LINEAR CONSTRAINED OPTIMIZATION PROBLEMS

A standard underdetermined linear constrained optimization problem might involve
solving for the model vector m € R which satisfies

mniln ¢, subjectto G; =0,i=1,...., N, (1)
where N < M,
6(m) = 2 (m — mo) "W (m — m), @
and
Gi=d;—g/m. (3)

Let us take this apart a little, using the M = 3, N = 2 case illustrated in Figure 1. The job
is to select an element of model space, which here is the vector space R™=3. We make this
selection by balancing two requirements.

First, we ask that the particular element we choose be that which minimizes the objec-
tive function ¢. The objective function, which is set out in (2), is a scalar function of m. It
is quadratic in m, which means it can be described with contours that are elliptical surfaces
in R™=3 (the light blue shapes in Figure 1a). It comes equipped with a weighting matrix
W, which rotates and scales the axes of the ellipse, and it is translated in RM=3 such that
it is centred around a non-zero reference point my. This alone does not make for a com-
pelling inverse problem, since ¢ is immediately minimized simply by selecting m = m,.
But, making it small is only one of the requirements.
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Second, we also must ensure that the m we settle on satisfies /V constraint equations,
re.,G;=d; — giTm = 0. In this case, the constraints are that the data d; must be satisfied,
and, since, we are focusing on linear optimization, that these equations enforce a linear
relationship between the d; and the elements of m. In our simple problem, we assume that
we have two data, d; and ds, and those data can be computed via a linear combination of the
elements of m = [my, my, ms|’, involving a known sets of weights g, = [g11, g12, g13]"

and gy = [921,922,923]T1
di = giimi + giama + gigma, da = ga1my + gaaMa + Gazms. 4)

You can quickly confirm that asking that these hold is the same as requiring that G; = 0
and Gy = 0. In the same way that we can visualize ¢ geometrically, we can visualize the
constraints. A linear equation on R defines a subspace of R with a dimension one less
than M, i.e., RM~1. So, if M = 3, RM=3 is the volume of all space, and the subspace
defined by a linear equation is a plane, which is a R? subspace of R3. Similarly, if we had
been working on a problem in which the plane was our full space, i.e., R =2, a single linear
equation would have instead defined a line, which is a R*>~! = R! subspace of the plane.
And so forth. So in our case, each of the two equations in (4) defines a plane in R3. These
are illustrated as red and green polygons in Figure l1a. Since both constraint equations are
in force, meaning the model we choose must lie on both planes, we are actually restricting
ourselves to models which lie on the line at which the two planes intersect (AB in Figure
l1a).

(a) (b)

A G =0
e ] Gy =0 ¢

?
/—\_> | e Mo A B

mi
FIG. 1. The geometry of constrained optimization.

So, all told, our job is to explore the sub-region of model space allowed by the two
constraints (in this case, this means moving up and down along the line AB), and to find,
on that sub-region, the model m which minimizes ¢. This is in general a lower dimensional
problem (in Figure 1b, by extracting the values of ¢ lying along the line AB, we see it
in fact to be a 1D problem), and it seems easier. But, how do we actually solve it? In
unconstrained linear inversion, jumping to a minimum is a relatively simple calculation
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of the point at which % = (0. How to we jump to a minimum while satisfying these
constraints?

The method of Lagrange multipliers gives us an approach which is elegant, transform-
ing the constrained optimization problem into an equivalent unconstrained optimization
problem (which is then easy to solve). Furthermore, it allows us to continue to make
geometric pictures of the steps we take (as realized in low-dimensional versions of the
problems, of course). We need to establish a few more facts to proceed.

First, we need to start thinking not so much about the constraints and their geometric
interpretation (i.e., planes in the R*=2 case), but about the normals to these planes. If G;
gives us a plane, then the normal to that plane is

oGy

- am _gi)

where on the right-hand side we have recognized that in taking derivatives we have recov-
ered the weights in the data-model mapping (we will continue to write these in the left-hand
form, since we are heading towards a problem where this feature of linear problems will
not hold. If you need convincing of the fact that these are normals, try the simple case
G1 = mz — 2 = 0, which represents a horizontal plane parallel to the m-ms coordinate
plane, raised to a height of 2. The normal to this, according to the rule in (5), after carrying
out the trivial differentiation, is n; = [0, 0, 1]T, which of course is the expected normal
vector, pointing in the mg direction.

>A/ G =0
m3 Gy =0
/ ac,
\_/ 67m
\
_:/ —
. mso

mi

FIG. 2. Normals to the constraint equations.

Each of the constraint equations contributes a normal vector (see Figure 2). If the
problem is well-posed, the planes are not parallel to one another, which in turn means these
normals are independent. Therefore, the normals span an N-dimensional subspace of R,
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Inthe M = 3, N = 2 case we have been working with, we have two independent constraint
normals, as illustrated in Figure 2, so the normal vectors span a R? subspace, or plane, in
RM=3_ Any vector that lies in this plane can be constructed through a linear combination
of the two normals:

o+ f——. (6)
m

This is relevant to our current problem because of a fact about the gradient of the original
objective function ¢, i.e., the quantity

99

Om’ @
which lives in the same space RY .
(a) (b)
ms ¢
mo A B

mi
FIG. 3. A special condition in place at the constrained minimum.

To develop this fact, let us strip away much of the detail from our illustrative case,
leaving only one elliptical surface of ¢ for reference, and the two normal vectors as well as
a sketch of the plane they span (see Figure 3a). Now, let us travel along the line AB, i.e.,
the subregion of model space we have constrained ourselves to lie on, from the direction
of B upward, following the red dots in the figure. At each intervening position, plot the
gradient 0¢/Om (red arrows). We observe that, as we move upwards towards the plane
spanned by the normal vectors, the gradient vector becomes increasingly parallel with this
plane. Eventually, we hit a point along the line AB at which the gradient sits precisely in
the plane. If we kept going (we don’t in the figure, which would become messy otherwise),
the gradient would again tilt out of the plane. Is there anything special about this point
at which 0¢/0m sits precisely in the plane formed by 0G;/0m and 0G5 Om? There is
indeed. If we repeat the exercise, but this time track the red dotted points on the extracted ¢
profile (see Figure 3b), a rather striking fact is revealed: The gradient vector ¢ /Om lands
in the plane formed by (0G4 /0m) and (0G5 Om) at exactly the point where ¢ is minimized
along AB.
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Of course, this is the very point we are looking for. This fact can be proved mathemat-
ically, and is completely general as far as the dimension of the problem goes. You can find
the proof in the text of Bob Parker, and no doubt in many other places. However, it is not
particularly enlightening, in the sense of adding more insight (Parker, for instance, finds it
necessary to prove it by contradiction, rather than by developing ideas that we can easily
visualize). Because this is a tutorial about visualization, we will not reproduce it here, but
we can attempt to make it more palatable by lowering the dimensions of the problem even
further, such that we are working with the plane R”=2, and one equation of constraint,
which forces us to seek a minimum along a line. See Figure 4. Here, the gradient 0¢/0m
is easy to sketch, being perpendicular to the contours of ¢ in the plane, which we do at var-
ious points along the line, in red. There is only one constraint, and only one normal, which
we plot at the same points in black. To say that a vector lies in the space spanned by the
normals, in this almost trivial case, is just to say that it is parallel to the one normal vector.
If we track the vector pairs, we see quickly that the point at which the two are parallel is
naturally going to fall on the point at which the constraint line grazes the lowest-valued
contour it is going to hit, which is, by definition, the minimum being sought.

mo

FIG. 4. Gradient direction versus normal to the constraint and their relations.

To continue, what we have discovered is the fact that, at the constrained minimum we
are seeking, and nowhere else, we can write

0 oG oG

—¢ - )\1_1 + )\2—2

om om om
The “stroke of genius” we associate with Lagrange is to package this fact into a new prob-
lem, which takes the form of a larger, but completely unconstrained, optimization. We form
a new objective function L:

)

L(m, A) = ¢(m) — Z AiGi = ¢(m) = X'G = ¢(m) — (A, G). )

We have written it three times. The leftmost version directly uses the terms we have been
developing so far: the original objective function ¢ is present, and a sum has been added in,
involving the constraint equations and the coefficients \; from the assemblage in (8). The
next two forms are just conveniences. The sum over ¢ implies an inner product, provided
the \; and the GG; are arranged into vectors, which is what we do in the middle version.
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The rightmost version is here so that later, when we discuss the adjoint-state solution,
the terminology one runs into in papers is more familiar. The use of angle-brackets to
denote this inner product acts as an important reminder that this is not an inner product for
vectors living in R, but rather for vectors living in RY. As we shall see, in the adjoint
state calculation, keeping these issues straight in our minds is more difficult, and more
important.

Staying with the first version, let us now treat this objective function with techniques
we would employ in any unconstrained optimization problem: let us take the gradient of L,
and seek the particular arrangement of unknowns for which this gradient is zero. The only
extra thing to remember is that, in this expanded problem, there are more than the original
number of unknowns: we have the elements of the vector m, but now we also have the
unknown \;, fori =1, ..., N. So, we set

oL 96 oG
om ~ om 2= gm " 1)
and
oL
— =G, = ,=1,..., N. 11
o, G =0, i=1,.,N (1)

What we want to establish is that by doing this we get what we want from the method; in
a moment we will see that the approach also “spits out” an algorithm or workflow as well.
First, take (10). Let us re-write it and set M = 3, N = 2 to recover our test case. Setting
JL/0m = 0 evidently implies
90 _ )26 ), 96 (12)
Om om om
meaning, comparing this to (8), that at the minimum of this new objective function £ with
respect to the m elements, we have found the minimum of ¢ along the constraint line*.
Next, take (11). Actually there is no more to say here: at the minimum of £ with respect to
the \;, we correctly recover the constraints, i.e., the statements that GG; = 0.

Fine (I can hear you saying) but this seems to be nothing more than an interesting
statement. What do we actually do here in order to solve for the m in question? Actually,
for linear problems, the ballgame is already over. It is just a little hard to see it with the
mathematics in its current form. Take (12), and substitute in (2), recalling rules for vector
differentiation:

N
99 _ W = > i (13)

Om =1

This can be solved for the minimizer m*, if we have access to the \;:

N
m* =3 (Wlg,). (14)
i=1

*Another way to say it, rather than saying we “found” something, might be to say that in these equations
we are making statements that can only be true at the minimum of ¢ along the constraint line.
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The )\; are, as their name implies, so far undetermined, but now that we have this form,
note that we can return to our linear data-model relations, and substitute in this special case
of the model, i.e., ggm* = d},, whereby:

gk{ZA gz]—dﬁz TWlg) A = dy. (15)

This can be compactly expressed as a matrix equation ’'X = d in RY, where I is an M x
N [CHECK THIS!!!] matrix with elements

D) = g W 'gi, (16)
and solved for:
A=T"1d. (17)

The workflow is then to use these results in reverse order: the Lagrange multipliers \; are
first solved for via (17), after which they can be used in (14) to produce m*. In the context
of our M = 3, N = 2 problem, this workflow is as follows. First, we construct I

FULL WAVEFORM INVERSION
FWI quantities

Let us first set up the elements of the FWI problem, after which we can develop it as
a nonlinear constrained optimization problem which is amenable to an adjoint-state ap-
proach. We introduce vectors into the problem which are elements of three different vector
spaces, which we will label RM, RV, and R” to remind ourselves that their dimensions are
in general different.” The vectors are

m € RM, “model space”,
u e RY, “wavefield space”, (18)
d € R”, “data space”.

The interrelations between these vectors are as follows. First, the wavefield vector u satis-
fies the wave equation, which in the frequency domain is the matrix equation

S(m,w)u = f(w, X), (19)

where S is the U x U impedance matrix, f = f(w, X)) is the source vector, and w is
the temporal frequency. We have made f a function of the frequency, which it typically
is, and we have also temporarily given it a dependence on X, which stands for all of the

TOf course, in frequency-domain FWI, which is what we are setting out, several of the spaces should
actually be labelled CY (etc.), since the vectors are complex-valued. However, since we are illustrating these
methods with small examples that allow pictures to be sketched, we will pretend that the spaces are real. This
does not introduce any incorrect insights or results.
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differences the source vector undergoes when we adjust the location or character of the
seismic source. Elements of the model vector m, which in FWI is the vector of unknown
medium properties, appear in various combinations in the elements of S, hence we write
S = S(m,w). Since solving the wave equation amounts to determining u = S™!'f, and
S is a function of m, so to is u implicitly a function of m. However, u also is treated as
an independent variable, and functions of u for all values of u, not just ones which satisfy
(19), are regularly considered. One of the tricks in understanding FWI is getting used to
this way of looking at u. We need to be able to see it both ways.

The forward problem

Solving the forward problem involves:

1. Choosing a model m and a source term f;
2. Embedding elements of m into the impedance matrix S;
3. Solving for the associated u via S—1f:

4. Extracting elements of the wavefield to be compared to measured seismic data.

The extraction process is realized through a sampling matrix R:
d = Ru. (20)

So, the model m determines in some generally complicated way the wavefield, some of
whose values are extracted to form the data vector; inverting this process so that we can
infer m via d is of course the goal.

Two low-dimensional illustrative examples

Let us again produce small, explicit, examples to sit alongside the more general devel-
opments, so that we can sketch the quantities and keep the geometry of the situation in the
forefront of our minds. The first will be the simplest, with all spaces of dimension 2. This
will allow very clear plots and illustrations to be set up; it will also mean, however, that
there will be no significant difference between the data and the wavefield. To make sure we
see some of those differences appear in the analysis, we will move, in the second case, to
dimension 3 for both model and wavefield spaces, maintaining a dimension 2 data space.

Casel: M =2, U=2, D=2

Here we set M = U = D = 2, in which case model vectors have the form

mz{ml], 1)

mao
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wavefield vectors are likewise
u= { t 1 : (22)

and R =1, i.e., [dy, do])T = [u1, us]?. The system Su = f is

lSn 512}[%}:{](1} (23)
S21 S22 U2 f2

In this case, which is the smallest one we will study, it will be useful to form some plots
of these quantities “in action”. For this, it is helpful if we force a relationship between the
elements s;; and the model elements m;, in particular one in which the nonlinearity arising
in FWI is present. Because there is no way to form a meaningful wave problem on a 2x2

template, we will have to “fake” the form for S, but we will find that even a fake form is
insightful. We choose:

; (24)

S11 S12 . 1 + am% bm1m2
S91 S92 bm2m1 1 + cm%

letting a, b, and c be constants that affect the degree and kind of nonlinearity we examine.
To make concrete examples, let us in fact choose values for the constants and stick with
them: a = 3, b = 0.5, and ¢ = 2*. To solve this system we also need to supply a source
vector f, so again, in order to be able to make concrete examples, let us also choose a
specific set of numbers to use: f = [fy, fo]7 = [0.1,0.2]7.

Case2: M =3 U =3, D=2

Let us set M = 3 again, in which case our model vectors occupy something similar to
physical space, and have 3 elements:

my
msg

If M = 3, in an FWI problem (this is ridiculous of course) the implication is that there are
3 grid cells to be characterized, and my, mo, and mg are the seismic velocities of those grid
cells. If so, it is reasonable to assume that U = 3 also, since the general problem in (19) is
to solve for the wavefield at each grid cell. If so, it would not be unreasonable to assign to
u 3 elements also:

Uy
u = U2 . (26)
Uus

It should be emphasized that these are not constants of the medium, or unknowns we determine from the
inversion or optimization problem. These are true constants of the operator S, playing a similar role to the 1
and 2 weights we would tend to find in a finite difference stencil containing second spatial derivatives.

CREWES Research Report — Volume 35 (2023) 9



K. Innanen

On the other hand, we would also likely set D < U, reflecting the idea that the data are
values of the wavefield, sensed over some incomplete set of all possible grid cells. In fact,
in reality D will be considerably less® than UU. However, in order that the data space is
large enough to contain somewhat interesting elements, we will set D = 2 in this case. The
sampling matrix R might then be

1 00
R—[o 1 0}’ (27)
in which case d = Ru is
]l 1001 ™| [w
{dz}_{o 1 0} U2 _{UQ ' (28)
Uus

R has no inverse, but we shall need to nonetheless use its transpose to map quantities in
RP into RY. This produces zeros in elements of the wavefield vector not associated with a
Sensor:

1 0 d dy Uy
Rf'd=]0 1 [ d1 } =|dy | =| u |. (29)
00 2 0 0
The system Su = f in this case is
S11 S12 S13 Uy f1
Sg1 S22 S23 up | =1 f2 |- (30)
531 532 533 Uus f3

THE ADJOINT-STATE METHOD
FWI as a nonlinear constrained optimization problem

FWI is a nonlinear constrained optimization problem. As in the linear case, it is based
on a quadratic objective function ¢, but this time, we frame it in terms of the difference
between data we observe, d°, and data we have predicted through the forward problem, d:

|
o =52 > (X .w) - d (X0 31)
w X

The sums reflect the fact that we are seeking a solution which minimizes the squared differ-
ence of the predicted and the observed data for a dataset which includes both many different
source locations/characteristics, and frequencies. The result of including these two sums is
that they appear at the beginning of all subsequent formulas. While they certainly belong
in those formulas, for an exposition, their main effect is to clutter up the expressions while

$For instance, on a square N x N grid, U would tend to be close to N2, whereas, if we imagined arraying
sensors along the top edge of the grid, we would have D ~ N.
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not adding much insight. So, we will remove them, which amounts to pretending that we
are inverting with a single frequency and single source; returning them requires change in
the derivations. This leaves us with

1 1
6 = lld” — | = 5] |Ru — |3 (2
or
1 T
¢ = 3 (Ru — do) (Ru — do). (33)

We can make things even more compact with two additional adjustments. First, since
we will from now on express the predicted data d” as Ru, the superscripts have become
irrelevant, so let us now let d refer to the observed data. Second, if we expand the form
in (33), the rightmost term goes as d”'d, which is a constant with respect to the model and
the wavefield, and thus has no impact on the relative size of ¢. So, again to maximize
simplicity, we will omit it. With these two changes in place, we have the objective function
in a convenient form:

1
o= 5uTRTRu —u’R7d. (34)
There are a number of ways we could proceed from here to set up FWI. The approach taking
us to the adjoint state method is to solve this by minimizing ¢, subject to the additional
constraint that u must satisfy (19). Expressed in full, we seek:

min ¢, subjectto Su = f. (35)

It is instructive to compare this constrained optimization problem to the linear problem
we set out in the primer (equation 1). On the surface, they appear very similar: we are
minimizing a quadratic functional ¢, subject to a set of linear constraint equations S; = 0.
In our small examples, for instance, we have for Su = f in Case 1

S1 = s1u + S12us — f1 =0,

So = So1Uy + Sous — f1 =0,

(36)

and for Case 2

S = s11U1 + S12Ug + S13u3 — f1 =0,
So = S91U1 + SaoUs + Sazuz — f1 =0, (37)
S3 = S31U1 + S32Ug + S33u3z — f1 =0,

i.e., a set of equations that describe lines, planes (or hyperplanes) with normals and a ful-
some geometric character.

However, on closer inspection, some issues appear. Although ¢ is quadratic, it is not
quadratic in m, the unknown model vector we are interested in determining. It is quadratic
in u. This is where it becomes important to distinguish between (i) u as an independent
variable, i.e., one which varies over all possible vectors in RY, and (ii) u as the solution of
S(m)u = f, in which case there is only one unique u for any m, so u is not an independent
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variable. In (i), ¢ = ¢(u) is quadratic, as a function of u, but very few actual vectors u
entering this construction are useful, since we are only interested in u vectors which are
possible wavefields. To fix this, we will on occasion need to discuss ¢ = ¢(u) evaluated
at u = u’, where u’ does satisfy Su’ = f. In contrast, in (ii), ¢ = ¢(u) = ¢(u(m)) is
not quadratic, as a function of m, but every u vector arising in this problem is a legitimate
solution of the wave equation.

Ultimately, the fact that ¢ is determined through the complex, nonlinear relationship
u has with m, means that we will not be able to create a simple set of normal equations
for the minimum, as we did in equations (14) and (17). Instead, we will have to settle for
determining the gradient of ¢ with respect to m, and using this gradient to drive iterative
updating towards the minimum. It also means that the geometrical / pictorial insight we
built up in the linear case will not transfer directly to the FWI problem. Does any remain?
Fortunately, yes — but we need to do quite a bit more work to find it.

The geometrical constructions underlying the adjoint state method

So, our goal has changed: we are now bent on determining 0¢/0m, as opposed to find-
ing normal equations for the minimizer m*. The adjoint state method leads to an algorithm
to this end. Finding the equations that underlie the algorithm is quick. However, to learn to
think about the adjoint state geometrically, we will come at it slowly, through a process of
“accidental discovery” (or inspired guessing, or something).

Let us start by focusing at first entirely on the character of ¢ and the constraints in the
space of u vectors, where we think of u as an independent variable that ranges over all of
the space RY. It is

1
o(u) = EuTRTRu —u'R"d. (38)

To have a concrete example to look at, let us take Case 1, and assume that the data we have
measured are d = [0.5, 0.5]7, for the moment not worrying about the model vector that led
to these data. In Case 1, remembering that R = I, ¢ has the form

p(u) = %[UMUQ] { Z; } — [u1, ug) { Eil; } : (39

In the u plane ¢ is very simple, essentially a circularly-symmetric scalar function, cen-
tred around the minimum d = [0.5, 0.5]7, which can be plotted as a set of contours (Figure
Sa). Let us now start allowing elements of model space to produce objects in this space.
We select a point in R, and allow it to determine via forward modelling its partner point
in RY. The point is not special in either domain; we could consider it to be some interme-
diate iterate in model space we find ourselves at, or some initial model we have selected.
Again to be completely concrete, let this point be m = [my, m»]T = [—0.56,0.7]7. This
is entered into our forward modeling system d = Iu = S~!f, from which we obtain a
wavefield (and, in Case 1, data) vector:

dl . 1+ am% bm1m2 - f1 . 0.06 (40)
d2 o bm2m1 1+ cm% f2 o 0.11 ’
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FIG. 5. Geometrical constructions within a low-dimensional adjoint-state example.

using the numerical values of a, b, ¢, fi, and f, we set out earlier. We plot this as a
yellow circle in Figure 5b. To start building up our geometrical interpretation, recall that
we could also have broken the system solved in (40) up into a set of constraint equations,
and examined them one at a time. In other words we could have considered
1

Sl = S11U1 + S12Ug — fl = (1 + 3m%) Uy + (§m1m2) Ug — 0.1 = O,
) (41)
Sg = S21U1 + S22U2 — f2 = (ﬁmlmg) Uy + (1 -+ 2m§) Uy — 0.2 = O,

individually. Each of these two equations defines a line, and the two lines intersect at the
solution (see Figure 5c). We would like to use these lines to help describe the gradient of ¢
in RY, which we can obtain by directly differentiating (38):

9 _ 0 (1 1. TRTQ) —u_
au_au<2““ wRd)=u-d )
which, in Case 1, is

8¢/8U1 . ul—dl

This result makes sense given the symmetry of this simple objective function — the gradient
is a vector pointing directly away from the minimum d = [d;, d»|”. See Figure 5d.
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Constraint equations describe lines (as in the case in equations 41), but also planes, or
hyperplanes, depending on the dimensionality of the problem, so we are not ready to use
them yet to help us characterize the gradient vector in (43). Let us address this now. In
Figure 6a, we return to the plot of ¢(u), with the special point mapped from model space,
the two constraint lines, and the gradient d¢/0u. Let us now add to this the gradients of
the constraints (which, you may recall, played an important role in the method of Lagrange
multipliers in the case of linear optimization problems), which are vectors normal to the
constraint lines. In Figure 6b we keep the objects from the first panel (but in a dimmer
colour), and add in two dashed lines in yellow, passing through the special point with
directions given by the gradients of the constraints:

08 [asl/aul]: {511]:[(1+3m% ]’

ou | 951 /ou s LYmim
u [ous 12 /2)mims (44)
% . 852/3u1 . S91 . (1/2)m1m2
ou N 852/3u2 o S99 N 14 Zm% ’
Consider linear combinations of the two vectors 951 /ou and 952 /ou that produced them:
05, 05y 951 fgu, 952 [gu,

Because these are vectors in RY, they can be substantively compared to the ¢ gradient
vector in equation (43). In Figure 6¢, we select (essentially at random) o = —0.1 and
£ = —0.2, and plot three vectors, all in bold yellow, the first two being
651 |: 851/61“ :|

Q- = 51 [9u,
Ju / (46)
055 B 952 [gu,
ﬁa_u - B 831/8u2 )
and the third being their sum,
851 (952 . 851/8u1 aS2/8u1
s + B(‘)—u =« [ 051 [9u } [ 051 fpuy |- 47)

By varying o and 3, we can change the linear combination into a large suite of possible
vectors (in fact, recalling linear algebra, since the two constraint normal vectors are not
parallel, we know we can construct any vector in RV with them).

We will want to land on a special pair « and S of this continuous range of possibilities.
To help select this special pair, let us consider the model space R™, and the objective
function as realized in this space, i.e.,

otatm) = Slunel | 0] =l | 51 ], @

as before, but now with the wavefield vector elements u; = u;(mq, mo) and ug = ug(my, ms2)
being functions of the new set of independent variables, m, and ms,, and being determined
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by solving the forward problem for each pair of m elements. We have made a very signif-
icant change by doing this, even though we are still studying the same objective function
¢; now m is the independent variable, and it has a strongly nonlinear relationship with
¢, through u = u(m). In Case 1, this produces the much more complicated “topogra-
phy” in Figure 6d. In a real FWI problem, the exact topography would be much different
(and would be realized in a much higher dimensional space), but the warped and complex
contours we see here serve very well to illustrate the situation.

The special point (yellow circle) we have been studying in the wavefield space came
from a special point defined in model space, [my, ms]7 = [~0.56,0.7]7, so we can focus
on this counterpart in the model space (yellow circle, Figure 6d). We have set out as our
final goal to compute the gradient d¢/0m. This is a much more involved problem than
the gradient calculation was in the wavefield space. But, for a low dimensional problem
like this, the calculation of the target gradient can be done by brute force, and this gives us
“the right answer”, something to which we can compare other constructions. By numerical
differencing, we produce the vector plotted in Figure 6d in white (actually we plot its
negative, to allow us to keep a close focus on the point and the minimum).

(a)

-0.5 0 0.5

U1 ITI1

FIG. 6. Geometrical constructions within a low-dimensional adjoint-state example.

Now we make what will seem like a mysterious vector construction. Let us even pretend
that we just dreamed it up, and allow what happens next to be a surprise discovery. Let the
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U rows of the matrix S be column vectors s;, 7 = 1, ..., U. In Case 1 this means

S11 S21
S| = So = : 49
[ ] w
Take the transposes of these vectors, and form a matrix by taking the derivative of each
element with respect to each element of the model vector:

= = 50
om 6511/87112 6512/8m2 " Om 8821/3m2 8822/8m2 (50)

83{ . |: a511/87711 8812/8m1 :| aSg . |: 6821/87711 6822/{9m1 :|
It will later be important to note that, though they look a little complicated, these matrices
are actually very quick to fill in, knowing the elements of S and how they depend on the

elements of m. In Case 1,

osT _ | 2am bms Ost _ bmy 0 51)

om 0 bmy |’ Om by 2cmy
We observe that the columns of these matrices are vectors in model space, but the rows are
vectors in wavefield space, which means, we can take products of these matrices with our
current special wavefield vector, u = [uy, up]”. Call the results v;:

OS{ 2amy bms Uy
e el | 2
and
35; bma 0 U1
V2= 8_mu - [ bm, 2cms } [ Uy |- (53)

After the multiplication is complete, the resulting vectors are vectors in model space. Fi-
nally, assemble the v vectors in a linear combination, using the same weights we used for
the wavefield space construction in equation 45, namely « and 3:

B 2am, bms Uy bms 0 Uy
av1+BV2—a[ 0 bml]{u2]+ﬁ{bml 26m2:||:u2:|‘ (54)

This vector is plotted as a yellow, bold arrow, alongside the white gradient arrow depicting
0¢/0m, in Figure 6d.

So, we have two vectors, one in model space, in equation (54), and one in wavefield
space, in equation (47), plotted side by side in Figures 6¢ and d. The two vectors are linked
in that they are built using the same pair of coefficients, o and . We want to watch how
they behave in comparison to one another as we vary the coefficients. To befit what these
coefficients actually represent, let us re-name them o = \; and 5 = Ao, in which case the
two vectors become

2am; bmsy Uy bme 0 (51
)\1{ 0 bml}[m}—i_&[bml 2cm21{u21’ (55)

16 CREWES Research Report — Volume 35 (2023)




A tutorial on the adjoint-state method

FIG. 7. Geometrical constructions within a low-dimensional adjoint-state example.

and
851 [gu, 92 [gu,
)\1 [ 851/811,2 :| + /\2 |: 681/811,2 ' (56)
In Figures 6¢ and d, the coefficients (&« = A\; and 5 = )\y) were arbitrarily chosen. Let us
now choose values for them such a specific goal is accomplished in the wavefield space, via
equation (56). Let us choose A\; and A\, such that the construction in equation (56) exactly

matches the gradient ¢ /du, which is plotted in white in Figure 6¢. That is, we choose A\
and )\, to enforce

2am1 me Uy me 0 Uy . a¢/8u1
/\1 |: 0 bm1 :| |: U9 :| +)\2 |: bm1 20m2 :| |: (75 :| N |: 8¢/8u2 ’ (57)

How we found the values for these two coefficients which accomplished this is not too
important— we can imagine we just tried pairs of A\; and ), values until we found a match.

OK, we have found a pair of \; and )\, values for which the construction in equation
(56) takes on special significance. What is the effect on the counterpart model space con-
struction (equation 55) of making this particular choice? In Figures 7a-d, we reproduce
Figure 6, having enforced this in the wavefield construction; in 7c, we can see that we have
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successfully constructed a vector equal to the gradient, which is now obscured by the yel-
low vector. Inspecting the corresponding model space construction, in Figure 7d we make
our “discovery”, which, it turns out, is the central fact of the adjoint state method. When
(57) holds, the second construction matches precisely the gradient d¢/0m:

A { 0% fou } + Ao { 0% o ] - { 04 fom } . (58)

aSl/@ug 351/8u2 a¢/8m2

We can think of this geometric discovery as being the nonlinear constrained optimization
version of the linear “discovery” depicted in Figure 3, in which the gradient was found to
be an element of the subspace spanned by the constraint normal vectors at, and only at, the
point at which the objective function was a (constrained) minimum. This is slightly more
complicated, but then, we already knew we were not going to be able to solve directly for a
minimum. Here, we find something at least as powerful, however, given how complicated
the problem of determining the gradient of ¢ with respect to m is. The coefficients needed
to construct the simple gradient d¢/0u, which are relatively easy to determine, are the
same coefficients needed to build the complex gradient 0¢/Om out of a model space basis
whose elements are simple. This is a mouthful, but hopefully the implication is clear:
we have a basic path to follow wherein a complex construction is possible based only on
simple ingredients. It is rare to find violations of the storied principle of conservation of
aggravation, but this is an example, if there ever was one.

The adjoint state method

We still have some work to do. What, after all, does any of this have to do with Lagrange
multipliers? Evidently by our choice of terminology we are hinting that the coefficients
linking the two constructions are the multipliers, but they certainly don’t seem to come
from that kind of approach at the moment. Let us formulate answers to this question, this
time staying fully general, but illustrating, as needed, with our Case 2 example. The Case
1 example was admirably simple, but it went so far towards simplicity that it erased the
distinction between data space and wavefield space, and we should bring that distinction
back as soon as we can.

The previous discussion, both the general aspects and the aspects special to Case 1,
were geared towards analyzing (and almost, but not quite, solving) the problem set out in
equation (35):

min ¢, subjectto Su = f. (59)

Recall that in our discussion of the method of Lagrange multipliers for linear problems, in
the end we took our geometrical / pictorial insight and used it to formulate an unconstrained
problem that (via the insight) we argued to produce the same answer that we seek for the
constrained problem. Let us do something similar — let us guess at a new objective function,
involving, like in the linear case, a set of undetermined multipliers.

Like we did above, let us break the U x U system Su = f up into U individual equations.
Let s; be a column vector containing the elements of the sth row of S, and then let G; =
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siu— f; = 0, where f; is the ith element of f, be the ith constraint equation implied by the
problem in (35). The new inverse problem is

U

i=1

where g = [G1, ..., Gy]T. We introduce again the angle bracket notation for inner products
between vectors in RY, a terminology often used in the literature. But, we will stop short
of finding m* in the formalism, which, again, when ¢ is not a quadratic function of m, will
not be available through a simple set of normal equations. Instead, we will seek the gradient
of ¢ with respect to m, a quantity which will drive an iterative approach to estimating m*.
There is a mathematical subtlety here, however, and now is as good a time as any to deal
with it.

Aside: review of differentiation with indirect dependencies

The subtlety is that ¢ and £ depend on m directly, since in general we see m appearing
explicitly within them, but also indirectly, because they also depend on u and we know that
u = u(m). This situation is common in methods involving Lagrangians, and we will be
borrowing the calculus used in these problems for the adjoint state method, so let us pursue
that analogy for a moment. Consider a Lagrangian L built up to describe the motion of
2 particles in one dimension, with spatial coordinates z(t) and x(t). Depending on the
problem, L itself may also be an explicit function of time, so

L= L(t, Il,xg) = L(t, J]l(t),.TQ(t)) (61)

What would happen to L over a short interval of time At in a problem like this? The rate
of change of L with time, according to multivariate calculus rules, is

oL

- 62
ot’ (62)
which suggests the change in L would be, to leading order in At,
oL
AL ~ —At. 63
7 Ot ©3)

But, we know that, in the interval At, both z; and x5 have also changed, which affects L,
and so the total change in L would not be reflected in this partial derivative. Instead, we
would use the chain rule:

AL~ 2P A At At 64
R e ©4

to capture all the ways L can be affected. This implies a kind of derivative that really sees
all the impacts on L of motion:

(65)

- ox ) ot

dL _ AL 0L OLOwy  OLOw 0L (0L T ox
dt A0 At Ot Oxy Ot Oxp Ot Ot
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where x = [z, 75]7. On the right side we have recognized that the sum over space variable
partial derivative terms can be framed as a dot product. We are going to use this derivative
in our development, and likely you can already see that the model vector is going to play a
role similar to the time, and the wavefield vector a role similar to the particle coordinates.
To make the adjoint state and Lagrangian dynamics derivatives look even more similar
to one another, let us ask what would happen if the physical world had more than one
time coordinate — weird, to be sure, but perfectly possible from the point of view of self-
consistent mathematical theory! In that case, we would have something like

L = L<t17t2ax17'x2) = L(t17t27x1<t1>t2)7x2(t1at2>)' (66)

The variation AL, i.e., the change in L coming from evolution along both the ¢; and ¢
axes, would have to include explicit accommodation of changes over both ¢, and ¢, so we
would have to allow for At; and At,, and, the way each of x; and x5 now vary with those
two times:

oL oL oL O, oL O,
AL ~2EAr 4 98 Ay 9t gy 980T
o6 T oL o o S T B ot

L L
8 O ZZ2 At + 8_% Ats.
8x2 3751 8.732 (9152
The first two terms imply a dot product, and (after squinting at it for a while), the second
four terms imply a bilinear form:

8L/8t1 8361/8751 8I2/8t1 aL/alL'l
8L/8t2]+[At1’At2]{axl/atg 0x2/0ts | | OLJ0Omy |7 ©®

Aty
(67)

AL ~ [Atl, Atg] |:

or

ALNAtT{aL axaL} [8L oxoL]"

OL  0x0L 69
o6 "ot ox m+mw]m (09

where At = [Aty, AtQ]T, which is much more compact, as long as we remember what is
intended by 9%/at, a matrix with a row for every time coordinate and a column for every
space coordinate. This then implies a derivative which is a vector, with an element for each
time:

dL 8L Jx 8L

dt ot 8t Ox

again, with the proviso that we remember what the matrix 9%/a¢ represents (i.e., refer to the
explicit matrix in (68).

(70)

Back to the adjoint state method

We need to apply the derivative we developed above to the problem of change in our
FWI problem. To accomplish this, we make the following assignments:

L— L/,
t — m, (71)

X — U.
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The scalar functional is either of our objective functions ¢, or £, the fundamental indepen-
dent variable, similar to time, is the model vector m, and the sometimes dependent and
sometimes independent varialbes, similar to the space coordinates, are the wavefield vec-
tors u. Let us now go back to the functional £ in equation (60) and consider its derivatives.
We had

U
L=¢-> NG, (72)
=1
where
1
o= 5uTRTRu —ulR7d, (73)
and
Gi=slu—f; =0, (74)

where s; is a column vector containing the elements of the ith row of the impedance matrix
S. In Case 2, the ingredients are

100 Uy 10 d
(b — é[ul,umug)] 01 0 U9 — [ul,ug,u3] 0 1 |: dl :| , (75)
000 us 0 0 2
1.€.,
1 U1 dl
¢ = 5[“1, Uz, us) uy | — | do ) (76)
0 0
and since
G1 = s11u1 + s1pus + S13u3 — fi
G2 = So1up + Sagun + Sazusz — fo (77)
G'3 = s31u1 + S32Un + S33U3 — f3,
we have for £
1 Uy dy
L(u) =5 [u1, uz, us] uz | — d2
2 0
-\ (511U1 T S12U2 + S13U3 — 1) (78)
— A (821U1 + S22Ug + S23U3 — f2)
— A3 (531161 + S3Ug + S33U3 — f3)
Let us now set up derivatives of £ with respect to all of the unknowns. The means
dL aﬁ ou 0L (79)

dm Gm Om ou’
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and

ac oL

ix " ox " ®
Now, the program from the linear problem was to set both of these quantities to zero,
but we have already realized that this exact step will not be useful here, since we cannot
determine in one step the minimum on account of the nonlinearity of the problem. We will
do something similar here, but not exactly the same. The second set of equations will be
set to zero as before:

(80)

g=00orG;=0i=1,..U. (1)

This simply recovers the constraints, apparently, but it instructs us to do something pretty
important. It instructs us not to permit u to be a general vector in RY, but only an element
satisfying Su = f. In terms of our Case 2:

dﬁ/dml a£/8m1 8U‘l/@m1 8u2/8m1 8“‘3/87711 &C/@ul
dﬁ/dmg = 85/8m2 + 8“1/87112 8“2/87)12 au?’/@mg 85/82@ . (82)
dﬁ/dmg 6£/8m3 8“1/87713 8uQ/@mg 8u3/8m3 85/8u3
Examining the detailed form of 9L/0u, we have
L 0 =~ 0G;
%—%—;&%, (83)
which clarifies what we have seen in the low-dimensional examples. When
9~ 0G;
-7 il 84
o Z g (84)
then and only then is
e _ oL (85)
dm  Om

the right-hand side now being computable in terms of the \; values satisfying 84.
CONCLUSIONS

This set of excursive remarks connecting the adjoint-state method ideas with those of
linear constrained optimization has been designed to bring a more geometrical viewpoint
to the gradient calculation within FWI. There is no way the author, re-reading what he has
written, can claim these remarks have simplified the problem. However, something of the
main purpose, which was to force a reader who has made it this far to draw pictures in their
minds when using the adjoint state method, seems to have been achieved.
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