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ABSTRACT

The integration of machine learning (ML) models has ignited a paradigm shift in seis-
mic analysis, fostering enhanced efficiency in capturing patterns of seismic activity with
reduced need for time-consuming user interaction. Here, we investigate automated event
detection and extraction of seismic phases using two widely used ML models, EQTrans-
former and PhaseNet. We applied both models to four weeks of continuous recordings of
aftershocks using a temporary array following the November 30, 2022 M, 5.6 earthquake
near Peace River, Alberta, Canada. Both tools identified >1000 events over the recording
period. The aftershocks are located in close proximity and depth to the M 5.6 mainshock
on November 30, 2023, as well as to disposal operations that were ongoing at the time.
Although there are some differences in the temporal and spatial evolution of the detected
events by each model, both sets of detections reveal similar patterns of the aftershock distri-
bution that were not identified by the regional network. Our results highlight the advantages
of using ML models for rapid detection and assessment of seismicity following felt events,
which is important for assessing hazard potential and risk in near real time.

INTRODUCTION

Detecting events and picking seismic phases are fundamental to seismological work-
flows (Bormann, |2012). Accurately identifying and characterizing seismic events and pre-
cise phase picking are critical to discern earthquake dynamics, subsurface structures, and
seismic activity patterns (Mousavi et al., 2020). As such, the integration of machine learn-
ing (ML) models for seismic event detection and phase picking represents a paradigm shift
in seismology, offering a promising alternative to traditional approaches. For example,
Karimzadeh et al.| (2019) used multiple ML algorithms, including naive Bayes, K-nearest
neighbors, support vector machine, and random forests, together with the information of
slip distribution, active faults’ locations, and Coulomb stress to predict earthquakes’ after-
shock patterns. The results indicate that the aftershock pattern prediction is possible even
with a small database. Zhu and Beroza| (2018)) developed a deep-neural-network-based ar-
rival picking model named PhaseNet, which analyzes three-component seismic waveforms
to provide accurate arrival times of P and S waves. Woollam et al.| (2019) presented a
convolutional neural network (CNN) for classifying seismic phase onsets for local seismic
networks. With a rather small training dataset, this CNN-based approach outperforms one
of the classical approaches. Mousavi et al.| (2019a), 2020) introduced two ML-based mod-
els, namely the CNN-RNN Earthquake Detector (CRED) and the Earthquake Transformer
(EQTransformer). The former was successfully applied to a continuous dataset recorded
in Central Arkansas and tested to be efficient and promising in earthquake detection, and
the latter has shown the potential for detecting and characterizing more and smaller events.
Recent research has shown that by harnessing the power of deep neural networks, ML
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methods can efficiently and objectively extract subtle patterns and features from large vol-
umes of seismic data that might elude human observers. This degree of automation sig-
nificantly reduces routine workload and enhances the precision and consistency of seismic
event detection and phase picking, thus contributing to more robust earthquake catalogs
and improving seismicity analysis and seismic hazard assessments (Banna et al., [2020).
Additionally, the ability of ML models to analyze large-scale and continuous seismic data
streams in real-time makes them invaluable tools for characterizing geological susceptibil-
ity and monitoring induced seismicity (Wozniakowska and Eaton, 2020}, Limbeck et al.,

2021}; [Fasola and Brudzinskil, 2023)).
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FIG. 1. Seismicity (November 1, 2022 to May 1, 2023) associated with the November 30, 2022 M,
5.6 Peace River earthquake sequence (Schultz et al., 2023} [Salvage et al., 2023} |Vasyura-Bathke|
2023). Seismicity was determined by a standard STA/LTA algorithm on regional seismograph
stations and is coloured by time and scaled by local magnitude, allowing a direct comparison to ML
methods (Figure[2). The extent of the Leduc fringing reef, a disposal zone for saltwater injection that
surrounds the Peace River Arch, is shown in orange (Alberta Geological Surveyl, [2019). Temporary
monitoring stations deployed by the Alberta Geological Survey ~1 week after the mainshock are
shown as black triangles. Inset: Location of the study area (red star).

In this paper, we evaluate the effectiveness of ML models when applied to a temporary
array deployed to record aftershocks. The data were acquired by the Alberta Energy Reg-
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ulator (AER) in the Peace River (PR) region of north-central Alberta, Canada (Figure [I),
using eight portable three-component broadband stations (sampling frequency of 250 Hz)
deployed rapidly in the aftermath of a M}, 5.6 earthquake on November 30, 2022 (Schultz
et al., 2023} |Vasyura-Bathke et al., 2023 Salvage et al., 2023)). Stations were deployed
within 15 km of the mainshock location. Continuous seismic data from December 7, 2022
to January 13, 2023, inclusive, used in this study was generously provided by the Alberta
Geologic Survey. This event (sequence) represents one of the largest recorded seismic
events in Alberta and is controversial in nature as it was originally determined to be a nat-
ural event (Alberta Energy Regulator, 2022)), but subsequent analysis has suggested that it
may have been induced by nearby disposal operations (Schultz et al., 2023; Vasyura-Bathke
et al., 2023} Salvage et al., 2023)). Our aim is to evaluate and compare the effectiveness of
two widely used ML-based systems, EQTransformer and PhaseNet, for rapid analysis of
aftershock sequences.

EARTHQUAKE DETECTION WITH ML MODELS: EQTRANSFORMER AND
PHASENET

In the realm of ML models designed to automate seismic event detection and phase
picking, two widely used methods are the Earthquake Transformer (EQTransformer) (Mousavi
et al., |2020) and PhaseNet (Zhu and Beroza, |2018). These have emerged as leading tools
in the field, offering significant advancements in analysis of seismicity. In a comprehen-
sive study conducted by Munchmeyer et al.|(2022), an evaluation of various ML approaches
demonstrated that EQTransformer and PhaseNet out-performed most other existing models
(e.g. CNN-RNN Earthquake Detector (Mousavi et al., 2019a); Generalized Phase Detec-
tion (Ross et al.,[2018)) in event detection, phase identification and in the determination of
event onset timing.

Drawing inspiration from convolutional and recurrent neural networks (CNNs and RNNs),
EQTransformer has demonstrated proficiency in automating seismic event detection and
precise phase picking from very large datasets. Its ability to discern intricate temporal re-
lationships within seismic waveforms enables it to detect subtle seismic signals that may
prove challenging for conventional event detection methods (Munchmeyer et al., 2022}
Mousavi et al.l 2020). Similarly, PhaseNet has emerged as a powerful model for phase
picking, exhibiting its capability to extract phase arrival times from seismic waveforms.
Leveraging U-Net architecture, PhaseNet achieves high performance in accurately iden-
tifying P- and S-phases (Zhu and Berozal [2018). To associate phase picks with events,
we used the Gaussian Mixture Model Associator (GaMMA), which assumes a hyperbolic
move-out of arrival times of different phases and amplitudes (Zhu et al., 2022).

In the evaluation of both EQTransformer and PhaseNet using the Yangbi and Maduo
earthquake datasets, Jiang et al.|(2021) found that neural networks with deeper layers and
complex structures may not necessarily enhance earthquake detection performance. Hence,
utilization and analysis of more local datasets are needed for a more comprehensive under-
standing and further development of new models. In the following sections, we employ
previously trained EQTransformer and PhaseNet models to analyze aftershocks following
the M, 5.6 earthquake on November 30, 2022 in Alberta, followed by a performance com-
parison.
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MODEL IMPLEMENTATION

Hyper-parameter selection significantly impacts model performance, but finding the
optimal configuration can vary depending on the specific model and is often computation-
ally demanding (Wu et al., 2019). To ensure meaningful comparisons between models, we
adopt fixed model architectures in order to focus solely on model performance by selecting
(to the extent possible) identical hyper-parameters. This strategy enables us to concentrate
on evaluating and directly comparing the effectiveness of the EQTransformer and PhaseNet
models for automated seismicity analysis tasks, providing insights into their respective ca-
pabilities. Following this, we adopt the Seisbench interface (Woollam et al., 2022) for its
role in standardizing the workflow and granting access to a diverse array of cutting-edge
seismological machine-learning models and datasets. The seisbench API contains several
pre-trained models, including both EQTransformer and PhaseNet. In this study, both mod-
els have undergone pre-training using the well-established STanford EArthquake Dataset
(STEAD) (Mousavi et al., 2019b), a dataset acknowledged for its suitability in evaluat-
ing these models’ performance (Munchmeyer et al., 2022). STEAD contains a substan-
tial dataset, encompassing an impressive 1.2 million traces, including 450,000 earthquakes
(ranging from magnitude 0.5 to 8) and approximately 1 million P and S picks.

As aresult of pre-testing trials, the hyperparameters employed in this study were chosen
to balance the speed and performance. The parameters used in this study are: batch size:
512; overlap: 256 P-threshold: 0.55; S-threshold: 0.55; the number of CPUs: 10. After
the evaluation with CPUs, we subsequently incorporated CUDA acceleration into both
models. For EQTransformer, we used a detection threshold of 0.7; all other parameters
remain identical irrespective of the model architectures.

After undergoing pre-processing steps, including linear de-trending, down-sampling to
100 Hz to fit the pre-trained models, and high-pass filtering excluding signals above 1 Hz,
the two machine learning models were applied using the parameters specified above to de-
termine phase picks. We then used the Gaussian Mixture Model Association (GaMMA)
(Zhu et al., 2022)) for phase association. For this method, each earthquake is represented as
a cluster encompassing P and S phases that exhibit an approximately hyperbolic moveout
of arrival times and a decline in amplitude as a function of distance. An event’s underlying
distribution of phase selections is characterized using a multivariate Gaussian distribution,
where the mean values are dictated by the anticipated arrival time and amplitude derived
from the seismic event responsible for the observations. PhaseNet necessitates the input
of an average velocity model. In this study, we have adopted regional velocity averages of
4868.5 m/s for P-wave velocity and 2863.8 m/s for S-wave velocity based on the informa-
tion in recent research from |Schultz et al.| (2023)); Salvage et al.| (2023)). To process the data
effectively, we apply the DBSCAN (Ester et al., 1996) clustering option within GaMMA.
This method excels at grouping data points in close proximity while efficiently identifying
noise and outliers. The minimum sample parameter for DBSCAN is set to 3. Addition-
ally, the following hyperparameters were selected for filtering lower quality associations:
minimum picks: 6; minimum P-picks: 3; minimum S-picks: 3; maximum values for phase
time residual, phase-amplitude residual, and covariance term, namely 011, 029, and o1s:
2.0, 1.0, and 1.0, respectively. GaMMA is primarily employed for the initial association
process, with the majority of parameters being set to their default values. Details about the
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hyperparameters can be found in Zhu and Beroza (2018).

After event detection and phase association using the ML-based models, we used Non-
LinLoc (Lomax et al., 2000, 2009) to compute hypocenter locations. NonLinLoc is a
global-search method that employs a probabilistic framework to determine event location
using estimated posterior probability density functions. We use the regional velocity model
by [Schultz et al.| (2023) for hypocenter determination.

RESULTS

Using the approach described above, EQTransformer had 12,578 pickings with all the
stations and detected a total of 1,241 events, while PhaseNet had 14,729 pickings with all
the stations and detected 1,078 events in total (Figure [2). The average processing time
per station with EQTransformer is 7.63 minutes with 10 CPU cores, which is approxi-
mately 1.8 times longer than with PhaseNet (4.07 minutes). When utilizing 1 CUDA core,
the processing time for EQTransformer and PhaseNet is 2.63 minutes and 2.22 minutes,
respectively. Despite these differences, the time and space distributions of the associated
aftershock events appear to be comparable. This is illustrated by Figure[2] which shows that
despite differences in internal architecture of these methods, the event localization results
produced by both models are broadly similar. In particular, PhaseNet and EQTransformer
yield NonLinLoc-based results in proximity to the mainshock on November 30, 2022 in
both space and depth, as well as within the area of the Leduc fringing reef and close to
its boundary, and close to several active disposal wells in the area, which has also been
shown to be the case for aftershocks detected by the regional network (Vasyura-Bathke
et al., 2023; Salvage et al.| 2023).

Despite EQTransformer identifying more events during the ~4 week recording period,
errors associated with the hypocenter locations were significantly worse, with an average
error in the X, Y direction of 6.2 km and an average error in Z of 5.5 km compared to
PhaseNet (average X, Y error of 0.9 km and 1.1 km in Z). This is reflected in the spatial ex-
tent of hypocenter locations (Figure @a,b,d,e), where events identified by PhaseNet appear
much more clustered in both area and depth. However, artifacts relating to the implemen-
tation of the grid search algorithm are evident in depth, in particular for both PhaseNet
(Figure [2b) and EQTransfomer (Figure [2¢), as revealed by several unlikely linear features.
Temporally, events detected by PhaseNet and EQTransformer and f, respectively) ap-
pear moderately concurrent, with the maximum daily event counts occurring between De-
cember 10 and December 15, 2022, although EQTransformer did detect events earlier in
the recording period (from December 7 onwards, Figure [2f) than PhaseNet (Figure 2f).

To ensure the identification of common events detected by both models, a time toler-
ance was implemented to determine if two events occurred within close temporal proximity.
Specifically, when the start times of two events fall within this tolerance, they are consid-
ered a single event. With a tolerance of 1 second, a total of 838 common events were
identified, indicating that EQTransformer and PhaseNet individually detected 404 and 240
events, respectively. By applying a relatively broad 1-second time window as the tolerance,
the spatial distribution of common events unveils a substantial overlap. For PhaseNet, the
hypocenter locations’ latitude, longitude, and depth ranges extend from 56.09 — 56.13 de-
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grees, —116.74 — 116.63 degrees, and 1.48 km - 5.89 km, respectively. In the case of
EQTransformer, the hypocenter locations’ latitude, longitude, and depth ranges encompass
56.08 — 56.13 degrees, —116.73 — 116.61 degrees, and 1.44 - 5.4 km, respectively. Reduc-
ing the tolerance to 0.5 seconds resulted in 794 common events, with 448 events identified
by EQTransformer and 284 by PhaseNet, providing a refined assessment of event overlaps
between the two models. The observed overlap, characterized by common events, suggests
that EQTransformer in this instance, exhibits greater sensitivity to noisy events, resulting
in a more dispersed spatial distribution in Figure 2 and d.
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FIG. 2. Seismicity associated with the Peace River earthquake sequence for the period December
7, 2022, to January 13, 2023, determined in this study using data from temporary stations deployed
by the Alberta Geological Survey ~1 week after the mainshock on November 30, 2022. Events are
colored by time; portable broadband stations are shown as black triangles, and the extent of the
Leduc fringing reef is shown in orange (Alberta Geological Survey, 2019). Seismic events detected
using a regional network with My > 4.0 from November 30, 2022 to March 31, 2023 are shown
in grey and scaled by magnitude (Vasyura-Bathke et al., [2023). Map and depth view of events
detected by PhaseNet (a,b) and EQTransformer (d,e), with 1,078 events detected by PhaseNet
and 1,242 events detected by EQTransformer. Histograms of daily event counts for PhaseNet (c)
and EQTransformer (f) suggest comparable daily event counts using both methods.

As an illustrative example, Figure [3] provides a segment of the recorded signal from
station 3 corresponding to an event concurrently detected by both models. Based on the
findings obtained from NonLinLoc, this event appears to have occurred on December 19,
2022 at 05:06:46. Remarkably, station 3 managed to capture this event within a mere one-
second timeframe. Although the overall detection results using these methods display a
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high degree of similarity, subtle discrepancies do arise, primarily owing to the intricate
nature of waveform patterns and the inherent capabilities of these models in capturing af-
tershock events. From this figure, in general, the PhaseNet model registers slightly delayed
arrival times for both P and S arrivals in comparison to EQTransformer, with a larger dis-
crepancy observed in the identification of P arrivals. This systematic bias could stem from
various factors, including the selection of hyperparameters in machine learning models, but
is primarily attributed to the distinct architectures of the two models. Despite configuring
comparable parameter sets, the mathematical formulations might assign varying weights to
different factors, contributing to the observed discrepancies. This observation hints at the
possibility of requiring human intervention for further evaluation following the initial rapid
assessment.

In Figure[d] we present events that were independently detected by EQTransformer and
PhaseNet. Notably, these events transpired on distinct dates and were both captured by sta-
tion 10. The event identified by PhaseNet took place on December 26, 2022, at 18:34:04,
with station 10 recording it in slightly less than 1 second. However, the EQTransformer-
detected event occurred on December 9, 2022, at 11:24:59, and station 10 recorded it in
approximately 0.3 seconds. Thought-provokingly, the waveform clarity suggests that these
events should have been detected by both models, emphasizing the need for human inter-
vention following rapid evaluation via machine learning techniques.
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FIG. 3. Waveforms and phase picks for arTlgﬂgrs(#dcl:\ﬂ'#c))m both models on December 19, 2023.
The black, red, and blue waveform plots are three different components, as indicated by the upper-
right green boxes in each subplot. The dark-red and orange dashed lines are P and S phase
identifications by EQTransformer. The light-blue and green dashed lines are P and S phase identi-
fications by PhaseNet. The length of this snippet is around 4 seconds.

CREWES Research Report — Volume 35 (2023) 7



Li, Rojas-Parra, Salvage, Eaton, Innanen, Gu, and Sun

a) 12-00 P_EQT S EQT
oaes i PR.10.1.DPZ
o : PR
-0.865 H
-1.73 :
g o1
5 2z PR.10.1.DP1
310
%_ 0 -y JV\Q\A/WW
=
< .
016-_3)32 PR.10.1.DP2
0
-0.6375
-1.275

11:24:59 11:25:00 11:25:01 11:25:02
Time (H:M:S)
b) 12_26 ‘‘‘‘‘ P_PN _____ S__PN
0.66 I PR.10.1.DPZ
0.33 :
0
-0.33 i
-0.66 !
Y 0.395 -
© : ] PR.10.1.DP1
S 0.1975 !
= 0
o i
£ ;
< .
1.325 i PR.10.1.DP2
0.6625 :
0 VAR
-0.6625 i
-1.325 !
18:34:04 18:34:05 18:34:06 18:34:07
Time (H:M:S)

FIG. 4. Waveforms and phase picks for aftershocks independently detected by EQTransformer and
PhaseNet on December 9 and December 26, 2023. The black, red, and blue waveform plots are
three different components, as indicated by the upper-right green boxes in each subplot. The length
of each snippet is around 4 seconds. a) Aftershock event captured by EQTransformer. The dark-red
and orange dashed lines are P and S phase identifications by EQTransformer. b) Aftershock event
captured by PhaseNet. The light-blue and green dashed lines are P and S phase identifications by
PhaseNet.

DISCUSSION

While the total count of associated events from both models appears similar, it’s es-
sential to note that these results arise from fundamentally different approaches. EQTrans-
former operates in a manner that encompasses both event detection and subsequent phase
picking, with the event detection preceding the phase picking stage. Consequently, all
phase picks are temporally confined to an event detection window. Conversely, PhaseNet’s
principal role revolves around the autonomous identification of P and S arrivals, decoupled
from the event detection process. In terms of uncertainty quantification, EQTransformer
typically generates probabilities for event detection and phase picking by the neural net-
work model’s output layer and represents the likelihood of the presence of specific events
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or phases (Mousavi et al.| [2020), while PhaseNet converts the waveforms into probability
distributions with several spikes of P and S arrivals (Zhu and Berozal [2018)). Such distinc-
tion underscores the inherent differences in the outputs of these two pickers and the nuanced
nature of their respective methodologies, thus highlighting the importance of selecting the
most suitable model for specific seismic event analysis tasks.

In the context of this study, we have purposefully chosen to maintain consistency by
setting the hyperparameter for both models in a comparative way, ensuring a relatively
equitable basis for comparison. Based on our current parameter selection for rapid assess-
ment of aftershocks, it’s noteworthy to mention that PhaseNet outperforms EQTransformer
in this context. PhaseNet offers the advantage of a shorter processing time and demon-
strates a reduced error in event location as verified in Figure 2] which we will elaborate on
in the next paragraph. However, in practice, optimizing model efficiency can be further en-
hanced through approaches like grid searches for fine-tuning hyperparameters, which can
be the next step of our research. It is also worth mentioning that EQTransformer, while
not surpassing PhaseNet in this comparison, does have its merits, particularly in achieving
slightly closer phase determinations. However, the determination of which model yields
more precise and reasonable phase picks may require manual evaluation to provide defini-
tive justification.

The consistency of results displayed in Figure 2| implies that the seismic events are
concentrated close to active disposal wells on the edge of the Leduc fringing reef. When
considering event focal depths, it is evident that the predominant cluster of earthquakes
aligns with M/}, > 4.0) seismic events detected from the regional network from November
2022 through to March 2023 (Figure @a,b,d,e; grey circles). Locations obtained for events
detected using PhaseNet appear to depict several linear features extending from ~2.5 to
>6 km at depth (Figure [2b), which may reflect several sub-parallel fault systems that have
been identified by Vasyura-Bathke et al.|(2023) in this area using aftershocks from the same
sequence identified using the regional network. The smaller hypocenter location errors for
events detected by PhaseNet allow additional support for the evidence of these structures.

Our findings in this study demonstrate the potential of machine learning for rapid seis-
mic event assessment, particularly when handling extensive datasets. The primary advan-
tage of employing machine learning in this context is the capacity to process large volumes
of seismic data with remarkable efficiency. This is especially critical when confronted
with datasets of considerable scale, a situation where manual assessment methods are im-
practical. Machine learning models can quickly analyze and classify seismic events and
phase arrivals, saving time and resources. However, it is important to acknowledge that
the ML models employed in this study were initially trained on extensive global datasets,
which may not be optimally tailored to account for the specific characteristics of local
datasets. Local datasets may exhibit distinct characteristics when compared to the training
data used for these models, including noise patterns and signal bandwidth. Consequently,
these models may not be finely tuned to capture the specific characteristics of localized
datasets, which can present unique challenges. These discrepancies can potentially influ-
ence the model’s performance, and therefore, it’s imperative to be cautious when applying
such models to local seismic data. Nonetheless, our preliminary findings suggest that these
models exhibit a remarkable degree of consistency and efficiency in their performance,
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even when applied to local data. This underscores the adaptability and generalization ca-
pabilities of these machine learning models. It’s also a testament to the robustness of these
models when confronted with variations in seismic data characteristics. Nevertheless, to
ensure the most accurate and reliable results, it’s crucial to recognize and account for the
potential distinctions between local and global datasets, particularly in cases where these
distinctions can impact the desired outcomes of the analysis. Training models for achieving
localized monitoring thus become another possible direction for further study.

CONCLUSIONS

We applied two popular ML models for event detection and phase picking, EQTrans-
former (Mousavi et al., [2020) and PhaseNet (Zhu and Beroza, 2018)), to continuous wave-
form data from a temporary aftershock deployment following the 2022/11/30 M/, 5.6 Peace
River earthquake. Using identical (to the extent possible) choices of hyper-parameters,
these two methods yielded a similar number of event detections: EQTransformer detected
a total of 1,241 events, while PhaseNet detected 1,078 events. Although the inferred
hypocentre distributions reveal some differences when considered in detail, this compar-
ison reveals a consistent overall pattern of aftershocks. Temporally, event detections peak
in the first few days after station deployment (December 10-15, 2022). Spatially, hypocen-
ters occur in close proximity to both the edge of the Leduc fringing reef and several active
water disposal wells. In depth, events are clustered close to the M} 5.6 mainshock event
and several significant (> M|, 4.0) fore- and aftershocks, detected by regional stations. In
general, the application of ML models shows a high degree of promise for near real-time
analysis of aftershocks.

DATA AND RESOURCES

Continuous waveform data and related metadata from December 7, 2022 to January
13, 2023 (inclusive) from a temporary seismometer array were generously provided by the
Alberta Geological Survey, part of the Alberta Energy Regulator (AER). The data were
acquired by the AER in collaboration with the Dr. Yu Jeffrey Gu at the University of Al-
berta. The authors gratefully acknowledge the contributions of the AER to the acquisition
of this dataset, and are deeply grateful that it was provided freely for this study by Chris
Filewich (AER). Data processing and analysis were conducted using PhaseNet (Zhu and
Beroza, 2018) and Phase Association (Zhu et al., [2022), EQTransformer (Mousavi et al.,
2020), Obspy (Beyreuther et al., 2010) and NonLinLoc v7 (Lomax et al., 2000, 2009); all
of which are open source. Figures [I] and [2] were produced using PyGMT (Uieda et al.,
2023).
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