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ABSTRACT

Simulating seismic wave propagation in complex structures geological areas is a chal-
lenging task in exploration geophysics. Realistic simulations of seismic waves in foothill
areas face challenges from complex near-surface models that include rough topography, ir-
regular bedrock interfaces, low-velocity surface sediment, and significant heterogeneities.
Although existing numerical methods can solve the seismic wave equation under these
conditions, they typically require a discretization model with a small grid size, leading to
a high computational cost. To address this, we introduce a novel 3D solver (PMFD3D-
GPU), based on the finite-difference method for elastic wave propagation in the presence
of irregular topography and designed for GPU acceleration. Our solver features an inno-
vative approach that involves an unstructured index array representation (UIAR) to imple-
ment the parameter modified (PM) formulation that satisfy the free-surface condition for
topographic variations. We validated the PMFD3D-GPU solver against the well-known
SPECFEM3D solver, and in conditions of rough topography, we demonstrated misfit er-
rors of less than 1% in most cases. Additionally, our solver accelerates the simulations,
achieving a speed-up approximately 20 times faster compared to the CPU implementation.
Therefore, PMFD3D-GPU solver enables cost-effective realistic and detailed simulations
of near-surface seismic scattering using heterogeneous earth models with irregular topog-
raphy.

INTRODUCTION

The generation of synthetic seismic data requires a computational application capable
of numerically solving the elastic wave equation to simulate seismic waves. The methods
commonly used to model seismic waves are the finite difference method (FDM) and the
finite element method (FEM). Finite Difference Methods (FDMs), which are effective for
larger-scale problems and relatively simple to use, run into difficulties when dealing with
complex geometries like interface discontinuities, topographic variations, and the imposi-
tion of free boundary conditions (Virieux, 1986; Robertsson, 1996; Hayashi, 2001). This
is due to the staircase artifacts produced by the rectangular grid. Furthermore, high-order
accuracy generally requires high-order finite difference stencils, which increases both com-
putational cost and complexity (LeVeque, 2007; Durran, 2013). Several modifications of
FDM for curved or irregular domains have been proposed to reduce these staircase arti-
facts (Hestholm and Ruud, 1998; de la Puente et al., 2014; Solano et al., 2016). However,
these modifications often complicate the interpretation of the solution and may introduce
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potential distortion to the solution grid. In contrast, FEM can manage complex geometries
and heterogeneous materials (Bathe, 2006; Hughes, 2012). Despite its versatility, it is more
computationally demanding and difficult to implement than FDM (Trefethen, 1996; Moczo
et al., 2014). Modern extensions of FEM, like the Spectral Element Method (SEM) and the
Discontinuous Galerkin Method (DGM), have been developed to overcome some of FEM’s
limitations. SEM improves accuracy and rate of convergence by approximating the solu-
tion within each element with high-degree polynomial basis functions (Komatitsch et al.,
1999; Komatitsch and Tromp, 2002; Capdeville et al., 2005). Additionally, SEM is highly
parallelizable nature aids in reducing computation time (Martin et al., 2008; Komatitsch
et al., 2010). Similar to SEM, DGM can manage discontinuities in the solution, making it
particularly suitable for problems with shocks or other sharp features (Kédser and Dumb-
ser, 2006; Dumbser and Kaser, 2006; Kiser et al., 2007). Both SEM and DGM allow for
high computational efficiency on parallel computers due to their high degree of parallelism
Komatitsch et al. (2010); Breuer et al. (2016). Despite these advantages, they are gener-
ally more complex to implement and computationally intensive due to the higher degree of
freedom in each element.

Since several methods have been studied, many solvers are available to model elastic
waves, each with its unique strengths and limitations in addressing the intrinsic challenges
of complex media and complex computational implementation. Some of the most used
solvers are presented below:

* SEISMIC_CPML: This solver employs a Convolutional Perfectly Matched Layer
(CPML) alongside a FDM for the numerical simulation of wave propagation (Ko-
matitsch and Martin, 2007; Martin et al., 2010). However, it does not accommodate
media with topographic variations.

* EWEFD: This comprises a suite of programs designed to solve the 2D and 3D
anisotropic elastic wave equations (Weiss and Shragge, 2013). The programs runs
on NVIDIA GPUs, providing a significant computational speed-up. Although the
codes are part of the open-source Madagascar software package (https://www.
reproducibility.org), they are not designed to handle irregular topography.

* SPECFEMB3D: This is a widely-recognized software package that employs a spectral-
element method to solve the wave equation in three dimensions on unstructured
meshes (Komatitsch et al., 1999; Komatitsch and Tromp, 1999; Komatitsch et al.,
2010). While it can handle complex geometries and irregular topography, SPECFEM3D
mesher requires each layer to be homogeneous, which is a limitation in realistic
scenarios where elastic parameters are often heterogeneous. External meshers can
be incorporated to address this issue. However, open-source meshers like Gmsh
(https://www.gmsh.info/) struggle with complex models, and more robust mesh-
ers, such as CUBIT (https://www.cubit.sandia.gov/), come at a charging fees.

* SeisSol: This is an open-source, high-performance solver developed by the Geo-
physics Section of the Department of Earth and Environmental Sciences at LMU
Munich. It is particularly suitable for seismic wave propagation, including dynamic
rupture processes. SeisSol uses the Arbitrary high-order DERivative (ADER) with
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DGM, allowing it to handle complex geometries and scenarios with irregular topog-
raphy (Késer and Dumbser, 2006; Dumbser and Kaser, 2006; Kiser et al., 2007) .
However, it shares the meshing limitations common to SPECFEM3D.

* SALVUS: This is a robust software for simulating waves in intricate 3D geologi-
cal models by effectively accommodating irregular topography via SEM (Afanasiev
et al., 2019). Yet, it is not fully open-source and charges to use it are required.

Due to the lack of available open-source software capable of simulating 3D elastic wave
propagation in random heterogeneous media with irregular topography, we developed a
solver named PMFD3D-GPU. This solver, based on the Finite Difference Method (FDM),
is specifically designed for GPU acceleration. Utilizing an unstructured index array strat-
egy, the solver incorporates the parameter-modified (PM) formulation introduced by Cao
and Chen (2018). This formulation satisfies the free-surface condition for arbitrary surface
topographies on rectangular grids. The PM formulation has been shown to achieve accu-
racy results comparable to SPECFEM3D for spatial sampling of 15 grid points per mini-
mum wavelength (Cao and Chen, 2018). In comparisons with SPECFEM3D, PMFD3D-
GPU achieved misfit errors close to 1% in a homogeneous model with rough topography.
Moreover, compared to the CPU implementation, this solver increases speed-up approxi-
mately 20 times faster by leveraging GPU acceleration. Finally, we present a numerical ex-
ample using the SEAM Foothills Phase II model, demonstrating the capacity of our solver
to generate realistic synthetic data.

ELASTIC WAVE EQUATION

In the context of seismic exploration, seismic waves are predominantly modeled as
elastic waves. This approximation is due to the predominantly elastic behavior exhibited
by Earth’s subsurface at the scales and frequencies pertinent to seismic exploration. In
such circumstances, rock formations undergo deformation when subjected to stress and
consequently return to their original state once the stress is removed (Sheriff, 2002; Yilmaz,
2015).

In the derivation of the elastic wave equation, we follow the approach outlined by
Shearer (2009), which entails combining the equation of motion with the constitutive rela-
tion for elastic materials. Adopting the index notation, the equation of motion is represented
as:

Here, u; denotes the displacement in the i = {xz, y, 2} direction, 0;; represents the stress

tensor, and p is the material density. The operators 0; and 0, represent the partial derivatives
with respect to time and space, respectively.

On the other hand, the constitutive relation is expressed as:

045 = A(Sijekk + 2#61‘]'. (2)
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In this equation, A and p are the Lamé parameters and e;; denotes the strain tensor,
which is defined as

€ij = (8ZUJ + Gjul) . (3)

Substituting equation (3) into (2), the constitutive relation becomes:

Subsequently, integrating equation (4) into the equation of motion (1) yields:

Equation (5) govern the elastic wave propagation in heterogeneous media. Alternatively
to the index notation, this equation can be expressed in the operator notation as:

Lij(vaa,uat)u](X? t) = 07 (6)

where

Lij(p, X, i, t) = 6i5p(x)0; — 93 [AN(x)0;] — 95 [1u(x) D] — 0150k [11(x) k. (7)

Here, x denotes the position vector.

Another common approach to express the elastic wave equation for heterogeneous me-
dia is using the vector notation as follows:

pi=VAV-u)+ Vi [Vut+ (Va)'] + (A +20)VV-u—puV xVxu, (8

where u = (u,,u,,u,) represents the displacement vector, and V = (0,, 9, 0,) denotes
the nabla operator.

In this study, we will focus on how to solve this equation numerically using the FDM.
REVIEW OF 3D FDM

Several FDM schemes have been proposed for elastic wave modeling (Clayton and
Engquist, 1977; Virieux, 1986; Moczo et al., 2014). In this study, we follow the staggered-
grid scheme proposed by Virieux (1986) to the first-order velocity-stress form.
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First order velocity-stress form

The derivation of the elastic wave equation leads to a second-order partial differential
equation. However, this can be alternatively expressed as a system of first-order partial
differential equations. This transformation can be accomplished by introducing the velocity
vector v = Ju/0t. By replacing each component of vector v = (v,,v,,v,) into the
equation of motion (1), we obtain:

v, 1 00 14 N 004y N 00,

o p\ Oz oy 0z )’

Ov, 1 (0o, 0oy, 0oy

o p ( or T y T ) ©)

% _1 00 n oy, n 00,
ot p\ Oz oy 0z )~

In the same way, replacing each component of the velocity vector in equation (4), and
subsequently applying time differentiation to both sides of the equations, we get:

0000 v, 6vy ov,

5 _(A+2u)(9 +)\a Aaz

doyy | Ov, v, v,

ot Aa +(A+2)ay+Aaz

Do, | O0v, avy v,

ot Nox TAgy TOTG

801@ _ [ 0vy N 0V, (10)
ot ox Oy )’

oy Ov,  Ov,
o M < oy * %) !
00, ov, Ov,
ot :“<az * ax)‘

Equations (9) and (10) are collectively known as the first-order velocity-stress form of
the elastic wave equation.

Staggered grid scheme

The staggered grid scheme is widely utilized in geophysical simulations, particularly
for modeling seismic wave propagation, primarily due to its improved accuracy, stability,
conservation properties, and computational efficiency Moczo et al. (2014). Initially, the
3D space domain is discretized into a numerical grid with spatial steps Az, Ay, Az, as
depicted in Figure 1(a). This scheme then arranges the components of the velocity and
stress tensors at varied locations in the numerical grid to achieve more precise and stable
results, as displayed in Figure 1(b). Here is a brief overview of the component arrangement:
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* The normal stress tensor components o,,, 0y,, and o, are situated at the integral-
grid points (4, j, k). The medium parameters (1, A, p) are also assumed to be located
at these points.

* The shear stress tensor components o, 0., and o, are located at half-grid points,
shifted from the integral points (Figure 1(b)).

e Similarly, the velocity components v,,v,, v, are positioned at corresponding half-
grid points, also shifted from the integral points (Figure 1(b)).

A Vg, P
< Yy, Py
¥V Uz, Pz

[ ] Uzz-,a'yya”zzv/\-,/"

O Ozy, Oya, </l>11/
O Oza,0az, (1) 22
(i,j.kJr%) (i+%,jk‘+%) % ”yzv”zya(/">y2

(a) (b)
FIG. 1. Sattegred grid scheme. (a) 3D grid. (b) 3D cell.

Note that the medium parameters are not defined at half-grid points as they are assumed
to be situated at integral grid points (i, j, k). To overcome this, a parameter averaging
method is typically utilized to determine the values of the parameters at the half-grid points.

Parameter averaging method

The averaging method proposed by Moczo et al. (2002) is typically used to estimate
parameter values at half-grid points. According to this method, the parameter p at a half-
grid point is calculated as the arithmetic mean of parameter values at the nearest integral
grid points, as illustrated below:

1 1 1
Pz = §(pi,j,k + Pir1gk)s Py = §(Pi,j,k + PijiiE)s  Pa = §(pw}k +pigher). (A1)

Here, p., py, and p, denote the density values at the locations of the velocity compo-
nents v, vy, and v, respectively, as shown in Figure 1(b). However, in the majority of
FDM implementations, the reciprocal value of density is preferred, which is computed at
the half-grid points as follows:

2 2 2
b b

bp=——— by=— = ——
Pijk T Pit1,5k Pigk T Pij+1k Pijk T Pigk+1

(12)

On the other hand, the parameter p at a half-grid point is determined as the harmonic
mean of parameter values at the nearest integral grid points, defined as:
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1 1 1 !
+ + ,
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1 1 !
+ + : (13)
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In the above equations, (1), (1), and (u) ., represent the p values at the positions
of the shear stress tensor components o,,, 0,., and o, respectively, as indicated in Fig-
ure 1(b).

FDM equations

By incorporating the parameter averaging method, the FDM resulting equations are:

D; v, =b, (D;Jm + Dy_azy + Dz_am.) ,
D; v, = b, (D;axy + D;ayy + D;ayz) , (14)
D, v, =0, (D;azx + Dy_ayz + Djazz) ,

and,

D 04w = (A +2u)D; vy + AD; vy + AD v,
Doy = AD v, + (A +2p) D, v, + AD v,
Dfo., = AD_ v, + ADj vy + (A +2p)D v,
D 00y = (i)ay (D vy + Dyva)
Difoy. = (it)ay (Dyv: + DIvy)
Df 0. = (Way (Df v, + Divs),

(15)

where D;" and D; are the forward and backward differencing operators with respect to the
variable i = {x,y, z,t}. These operators depend on the order of approximation N of the
stencil. For example, operator D and D, are defined as:

N/2—1

+.n o 7 7
Depije =7, > Wa (Plrarijr = Piainr)
a=0

1 N/2—1 (16)

D, pz,Jk A Z Wa p2+a,yk Pi—a- 1J’)

a=0
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Similar definitions are used for D, D, D} and D . The coefficients W, depends
on the order of approximation of the staggered-grid scheme. For the case of fourth-order
approximation (N = 4), W = [§, — 5]

Conversely, time differencing operators with second order of approximation are defined
as:

n 1 n+1/2 n—1/2

_ 1 -1

where At is the time step.

Numerical accuracy and stability

The accuracy and stability of numerical solutions obtained through the FDM signif-
icantly depend on the spatial step size (Ax, Ay, Az). Generally, a smaller step size is
associated with a more accurate approximation of the differential equation. For a uniform
grid, the step size is consistent in all directions and is denoted by Ah. This step size is
commonly determined based on the number of points N, per minimum wavelength A,
that propagates through the medium, and is given by:

)\min o Vmin

A = Zmin _ ,
NA fmaXN)\

(18)

In this equation, f.x signifies the maximum frequency used in the simulation, which
is typically set by the source, and V},;;, represents the minimum propagation velocity in the
model, which is usually dictated by the smallest S-wave velocity. It is critical to choose
an appropriate /N, to maintain accuracy. In the context of the Parameter Modified (PM)
method, selecting N, = 15 has been found to yield accuracy levels comparable to those
obtained using the SPECFEM3D method (Cao and Chen, 2018). We will look into the
specifics of the PM method in subsequent sections.

The choice of step size also influences the stability of the numerical solution of the
FDM. If the step size is too large, the numerical solution may become unstable and not
converge to the correct solution. This is often regulated by the CFL (Courant-Friedrichs-
Lewy) condition, which imposes a certain relationship between the spatial step size and
the time step size for stability LeVeque (2007). Following the criterion presented by Lines
et al. (1999), the stability of the staggered-grid scheme is ensured when the time step At is
less than a certain limit Aty given by:

1
Aty = . (19)

1 1 1
Wi 2 'Wa’\/ @7 e ey
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During simulations, we choose our time step such that At = kAty,, with a safety factor
of K = 0.99 to ensure stability (Cao and Chen, 2018).

Model expansion and absorbing boundary conditions

The numerical simulations often involves finite model space. Therefore, Absorbing
Boundary Conditions (ABC) are necessary to prevent artificial reflections from the bound-
aries of the computational domain. The most common ABC methods employed in wave
modeling include the sponge ABC, Clayton-Enquist boundary condition, and the Perfectly
Matched Layers (PMLs). The sponge ABC, introduced by Cerjan et al. (1985), is the
simplest method and requires the least computational resources. Despite its simplicity, its
performance is less effective compared to other methods. The Clayton-Enquist boundary
condition, proposed by Clayton and Engquist (1977); Engquist and Majda (1977), offers
a more effective performance than the sponge ABC. It is particularly beneficial for high-
frequency waves and waves incident at steep angles. However, this method requires more
computational resources than the sponge ABC, as it relies on a one-sided derivative ap-
proximation. Finally, PMLs provide superior absorption performance, even for waves with
grazing incidence (Berenger, 1994; Collino and Tsogka, 2001; Komatitsch and Martin,
2007). However, they demand the most computational resources and memory among the
three methods, especially in 3D simulations. In our solver, we opted for the sponge ABC
due to its straightforward implementation. However, further enhancements could poten-
tially be achieved by incorporating PMLs into our system.

The first step in integrating ABCs is to expand the model, creating a specific region
where the ABCs can operate. This process increases the dimensions of the grid points in
the model. Specifically, if the original model dimensions are (N?, NS, N?), after expansion
they become (N,, N, N,). As illustrated in Figure 2, the new dimensions are determined
as:

N, = N2 +2N,, N,=N]+2N, N.=N+N, (20)

where NV, is the number of points in each boundary layer, typically chosen between 20 and
30 points (Yang, 2014). In our implementation, note that the ABCs are not applied to the
top of the model (Figure 2). This is because free-surface conditions are implemented at the
top of the model.

The expanded model is achieved by resizing each parameter m = p, \, i as:

Mgk =my_n, inyr V(g k) ¢ , (21)

where m" represents each parameter with the original dimensions (N, N, N?), and €,
denotes the boundary region defined as:

Qy: {(i,4,k) € NJIN] + N, =1 <i < Ny, N) + Ny — 1 < j < Nk < N} (22)
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FIG. 2. Model expansion to apply ABCs. Thxe gray areas correspond to boundary region €.

(m0.0% ifi <Ny, j <N, andk < N, — N,
N, — Ny L0 ifi>N,—N,—1,j <N, andk < N, — N,
Mijk =  M0,N,~Ny—Lk ifi <Ny, j>N,—Ny—1,and k < N, — N,
M- Ny1Ny Nyt 0> Ny — Ny—1,j > N, — N, — 1, and k < N, — N,
LT j, N —Ny—1 ifk>N,— N, —1,

(23)

Finally, sponge ABCs are incorporated by gradually decreasing the amplitude of each
variable p = v;, 0;;. This is done by multiplying each variable with a damping function
within the boundary region as:

Pk = pik D5 k) Y, 5, k) € (24)

where

D(i,j,k) = exp(—a [(Ny — i)* + (N, — j)> + (N, — k)?]), (25)

is the damping function with a damping factor of «, typically set around 0.015 (Yang,
2014). This function ensures a gradual reduction of wave amplitudes as they approach the
boundary, performing absorption and preventing reflections.

Source wavelet

The simulation of wave propagation necessitates the use of a source wavelet, which is a
function representing the initial disturbance generating the wave motion through a medium.
In seismic simulations, the most commonly used source is the Ricker function, defined as
follows (Ricker, 1953):

w(t) = (1 =2 f2(t — to)?) e~ Iy (t=t0)* (26)
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where f, is the peak frequency and ¢, is a delay parameter usually chosen to be ty = 1/ f,..
As depicted in Figure 3, this wavelet has a waveform that is symmetric about a peak, and
its spectral content is concentrated around the frequency f,,.

Commonly, the wavelet is inserted at a single point (the source location) in the nu-
merical grid for some of the variables v;, 0;; (Moczo et al., 2014). The wave equation is
subsequently solved to simulate the wavefield propagation from the source. When sim-
ulating explosive sources, the normal stress components are updated at every time step
according to:

Ricker wavelet with f, = 10 (Hz) Spectrum of Ricker wavelet
1.0

0.15

EREE £ 0.10 ]

2 -

2 2

Z 00 Z 0051

05 | | | | 0.00 | . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0 20 40 60 80 100 120
Time (s) Frequency (Hz)

FIG. 3. Ricker wavelet with 10 Hz of peak frequency (left) and its spectrum (right).

07 (S, Sy, S2) = 053 (Szy Sy, S2) +w(nAt) fori = {x,y,z}, (27)
where (s, sy, s,) denotes the source location coordinates. By using equation (27) to inject
the source into a homogeneous medium, only compressional P-waves are generated.

It is important to note that the choice of source wavelet and its implementation method
can significantly affect the accuracy and stability of FDM simulations. Specifically, the
source wavelet sets the bandwidth of the frequencies to be simulated, thereby influencing
the spatial step size according to equation (18). Although the Ricker wavelet theoretically
contains frequencies up to infinity, the practical frequency range it covers leads to a modi-
fication of equation (18) for the case of the Ricker wavelet as follows (Sun et al., 2019):

Vmin

Ah = ——min
2.5f,N,

(28)

THE PARAMETER MODIFIED METHOD FOR FREE SURFACE CONDITION

The inclusion of the free.surface contition is the most challenging part when modeling
elastic waves in media with irregular topography using FDM. This condition states that the
stress component normal to the surface is set of zero Moczo et al. (2014). In mathematical
terms, the free-surface boundary condition for stress is often written as:

O'Z'jTLj = O, (29)

where 0; is the stress tensor, and n; is the outward normal vector at the surface topography.
For a 3D problem, if we consider the surface to be the plane z = 0, this condition simplifies
to:
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Ozz = Ogz = Oy = 0. (30)

However, Implementing the free-surface condition in FDM simulations involving sce-
narios with irregular topography brings with it several complexities. Specifically, staircase-
shaped discretization is employed to approximate irregular surfaces. This, however, in-
troduces artificial discontinuities that can lead to wave scattering and the generation of
spurious reflections. These artifacts can significantly affect the accuracy of the wavefield
simulation. To address this issue, various strategies have been explored, including the
vacuum formulation (Zahradnik et al., 1993; Bohlen and Saenger, 2006), the stress-image
method (Levander, 1988; Robertsson, 1996; Hayashi et al., 2001), and medium averaging
methods (Mittet, 2002; Xu et al., 2007; Zeng et al., 2012; Cao and Chen, 2018). Among
these, the parameter modified (PM) method proposed by Cao and Chen (2018) stands out.
It has demonstrated accuracy levels comparable to those achieved by SPECFEM3D For
this reason, we implement this method in our solver to satisfy the free-surface condition in
arbitrary irregular topography.

The Parameter Modified (PM) method involves adjusting the constitutive relation for
the horizontal boundary. With the application of matrix rotations, different constitutive
relations emerge for various cases. A more detailed exploration of the theory behind the
method can be found in (Cao and Chen, 2018).

In practical terms, the method categorizes the grid cells on the surface based on their
relative position to the air. There are five basic classes:

* H: grid cell with air above,
* VR: grid cell with air to the right,
e VL: grid cell with air to the left

VF: grid cell with air to the front

* VB: grid cell with air to the back

In addition to these basic classes, some transition cells such as inner and outer corner
points also exist. An example of the point classification for the x — 2 plane is depicted in
Figure 4.

To facilitate the implementation of PM method, Cao and Chen (2018) put forth gener-
alized expressions for FDM in interior and surface grid cells as:

D, v, = b, (D:Ja@az ‘|‘Dy_01‘y —G—Dz_sz) )
D; v, = by (D, 04y + D} oy, + D, 0y.), (31)
D;UZ = I;Z (D;O.zx -+ D;Uyz + D:UZZ) )

O
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Vacuum grid cell 77 Surface grid cell H Interior grid cell
FIG. 4. Grid cell classification for PMnethod. In this illustration y the z — z plane is shown. IL:
interior left point, IR: interior right point, OL: outer left point, OR: outer right point.

and

D/ 0y =" Dy v, + 3 Dy vy + 05" D vz,
Df oy, = 1" Dyve + 03’ Dy vy + 0§’ D s,
Dy 0. = 1Dy v, + 1Dy v, + 17D v,
D:_UW = <ﬂ>xy (Divy + D;_Uw) )
Dfoy. = ({t)sy (D;vz + Djvy) ,
D} 0. = (A)ay (DFv, + Djvs) .

(32)

The newly defined parameters in these generalized equations are assigned based on the
cell classification. In interior points, the parameters are set as follows:

Bm - b:m By = by7 Bz = bza
e = =05 = A+ 2p,
' =0t =0t =yl =0t =057 =\,

<ﬂ>$y = <M>xy’ <M>yz = <:U’>yza <ﬂ>zz = </1J>zx

(33)

With these values, the generalized FDM equations (31) and (32) are consistent with the
original FDM equations (14) and (15).

For surface points, the parameters are adjusted according to the constitutive relation.
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A summary of these modifications for each specific case can be found in Table 1. In the
following section, we will explain the implementation of this method on a GPU.

IMPLEMENTATION STRATEGY ON A GPU

The Graphics Processing Units (GPUs) are specialized electronic circuits with thou-
sands of cores that can perform operations simultaneously, which makes them especially
well-suited for tasks that can be performed in parallel. This characteristic allows for a sig-
nificant speedup in FDM computations, which can be readily parallelized due to the stencil
nature of finite differences. Numerous GPU implementations have been performed to solve
the wave equation (Abdelkhalek et al., 2009; Micikevicius, 2009; Michéa and Komatitsch,
2010; Komatitsch et al., 2010; Nakata et al., 2011; Weiss and Shragge, 2013; Rubio et al.,
2014; Fabien-Ouellet et al., 2017; Liu et al., 2018; Alkhimenkov et al., 2021). In this
subsection, we will present the implmentation of PMFD3D-GPU solver by emplying a
subdomain decomposition strategy with unstructured index array representation.

Subdomain decomposition

As discussed in the previous section, the PM method for FDM necessitates the recalcu-
lation of medium parameters at surface points. To facilitate the implementation of the PM
method, Cao and Chen (2018) proposed generalized expressions for FDM in both interior
and surface grid cells (equations (31) and (32)). However, implementing these general-
ized expressions on a GPU would not be efficient in terms of memory resource manage-
ment. While the original FDM expressions (equations (14) and (15)) only require storing
three field parameters (p, 11, A), the generalized expressions necessitate the storage of fifteen
field parameters (b, by, b., 17", 15", 15" 0i”, 05", 3" s 1% 157, 057 () ey ()yzs (1) 22)- An
alternative approach to circumvent this challenge would involve recalculating the parameter
values at each step rather than saving them. However, this alternative would compromise
computational efficiency since it would require the classification of each grid cell at every
step.

Therefore, we propose a subdomain decomposition strategy for computing FDM simu-
lations that effectively minimizes memory usage while maintaining high computational ef-
ficiency. This strategy entails dividing the effective domain (all grid points where medium
parameters differ from zero) into two sections: the surface subdomain and the interior sub-
domain (Figure 5). The surface subdomain, denoted by €)g, corresponds to the grid cells
situated at the surface. In this domain, we implement the generalized expressions, storing
the fifteen field parameters. The interior subdomain, represented by {27, includes grid cells
located internally, below the surface subdomain. In this interior subdomain, we implement
the original FDM equations, performing parameter averaging at each time step. With this
strategy, memory usage is minimized as field parameters are saved only at the surface, and
computational efficiency is ensured since grid cell classification is conducted just once.

Note that these subdomains do not necessarily conform to a square shape (Figure 5).
As a result, additional procedures must be undertaken to manage the indices of each grid
cell within each respective subdomain.
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Parameters H VR VL VF VB 0)y
by by by by 2b, 2b, 2b,
b, b, 2b, 2b, b, b, 2b,
b, 2b, 2b, 2b, 2b, 2b, 2b,
2u(A+p)  2p(A +p)
za A+ 2 0 0
M e A+ 2u A+ 2u
e A 0 0 0 0 0
e A 0 0 pA pA 0
A+ 20 A+ 20
Y A 0 0 0 0 0
2u(A+ ) 2p(A + p)
vy A+ 2 0 0 0
= + A+ 2u A+ 2u
LA LA
vy A 0 0 0
s A+ 2u A+ 2u
) LA
2 A 0 0 0
n A2 A+ 2p
) )
2 A 0 0 0
= N+20 At 2
- A2 20N+ ) 2u(A+p) 20N+ ) 2pu(A + p)
3 A+ 2u A+ 2u A+ 2p A+ 2u
~ (1)2
(1) ay (1) ay (1) ay (1) ay (1) y (1) 2y 5
~ (1) <M> 2 (1)
(it)y- (1)y= 5 5 (1)y2 (1)y2 5
- (1) 2o (1) 2o (1) 2o

Table 1. Calculation of parameters at the surface points according to grid cell classification of the
PM method. OP refers to outer transition points.
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FIG. 5. Subdomain decomposition based on the grid cell classification. The surface subdomain
(Q2s) is represented by red cells, while blue cells illustrate the interior subdomain (€2;).

Unstructured index array representation

In structured grid data (such as a square or rectangle), each point in the grid can be
accessed by using its row and column indices because all the rows and columns are equally
spaced and organized in a regular manner. However, in unstructured or irregularly shaped
grids (like the subdomains in Figure 5), this regular access pattern does not exist. This can
make it more difficult to perform computations and navigate through the data, especially on
parallel processors like GPUs. To overcome this problem, we introduce the Unstructured
Index Array Representation (UIAR), a technique that facilitates the representation of in-
dices for each grid cell within subdomains of arbitrary shapes. This means that it provides
a way to organize and access data from irregular or complex subdomains in a structured and
systematic manner. UIAR involves the creation of an index array that maps the irregular
grid points in the subdomain to a structured format.

Specifically, the surface subdomain (2g, containing N, grid cells, is represented by a
one-dimensional array S. This array encapsulates the indices of the irregular subdomain in
the following manner:

S(l) =iNyN. 4+ jN. + k, V(i,j,k) € Qg, (34)

Here, the index [ spans from 0 to Ng — 1, covering all the cells within the subdomain
Qg.

Similarly, the interior subdomain €27, which includes N; grid cells, is represented by a

one-dimensional array /. This array incorporates the indices of the irregular subdomain as
follows:

I(m) =iNyN,+jN, +k, V(i,j,k) € Qy, (35)
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In this case, the index m extends from 0 to N; — 1, accounting for all cells within the
subdomain €2;.

These one-dimensional arrays (S and I) facilitate efficient data access and manipulation
within these irregularly shaped subdomains, providing a systematic representation of oth-
erwise unstructured index data. Consequently, this method enables the effective execution
of computations on GPUs. Algorithms 1 and 2 present the kernel pseudocodes for updat-
ing particle velocities and the stress tensor at the grid cells within the surface subdomain.
Correspondingly, algorithms 3 and 4 exhibit the kernel pseudocodes for updating particle
velocities and the stress tensor at the grid cells within the interior subdomain.

Algorithm 1 Kernel for update particle velocities in g
if | < Ng then
i = S[/(N,N,)
j=(S[l] —iNyN,)/Nz
k= S[l] —iN,N, — jNz
Uy, Uy, U, <— velocitySurface(o,,, 0y, 0.2, 04y, 0ys, 02,4, J, k) > Equation (31)
end if

Algorithm 2 Kernel for update stress tensor in {2g
if | < Ng then
i = S[1)/(N, N.)
j=(S[l] —iN,N,)/Nz
k= S[l]| —iN,N, — jNz
Oy Oyys Ozzy Oy, Oy, Oz <— stressSurface(v,, vy, v,, 1, J, k) > Equation (32)
end if

Algorithm 3 Kernel for update particle velocities in €2
if m < N; then
i = Ilm]/(N,N.)
j = (I[m] —iNyN,)/Nz
k= 1I[m| —iN,N, — jNz
Uy, Uy, U, <— velocityInterior(o,,, 0y, 0.2, 00y, 0ys, 020, 4, J, k) > Equation (14)
end if

Workflow implementation

Figure 6 presents the workflow utilized to implement the PMFD3D-GPU solver. As
shown, several steps of the workflow are executed on the CPU, including model expansion,
domain decomposition, and the calculation of medium parameters in the surface subdo-
main. Subsequently, the GPU is set up, and model data is transferred from the CPU to the
GPU. Once this transfer is complete, the GPU conducts the FDM computations for both
the surface and interior subdomains. These computations includes updating the particle
velocities and stress tensor components, injecting the source, and applying the Absorb-
ing Boundary Conditions (ABCs). Following these computations, the resulting receiver
data are transferred back to the CPU and subsequently written to disk. This procedure is
repeated until all time steps are completed.
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Algorithm 4 Kernel for update stress tensor in {2;
if m < N; then
i = Ilm]/(N,N.)
Jj = (I[m] —iNyN,)/Nz
k =1I[m] —iN,N, — jNz
Oy Oyys Ozzy Oy, Oy, Oz <— stressInterior(v,, vy, v, 1, j, k) > Equation (15)
end if

NUMERICAL TESTS

In this section, we aim to assess the efficiency and accuracy of PMFD3D-GPU by
conducting two distinct numerical tests. The initial test involves a direct comparison of
accuracy with SPECFEM 3D. The second test is designed to demonstrate the capacity of
PMFD3D-GPU to generate realistic synthetic data within a portion of the SEAM Foothills
Phase II model. We also evaluated the computational performance of PMFD3D-GPU dur-
ing these tests.

Accuracy validation with SPECFEM3D

In this test, we validate the accuracy of PMFD3D-GPU by conducting elastic wave
modeling in a homogeneous model with rough topography, using both PMFD3D-GPU and
SPECFEM3D for comparison. The synthetic data obtained from each method is subse-
quently analyzed and compared.

The homogeneous model, with dimensions and medium parameters specified in Table
2, is discretized uniformly in all directions with a spacing of Ah = 5 m. We generated the
irregular topography via the elevation map function 7'(z, y), defined as:

. X Yy
T(a,y) = 350 + 250sin (755} cos (3555
(x,y) = 350 + 250 sin T000) < {1000 (36)

This function was then corrupted with normally distributed random noise and subse-
quently smoothed using a repeated triangle filter, applied over 40 points on each axis. The
resulting elevation map can be observed in Figure 7.

Vp (m/s) Vs (m/s) pMg/m’) Vp/Vsg Dimension (m) Grid cell size (m)
3550 2050 2.0 3.9 3000 x 2000 x 2000 DX H XD
Table 2. Medium parameters for homogeneous model.

For synthetic seismic data generation, we established an acquisition geometry with a
line of 301 receivers, deployed at intervals of 10 m along the x-axis at Y = 1000 m, as
illustrated in Figure 7. We also positioned an explosive Ricker source with a peak frequency
of 10 Hz at the coordinates (1500,1000) m, at a depth of 20 m.

To carry out modeling with SPECFEM3D, the solver requires an initial setup that spec-
ifies the number of spectral elements for the simulation. In this test, we set the solver to

18 CREWES Research Report — Volume 35 (2023)



3D-FDM for elastic wave modeling on a GPU
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FIG. 6. Workflow used to implement the PMFD3D-GPU solver.

use 96 x 72 x 40 elements to represent the model. SPECFEM3D comes with an internal
mesher, XMESHFEM3D, which organizes the geometry of the elements to cover the irreg-
ular surface accurately. The resulting mesh for the current model is illustrated in Figure
8.

We conducted simulations for 1.5 seconds using both solvers. The resulting multi-
component shot gathers, produced by SPECFEM3D and PMFD3D-GPU, are illustrated in
Figures 9(a) and 9(b), respectively. Upon comparison, it’s noted that differences between
the shots are minimal around the source position and progressively increase as we move
away from the source position, as depicted in Figure 9(c).

To further compare the methods, we extracted the traces from four receivers along the
receiver line. These receivers, labelled R1, R2, R3, and R4, are positioned at distances
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FIG. 7. Elevation map and acquisition geometry. The source is situated at coordinates (1500,1000)
m, 20 m beneath the surface. 3C receivers are placed along the surface at Y=1000 m, in a line
from 0 to 3000 m, spaced every 10 m. Key receivers R1, R2, R3, and R4 are located at X= 500 m,

1000 m, 2000 m, and 2500 m; respectively.
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FIG. 8. Mesh produced by XMESHFEMS3D, the internal mesher of SPECFEMSD, utilizing 96x 72 x40
elements to represent the model corresponding to the elevation map shown in Figure 7.

of 500 m, 1000 m, 2000 m, and 2500 m along the x-axis, as shown in Figure 7. The
normalized seismic traces for each receiver, obtained from both solvers, are displayed in
Figure 10. Visually, the traces appear identical across all components and receivers.

For a more quantitative comparison, we computed the L, misfit error between the shot
gathers from PMFD3D-GPU and SPECFEM3D, using the following formula:
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0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
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C
FIG. 9. Multicomponent shot gather. (a) SPECI§I£M3D. (b) PMFD3D-GPU. (c) Difference between
(a) and (b).

[[u — )
[[u®f*

where u’ denotes the shot gather computed by SPECFEM3D, and u represents the shot
gather computed by PMFD3D-GPU. The calculated error percentages for each component
from each receiver are presented in Table 3. From these results, it’s clear that most of the
errors were under 1%. Notably, higher errors were detected in receivers R1 and R4, which
are situated furthest from the source. Particularly these errors are more prominent in the
horizontal components (along the z— and y—axes).

Ly = (37)
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FIG. 10. Normalized Seismic Traces Comparison Using SPEFEM3D and PMFM3D-GPU Methods.
(a) R1 at z = 50 m, (b) R2 at = 100 m, (c) R3 at z = 200 m, and (d) R4 at =z = 250 m. Solutions
from SPEFEMS3D are solid blue lines, and PMFM3D-GPU solutions are red dashed lines.

3D SEAM Foothills model example

In this example, we aim to generate realistic seismic synthetic data by performing elas-
tic wave modeling in a portion of the SEAM Foothils Phase II model using PMFD3D-GPU.
The chosen portion measures 6000 m x 2000 x 4400 m. The model comes discretized uni-
formly across all axes with Ah = 10 m. The topographic elevation map for this selected

segment is illustrated in Figure 11.

For the acquisition geometry, we placed receivers on the surface along a line stretching
from 500 to 5500 m at Y=1000 m, with an inter-receiver distance of 10 m (as seen in
Figure 11). Additionally, we positioned an explosive source at coordinates (200,1000) m,
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Receiver v, (%) v, (%) v, (%)

R1 1.15 7.77 0.80
R2 0.88 0.97 0.51
R3 0.27 0.42 0.11
R4 1.24 2.25 0.37

Table 3. L, misfit norm error of the PMFD3D method compared to the SPECFEM3D method for
receivers R1, R2, R3, and R4.
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FIG. 11. Elevation map and acquisition geometry for the portion of the SEAM model. The source
is positioned at coordinates (200,1000) m, with a depth of 12 m. 3C receivers are aligned on the
surface line from 500 to 5500 m at Y=1000 m, with an inter-receiver spacing of 10 m.

0 1000

at a depth of 12 m. The synthetic data was generated by applying PMFD3D-GPU with
4 seconds of simulation. The resultant multicomponent shot gather is displayed in Figure
12. Here, one can observe realistic seismic events such as Rayleigh waves, near-surface
refractions, and near-surface scattering. This result demonstrates the capability PMFD3D-
GPU in handling elastic wave modeling in complex geological setting.

Uy Uy v,

—1000 0 1000 2000 3000 —1000 O 1000 2000 3000 —1000 O 1000 2000 3000
Offset (m)

FIG. 12. Multicomponet shot gather SEAM with PMFD3D-GPU.
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CPU: Intel Core 17-12700 processor, 12 Core, 2.1GHz to 4.9GHz, 16GB
of memory using C and OpenMP
GPU: NVIDIA GeForce RTX 3060 12 GB of memory using CUDA-C

Model Dimension (N, x N, x N.) Time samples CPU (min) GPU (min)
Homogeneous (681 x 481 x 340) 2256 115.65 5.47
topography 410, 341 surface points

86, 335, 041 interior points
SEAM (641 x 241 x 461) 5003 166.61 7.53
portion 177,235 surface points

56,195, 513 interior points

Table 4. Comparative analysis of computational performance between the PMFD3D solver imple-
mented on a CPU and the proposed GPU-accelerated implementation (PMFD3D-GPU).

Computational performance

The numerical examples that we have presented show that PMFD3D-GPU is able to
perform accurate elastic wave simulations in heterogeneous media. However, the strengths
of PMFD3D-GPU extend beyond just accuracy, as it also offers significant computational
efficiency. A comprehensive performance analysis, as detailed in Table 4, showcases the
time consumption of PMFD3D-GPU in comparison to the language C CPU implementation
using OpenMP across various 3D models. When comparing the time spent by PMFD3D-
CPU on a uniform grid with that of PMFD3D-GPU on the SEAM model, the GPU imple-
mentation is found to be approximately 20 times faster.

DISCUSSION

Numerical modeling of elastic waves in 3D complex media is a computationally de-
manding task. While many numerical methods are available for undertaking this task,
each invariably faces a trade-off between accuracy and computational efficiency, regard-
less of the chosen method. Within this context, PMFD3D-GPU has proven to be a suitable
solver, providing high accuracy results in a relatively short execution time. The GPU-
accelerated with CUDA-C implementation strategy significantly speeds up the simulation
of the PM method, widely outpacing the CPU implementation. Furthermore, the solver
reached accuracy levels comparable to those achieved by SPECFEM3D in the rough to-
pography medium test.

Contrasted with existing solvers, PMFD3D-GPU fills the gap for open-source solvers
that are capable of propagating elastic waves in heterogeneous media featuring irregular
topography. While useful alternatives do exist, they typically demand additional efforts
for application in complex scenarios. For instance, SPECFEM3D is capable of simulat-
ing elastic wave propagation with high accuracy, but its internal mesher is not designed
to handle arbitrary heterogeneous models. This limitation necessitates the use of exter-
nal meshers, which could potentially lead to license fees. In contrast, our solver can be
effortlessly applied in any scenario without incurring extra costs or efforts.

Although PMFD3D-GPU brings significant benefits, there is scope for further enhance-
ments in various aspects. Currently, we have implemented sponge absorbing boundary con-
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ditions (ABCs) due to their ease of implementation and minimal computational resource re-
quirements. However, perfectly matched layers (PMLs) outperform sponge ABCs in terms
of absorption performance, and including them would heighten the accuracy of our solver.
Implementing PMLs can be computationally expensive in terms of memory as they neces-
sitate the storage of multiple auxiliary fields. However, PML memory allocation strategies
as proposed by Pédez et al. (2020) could be employed to reduce the memory requirements
for simulations. In terms of computational execution time, we could potentially achieve
further reduction by adopting a shared memory strategy in the GPU kernel implementation
instead of the currently used global memory strategy. Shared memory strategy has been
empirically proven to offer much lower latency than global memory owing to its proximity
to the cores and its smaller size, as outlined by Cheng et al. (2014). These potential im-
provements highlight the ongoing possibilities for optimization and increased efficiency in
GPU-accelerated numerical modeling.

CONCLUSIONS

We have presented PMFD3D-GPU, a finite-difference solver designed for 3D elastic
wave modeling in heterogeneous models with irregular topography. The solver leverages
a GPU implementation strategy to incorporate the parameter modified method that satisty
the free-surface condition for varying topographic elevation maps. This strategy includes a
subdomain decomposition method featuring an unstructured index array representation to
facilitates the managing of indices of grid cells within irregular subdomains shape, improv-
ing the computational efficiency. The accuracy of PMFD3D-GPU was validated through
numerical testing using a variable topography model, with results similar to those from
SPECFEM3D. Our solver demonstrated its capability to generate realistic seismic synthetic
data, as exemplified in an exercise with the SEAM Foothills Phase II model. Furthermore,
PMFD3D-GPU achieved a significant speedup of the PM method implementation, widely
exceeding the performance of the original CPU implementation. In this study, we also dis-
cussed potential improvements, such as the application of PMLs to enhance absorption in
the ABCs and the use of shared memory strategy to further reduce computational execution
time.
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Code availability section

3DPMFD is a solver optimized for simulating seismic waves in terrains with complex
topography. This solver leverages GPU acceleration to enhance performance. The source
codes are available for downloading at the link: https://gitlab.com/ivanjav/pmfd3d
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