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ABSTRACT

Neural operators are extensions of neural networks which in supervised training learn
how to map complex relationships, such as classes of PDE. Recent literature reports ef-
forts to develop one type of these, the Fourier Neural Operator (FNO), such that it learns
to create relatively general solutions to PDEs such as the Navier-Stokes equation. Clifford
algebra is very useful for representing multidimensional data. In this study, we use the Clif-
ford Fourier Neural Operator (CFNO) be trained to learn the elastic wave equation from a
synthetic training data set. CFNO attempts to find a manifold for elastic wave propagation.
On that manifold, wave fields are represented in lower dimensions than those needed for
standard solutions, and the calculations for wave propagation are correspondingly simpler.
The CFNO combines a linear Clifford fully connected transform, the Clifford Fourier trans-
form, and a non-linear local activation to produce a network with sufficient freedom to map
from a general parameterization of a forward wave problem to its solution. Post-training,
the CFNO is observed to generate accurate elastic wave fields.

INTRODUCTION

Clifford algebras serve as a fundamental nexus where geometry melds with algebra,
originally conceived to streamline the spatial and geometric interrelationships spanning
a multitude of mathematical entities. These algebras seamlessly integrate various math-
ematical structures, including real numbers, vectors, complex numbers, quaternions, and
exterior algebras. Remarkably, Clifford algebras extend beyond standard vector analysis’s
traditional scalar and vector elements by incorporating spatial elements that encapsulate
planes and volumes. Consider the vector cross product in three-dimensional space, effec-
tively represented in Clifford algebras as a plane segment delineated by the two vectors
involved. Although represented by three unique components akin to a vector, the cross
product distinguishes itself by its characteristic sign reversal upon reflection, which is not
a property of true vectors. Clifford algebras encapsulate these diverse spatial elements into
entities known as multivectors. In the current research, we supplant the standard feature
field operations found in deep learning frameworks with operations derived from Clifford
algebras that act on fields of multivectors. The principles of Clifford algebras govern the
operational dynamics and interrelations within multivectors. To illustrate, convolutional
kernels are endowed with multivector elements to facilitate convolution over multivector-
valued feature maps.

The Fourier Neural Operator (FNO) represents a novel approach to learning operators
that map between infinite-dimensional function spaces. This methodology is particularly
significant in solving partial differential equations (PDEs) where traditional neural net-
works face challenges due to the high dimensionality and complexity of the function spaces
involved. The advent of deep learning has provided powerful tools for function approxi-
mation in high-dimensional spaces. However, the application to PDEs has been limited by
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the need for architectures that can inherently handle the mapping of functions. The Fourier
Neural Operator (FNO) is designed to address this by leveraging the expressive power of
neural networks in the Fourier domain.

FNO operates by parameterizing the integral kernel, which is central to operator learn-
ing, in the Fourier space. This parameterization allows for the efficient handling of high-
dimensional data and the learning of complex mappings. The FNO framework comprises a
series of layers that perform a Fourier transform, a pointwise multiplication with a learned
parameter, and an inverse Fourier transform. This process captures the global interactions
of the input functions, making it highly effective for learning operators in PDEs. One of
the primary advantages of FNO is its efficiency. Operating in the Fourier domain avoids
the curse of dimensionality that plagues many neural network approaches. Furthermore,
FNO can generalize across different geometries and boundary conditions, making it a ver-
satile tool for various scientific computing applications. FNO has been successfully applied
to various problems, from fluid dynamics to climate modelling. Its ability to learn com-
plex operators has shown promise in accelerating traditionally computationally expensive
simulations, opening new avenues for research and application in numerical analysis and
beyond.

This study integrates Clifford algebra with the Fourier neural operator, yielding the
Clifford Fourier Neural Operator (Clifford FNO). The aim is to train the Clifford FNO to
adeptly solve the isotropic elastic wave equation, thereby generating the partial derivative
wavefields denoted as ∂xVx, ∂zVx, ∂xVz, and ∂zVz. We evaluate the efficacy of two training
methodologies: the rollout and one-step methods. The findings indicate that the rollout
method outperforms the one-step method in generating more accurate wavefields, despite
the latter initially seeming more congruent with our expectations of a waveform opera-
tor. This report is structured as follows: Firstly, a concise overview of Clifford algebra is
provided, detailing the fundamental calculation principles inherent to the algebra, which
is mostly cited from Brandstetter et al. (2022). Subsequently, the report delves into an
exposition of the Clifford Fourier Operator, highlighting it as the pivotal distinction from
the conventional FNO. Lastly, we expound upon the training methodologies employed and
present the training outcomes.

Clifford algebras

Consider the vector space Rn with the standard Euclidean product ⟨·, ·⟩, where n = p+
q, and p and q are the non-negative integers. A real Clifford algebra Clp,q(R) is an associate
algebra generate by p+q orthogonal basis elements e1, e2, · · · , ep+q of the generating vector
space R⋉, such that the following quadratic relations hold:

e2i = 1 for 1 ≤ i ≤ p;

e2j = −1 for p ≤ j ≤ p+ q;

eij = eji for i ̸= j

(1)

The pair (p, q) is called signature and defines a Clifford algebra with the basis elements
that span the vector space Gp+q of Clp,q(R). The vector space of Clifford algebra has
scalar elements and vector elements. Still, it can also have elements consisting of multiple
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basis elements of the generating vector space Rn, which can be interpreted as the elements
of the planes and volume segments. Extremely low-dimensional Clifford algebras are

(1)Cl0,0(R) which is a one-dimensional algebra that is spanned by the basis element 1
and therefore isomorphic to R of all real numbers;

(2) Cl1,0(R) which is as two-dimensional algebra with vector space G1 spanned by
1, e1, and the basis vector e1 squares to -1, and this is isomorphic to C, the field to the
complex numbers;

(3) Cl0,2(R) which is a 4-dimensional algebra with vector space G2 spanned by {1, e1, e2, e12},
where e1, e2, e1e2 are all squared to -1 and anti-commute. Thus Cl0,2(R) is isomorphic to
quaternions H.

Grade

The grade of the Clifford algebra basis element is the dimension of the subspace it rep-
resents. For example, the basis element {1, e1, e2, e12} of vector space G2 of the Clifford
algebra Cl0,2(R) have grades {0, 1, 1, 2}. Using the concept of grades, we can divide Clif-
ford algebra into subspaces comprising each grade’s elements. The subspace of the smallest
dimension is M0, the subspace of all the scalars. Elements of M1 are vectors, elements of
M2 are called bivectors, and so on. The vector space Gp+q of a Clifford algebra can be
written as the sum of all these subspaces: Gp+q = M0⊕M1⊕M2...⊕Mp+q. The elements
of the Clifford algebra are called the multivectors, containing elements of the subspaces,
i.e., scalars, bivectors, trivectors, ..., k-vectors. The basis with the highest grade are called
the pseudoscalar, i.e., in R2 the pseudoscalar is e1e2, in R3 the pseudoscalar is e1e2e3.

Dual

The dual of the multivector a is defined as a∗, where a∗ = aip+q where ip+q represents
the psedoscalar of the Clifford algebra Clp,q(R). This definition helps us relate different
multivectors to each other, which is useful when defining the Clifford Fourier transforms.
For example in R2 the psedoscalar is a bivector, and in R3 the pseudoscalar is a trivector.

Clifford product

The Clifford product is a bilinear operation on the multivectors. For any arbitrary mul-
tivectors, a,b, c ∈ Gp+q, and scalar λ the Clifford product has the following features: (1)
closure, i.e., ab ∈ Gp+q; (2) associativity, i.e., a(bc) = (ab)c; (3) communicative scalar
multiplication, i.e., λa = aλ (4) distribution over addition a(b + c) = ab + ac. The
Clifford product is generally non-communicative, i.e., ab ̸= ba,

Clifford algebras Cl2,0(R), and Cl0,2(R)

The 4-dimensional vector spaces of these Clifford algebras have the basis vectors {1, e1, e2, e1e2}
where e1, e2 are squared to +1, and to -1 for Cl0,2(R). For Cl0,2(R), the Clifford product
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of two multivectors a = a0 + a1e1 + a2e2 + a12e1e2 and b = b0 + b1e1 + b2e2 + b12e1e2 is
given by:

ab =(a0b0 + a1b1 + a2b2 − a12b12)1+

(a0b1 + a1b0 − a2b12 + a12b2)e1+

(a0b2 + a1b12 − a2b0 − a12b1)e2+

(a0b12 + a1b2 − a2b12 + a12b0)e12.

(2)

A vector x = (x1, x2) ∈ R2 with standard Euclidean product ⟨· , ·⟩ can be related to
x1e1 + x2e2 ∈ R2 ⊂ G2. The Clifford multiplication of the two vectors x, y ∈ R2 ⊂ G2

yields the Clifford product xy:

xy =(x1e1 + x2e2)(y1e1 + y2e2)

=x1y1e
2
1 + x2y2e

2
2 + x1y1e1e2 + x2y1e2e1

=⟨x, y⟩+ ⟨x ∧ y⟩,
(3)

where ∧ is the wedge product or the exterior product. The asymmetric quantity x ∧ y =
−y ∧ x is associated with the bivector, which can be considered as the oriented plan seg-
ment. A unit bivector i2, spanned by the (orthogonal) basis vectors e1, and e2 is determined
by the product:

i2 = e1e2 = ⟨e1, e2⟩+ e1 ∧ e2 = −e2 ∧ e1 = −e2e1, (4)

which if squared yields i22 = −1. Thus i2 represents a geometric
√
−1. From equation 4

we have e2 = e1i2 = −i2e1 and e1 = i2e2 = −e2i2, Using the pseudovector of a scalar
is a bivector and the dual of a vector is a vector. The dual pairs in Cl0,2(R) and Cl2,0R
are 1 ↔ e1e2, and e1 ↔ e2. For Cl2,0(R) these dual pairs allow us to write an arbitrary
multivector a as:

a = a0 + a1e1 + a2e2 + a12e1e2 = 1(a0 + a12i2) + e1(a1 + a2i2) (5)

which can be regarded as two complex-valued parts: the spinor parts, which commute with
the base elements 1, i.e., 1i2 = i21, and the vector parts, which anti-commutes with the
respective base elements e1, i.e., e1i2 = e1e1e2 = −e1e2e1 = −i2e1. For Cl0,2(R) we
have:

a = 1(a0 + a12i2) + e1(a1 − a2i2). (6)

This decomposition will be used as the basis for Clifford Fourier transforms. The Clifford
algebra Cl0,2(R) is isomorphic to the quaternions H, which is an extension of the com-
plex numbers and are commonly represented as a + b̂i + cĵ + dk̂. Quaternions form a
4-dimensional algebra spanned by î, ĵ, and k̂, where î, ĵ, k̂ are all squared to -1. The basis
element 1 is called the scalar, and the elements of î, ĵ, k̂ are called the vector parts of the
quaternions.

Clifford algebra Cl3,0(R)

The 8-dimensional vector space G3 of the Clifford algebra Cl3,0(R) has the basis vec-
tors {1, e1, e2, e3, e1e2, e2e3, e3e1, e2e3, e1e2e3}, it is consisited with one scalar 1, three vec-
tos {e1, e2, e3}, three bivectors {e1e2, e2e3, e3e1}, and one trivector e1e2e3. The trivec-
tor is also the pseudoscalar i3. The dual pair of the Cl3,0(R) are 1 ↔ e1e2e3, e1 ↔
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e2e3, e2 ↔ e3e1 e3 ↔ e1e2. The intriguing example of duality of the multivaectors of
Cl3,0(R) is the expression of the electromagnetic wavefields, F = E + Bi3, where the
E = Exe1 + Eye2 + Eze3, and B = Bxe1 + Bye2 + Bze3. In this way, the electromag-
netic wavefields are decomposed in the electronic vector fields and imaginative bivector
fields via the pseudoscalar i3. For example, for the base component Bxe1 of B it holds
Bxe1e1e2e3 = Bxe2e3, which is the dual of Exe1. In summary, the electromagnetic wave-
field contains three parts, which are three vectors (the electric field componients) and three
bivectors (the magnetic field components) multiplied by i3. This viewpoint gives Clifford
neural layers a natural advantage over their default counterparts.

CLIFFORD NEURAL NETWORK

Clifford convolution

The difference between Clifford algebra convolution and traditional convolution lies in
that both the input and convolution kernel of geometric algebra convolution are multivec-
tors. Suppose the input of the lth Clifford algebra convolution layer is a multivector which
corresponds to the output of the l − 1th layer can be expressed as:

X l−1 = X l−1
r +X l−1

12 e12 +X l−1
23 e23 +X l−1

31 e31, (7)

where X l−1 means the output of the previous layer, and it is composed with multiple el-
ements. The term r is the scalar part of X l−1, X12, X23, and, X31 are the corresponding
bivector parts. The convolution filters are also multivectors which can be expressed as:

W l = W l
r +W l

12e12 +W l
23e23 +W l

31e31, (8)

where the Wr is the scalar part of W l, and W12, W23, W31 are the bivector part of W l−1.
The multiplication of X l−1 and W l with the Clifford product gives X l, after adding with
the bias term Bl and applying the activation function σ, can be expressed as:

X l =σ
(∑

X l−1⊗W l +Bl
)

=σ
(∑

(⟨X l−1,W l⟩+X l−1 ∧W l) +Bl
)
,

(9)

where ⊗ represents the geometric product. From equation 9, we can see that the conven-
tional convolution operation based on the inner product calculation is a part of the Clif-
ford convolution. Compared with the conventional convolution operation, Clifford product
could bring a richer detailed description of the correlation between multiple inputs. A more
detailed expression can be expressed as:

X l−1 ⊗W l = ⟨X l−1,W l⟩+X l−1 ∧W l = Gr +G12e12 +G23e23 +G31e31, (10)

Gr = X l−1
r W l

r −X l−1
12 W l

12 −X l−1
23 W l

23 −X l−1
31 W l

31, (11)

G12 = X l−1
r W l

12 +X l−1
12 W l

23 +X l−1
23 W l

31 −X l−1
31 W l

23, (12)

G23 = X l−1
r W l

23 −X l−1
12 W l

31 +X l−1
23 W l

r +X l−1
31 W l

12, (13)

G31 = X l−1
r W l

31 +X l−1
12 W l

r −X l−1
23 W l

12 +X l−1
31 W l

r, (14)
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Clifford Fourier neural network

The Clifford Fourier transform can be summarized as follow:

F{f}(ξ) = 1

2π

∫
R2

f(x)e−2πi2⟨x,ξ⟩dx,

=
1

2π

∫
R2

1(f0(x) + f12(x)i2︸ ︷︷ ︸
spinor part

) + e1(f1(x) + f2(x)i2︸ ︷︷ ︸
vector part

)

 e−2πi2⟨x,ξ⟩dx

=
1

2π

∫
R2

1 (f0(x) + f12(x)i2) e
−2πi2⟨x,ξ⟩dx

+
1

2π

∫
R2

e1 (f1(x) + f2(x)i2) e
−2πi2⟨x,ξ⟩dx

=1 [F (f0(x) + f12(x)i2) (ξ)] + e1 [F (f1(x) + f2(x)i2) (ξ)] .

(15)

We obtain a Clifford Fourier transform by applying two standard Fourier transforms for the
dual pairs f 0 = f0(x) + f12(x)i2 and f 1 = f1(x) + f2(x)i2, which both can be treated as
a complexvalued signal f 0,f 1 : R2 → C. Consequently, f(x) can be understood as an
element of C2. The 2D Clifford Fourier transform is the linear combination of two classical
Fourier transforms.

Algorithm 1 Pseudocode for 2D Clifford Fourier layer using Cl2,0
1: function CLIFFORDSPECTRALCONV2D(W,x,m1,m2)
2: xv, xs ← VIEW_AS_DUAL_PARTS(x)
3: f(xv)← FFT2(xv)
4: f(xs)← FFT2(xs)
5: f ∗(xv)← [f(xv)[...;m1;m2], f(xv)[...;−m1;−m2 :]]
6: f ∗(xs)← [f(xs)[...;m1;m2], f(xs)[...;−m1;−m2 :]]
7: f ∗(x)← f ∗(xs).r + f ∗(xv).r + f ∗(xv).i+ f ∗(xs).i
8: f ∗(x)← f ∗(x)W
9: x̃v ← IFFT2(f ∗(x)[1] + f ∗(x)[2])

10: x̃s ← IFFT2(f ∗(x)[0] + f ∗(x)[3])
11: x̃← VIEW_AS_MULTIVECTOR(x̃v, x̃s)
12: return x̃
13: end function
14: function CLIFFORDFOURIERLAYER2D(Wf ,Wc, x)
15: y1← CLIFFORDSPECTRALCONV2D(Wf , x,m1,m2)
16: x2← VIEW_AS_REALVECTOR(x)
17: y2← CLIFFORDCONV(Wc, x2)
18: y2← VIEW_AS_MULTIVECTOR(y2)
19: out← ACTIVATION(y1 + y2)
20: return out
21: end function

The function CLIFFORDSPECTRALCONV2D takes a weight matrix W , an input matrix
x, and the dimensions m1,m2 as its parameters. The function processes the input matrix
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using a series of Fourier transforms and operations specific to Clifford algebras. The input
matrix x is split into its dual parts xv and xs, representing the vector and scalar parts,
respectively. A 2D fast Fourier transform (FFT2) is applied to both xv and xs. Fourier
modes are extracted for both parts. For the vector part, the modes are f ∗(xv), and for the
scalar part, the modes are f ∗(xs). A geometric product is applied in the Fourier space,
involving the weight matrix W and the Fourier modes. An inverse 2D FFT is performed
on both the vector and scalar Fourier modes to transform them back to the spatial domain.
The results are then combined to view them as a multivector x̃. The function returns this
multivector, which contains the transformed image data.

The function CLIFFORDFOURIERLAYER2D represents a layer in a neural network that
uses the Clifford Fourier transform within its structure. It calls the CLIFFORDSPECTRALCONV2D
function to apply a spectral convolution to the input. The real vector part of the input is
retrieved. A Clifford convolution is then applied to the real vector part. The spectral convo-
lution and the Clifford convolution results are combined using an activation function. The
final result is the output from the function, representing the processed layer output.

1

F𝑥𝑥,𝑧𝑧

F𝑥𝑥,𝑧𝑧
−1

𝑤𝑤𝑥𝑥,𝑧𝑧

𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧

𝑁𝑁x

𝑁𝑁𝑧𝑧

𝑁𝑁w

𝑈𝑈𝑙𝑙(𝑥𝑥, 𝑧𝑧,𝑤𝑤)

𝑈𝑈𝑙𝑙(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧,𝑤𝑤)

𝑁𝑁𝑘𝑘𝑥𝑥
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𝑁𝑁w

𝑁𝑁𝑘𝑘𝑧𝑧

𝑁𝑁x

𝑁𝑁𝑧𝑧

𝑁𝑁w

𝑁𝑁x

𝑁𝑁𝑧𝑧

𝑁𝑁w

𝑁𝑁x

𝑁𝑁𝑧𝑧

𝑁𝑁w

𝑈𝑈𝑙𝑙+1(𝑥𝑥, 𝑧𝑧,𝑤𝑤)
+ Relu

FIG. 1. The architecture of the Fourier neural layer obtained from Li et al. (2020). including the
Fourier transform Fx,z, the wavenumber-domain multiplication with filter wkx,kz , the inverse Fouri-
ertransform F−1

x,z, the space-domain filter wx,z, and the ReLU activation function, obtained from Wei
and Fu (2022).

TRAINING PROBLEM SET UP

The problem we focus on here is simulating the isotropic elastic waveform within
a specific investigation area. Therefore the target of the neural network is in the field
D = {(x, y, t)|x ∈ [a, b], y ∈ [c, d], t ∈ [0, T ]}, approximate the following mapping
G : (Σ,Ω) → u, where Ω = (Vp, Vs, ρ), are the elastic media parameters, including P-
wave velocity Vp, S-wave velocity Vs, and density ρ. The term Σ represents the input
wavefields within the self-regression model or the space-time coordinate vectors within the
none-self-regression model. The term u represents the output, which is the elastic wave-
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𝑁𝑁𝑧𝑧

FIG. 2. The architecture of the Clifford Fourier neural operator, using one Clifford multivector Ul,
with a dimension of C1×Nz,×Nx×4 for the input as an exmaple. The Clifford multivector Ul is firstly
being viewed as dual parts, which means that it will be changed into the spinor part sl and vector
part vl. The complex-valued spinor part sl and vector part vl, each of which has the dimension of
C1×Nz,×Nx×1, will undergo the 1D convolution, and the Fourier domain multiplication just like Figure
2. Finally the spinor part sl and vector part vl are transformed back into the Clifford multivector with
dimension C1×Nz,×Nx×4, which will be regarded as the updated data Ul+1.

fields.

Training in autoregression way and none-autoregression way

Training the neural network within the none-autoregression way, or the roll out way,
means that the input of the neural network is Σ, which are position coordinates (x, y, t),
and the neural network is trained to give the results:

û(x, y, t) = fθ((x, y, t),Ω) ∈ R. (16)

The training methodology is also presented in Figure 3. As wavefield simulation needs the
source information. Thus, despite the coordinate information, I also use the initial time
steps of the wavefields as the input for network training. These initial wavefields carry the
source information which are essential for waveform modelling. Supposing that we have a
maximum of 8 time steps for training. The roll-out training method uses several time steps
of the wavefield as input (the three-time steps Figure 3 represented as black boxes) and is
trained to generate the following time steps of the wavefield(the five-time steps Figure 3
represented as blue boxes).

If we were to train the neural network in an autoregression way, or the one-step way,
the neural network would be trained to learn how to map the wavefield at the previous time
step to the wavefield at the next time step:

û(t) = fθ(u(t−∆t),Ω) ∈ Rn×m. (17)
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The target of the training process is to find θ∗ which can minimize the objective function L
on the training dataset T which can be formulated as:

θ∗ = argmin
θ
L[u(x, y, t), û(x, y, t)] ∀x, y, t ∈ D, u ∈ T (18)

The one-step training methodology is also presented in Figure 4. In the training stage of the
one-step method, the network uses several time steps of the wavefield as input (3-time steps
in this Figure) and is trained to generate the wavefield of one-time step. In the validation
stage of the one-step training, the network uses several time steps of the wavefield as input
(3-time steps in this Figure) and is trained to generate the wavefield of one-time step, but
the wavefields generated by the neural network will be used as the input for generating the
next time step. A demonstration of the validation stage of one step training is plotted in
Figure 5, and more details about the one-step training can be found in Wei and Fu (2022).

t1

t2
t3

t4
t5

t6
t7

t8

𝑁𝑁𝑡𝑡𝑖𝑖𝑖𝑖 = 3

𝑁𝑁𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = 5

𝑁𝑁x

𝑁𝑁𝑧𝑧

FIG. 3. Roll-out training method. Supposing that we have a maximum of 8 time steps for training.
The roll-out training method uses several time steps of the wavefield as input (3 time steps in this
Figure), and is trained to generate the following time steps of the wavefield(5 time steps in this
Figure).

Clifford Fourier neural network roll-out training results

The presented figure 6 illustrates a comparison between predicted wavefields generated
by a neural network and the corresponding true wavefield data at six discrete time steps:
t = 0.116s, 0.146s, 0.196s, 0.294s, 0.392s, and 0.586s. The predictions pertain to partial
derivatives of the velocity field in the x and y directions, specifically ∂xVz, ∂zVx, ∂zVz,
and ∂zVz. The Clifford Fourier Neural Operator (Clifford FNO), has been trained via a
roll-out training methodology, which takes in the coordinate information, the source in-
formation and generates the whole time steps wavefields under consideration. Analyzing
the snapshots at various time frames, we observe a high degree of fidelity in the network’s
predictions. Initially, at t = 0.116s, the predicted wavefields exhibit a remarkable resem-
blance to the true data, capturing both the major wavefronts and the subtler wave patterns.
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FIG. 4. One-step training method training stage. In the training stage of the one-step method, the
network uses several time steps of the wavefield as input (3-time steps in this Figure) and is trained
to generate the wavefield of the next one time step.
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FIG. 5. One-step training method validation stage. In the validation stage of the one-step training,
the network uses several time steps of the wavefield as input (3-time steps in this Figure) and
is trained to generate the wavefield of one time step, but the wavefields generated by the neural
network will be used as the input for generating the next time step.

As time progresses, the complexity of the wavefield interactions increases, yet the network
demonstrates a proficient level of accuracy up to t = 0.294s, after which, a slight diver-
gence in the finer details becomes discernible. Particularly, in the ∂xVz and ∂zVx fields,
the prediction retains the overall structure of the wavefronts but begins to differ slightly
in intensity and the exact positioning of the peaks and troughs. This divergence is more
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FIG. 6. A example of the snapshots of the wavefields at six-time steps, ∂xVx, ∂zVx, ∂xVz, ∂zVz,
generated by the Clifford FNO. The Clifford FNO is trained by using the roll-out training methodol-
ogy.

noticeable in the ∂zVz component, where the intensity of the predicted waveforms appears
to be slightly attenuated compared to the true data. Nonetheless, at t = 0.586s, the network

CREWES Research Report — Volume 35 (2023) 11



Zhang et. al

FIG. 7. Another example of the snapshots of the wavefields at six-time steps, ∂xVx, ∂zVx, ∂xVz,
∂zVz, generated by the Clifford FNO. The Clifford FNO is trained by using the roll-out training
methodology.

manages to predict the general direction and movement of the waveforms.

These results indicate a sophisticated level of learning by the Clifford FNO, demon-
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strating its capability to not only grasp the fundamental dynamics of the wavefields but
also to generalize well into future states, a non-trivial task given the inherent complexity
and non-linearity of such systems. The minor discrepancies noted are expected and present
areas for further refinement, potentially through enriched training data or an extended train-
ing period. Overall, the comparative analysis underscores the potential of advanced neural
network architectures, such as the Clifford FNO, in accurately simulating physical phe-
nomena, thereby serving as a potent tool for forecasting and analysis in various scientific
and engineering domains. Similar observation can be seen in the wavefield generated on
another model, plotted in Figure 9.

Clifford Fourier neural network one-step training results

Figure 8 represents the efficacy of a Clifford Fourier Neural Operator (FNO) that has
been trained using the one-step training methodology to predict wavefields. This figure
displays a series of snapshots at six time steps: t = 0.002s, 0.004s, 0.008s, 0.01s, 0.012s,
and t = 0.02s. The predictions and true values are shown for the partial derivatives of the
velocity field components: ∂xVz, ∂zVx, ∂zVz, and ∂zVz.

The one-step training approach focuses on training the network by feeding it single
steps of the wavefield at a time, a departure from training on entire sequences. This method
has implications for the neural network’s ability to predict immediate future states with
higher precision. In the initial time steps (t = 0.002s to t = 0.008s), the Clifford FNO
shows a high degree of accuracy, with the predicted wavefields closely matching the true
data in both pattern formation and intensity levels. The clear definition of wavefronts sug-
gests that the network has successfully captured the essential dynamics of the physical
system at these early stages. As time advances to t = 0.01s and beyond, subtle discrep-
ancies begin to emerge. Specifically, the predictions show slight deviations in wavefront
sharpness and positioning, indicating a slight model-performance degradation as the pre-
diction horizon extends. At the final time step shown (t = 0.02s), although the network
still captures the general direction and behaviour of the wavefields, there is a noticeable
difference in the intensity and complexity of the wave patterns. The predicted wavefields
appear smoother and less nuanced compared to the intricate patterns present in the true
data.

This analysis suggests that while the Clifford FNO is capable of capturing the imme-
diate dynamics of the wavefields with high fidelity, its performance diminishes when pre-
dicting further into the future. This could be due to the limited temporal context provided
by the one-step training approach. Training on longer sequences or employing a multi-step
training strategy might provide the network with a more comprehensive understanding of
the temporal evolution of the wavefields, potentially improving long-term prediction accu-
racy.

CONCLUSION

In this study, we train a fast-forward modeling method with the Cliffrod Fourier Neural
Operator(FNO). The network consists of three parts, which are two dimensions projection
layers that operate on time and several Fourier layer that learns the spatial partial deriva-
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FIG. 8. A example of the snapshots of the wavefields at six-time steps, ∂xVx, ∂zVx, ∂xVz, ∂zVz,
generated by the Clifford FNO. The Clifford FNO is trained by using the one-step training method-
ology.

tives. The power of the Fourier Neural operator comes from the combination of the Clifford
linear operation, operators that resemble partial differential calculation (via the Clifford
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FIG. 9. Another example of the snapshots of the wavefields at six-time steps, ∂xVx, ∂zVx, ∂xVz,
∂zVz, generated by the Clifford FNO. The Clifford FNO is trained by using one-step training method-
ology.

Fourier transform), and the non-linear local activation. The numerical tests suggest that
FNO could generate promising wavefields within certain prediction steps, however, with
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decreasing accuracy as time propagates.
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