A pot of porridge and a tutorial Or there's a shark in my transform

John C. Bancroft

CREWES/University of Calgary

Acknowledgements

- CREWES sponsors
- NSERC
- Mark Ng of GEO-X

Synopsis

- Imaging and inversion
 - Continued fraction expansion *Bancroft*
 - Practical implementations of equivalent offset processing *Bancroft*
 - Tutorial on downward extrapolation operators *Bancroft*
 - 2-D wave equation modeling and migration by a new finite difference scheme based on the Galerkin method Du
 - Modeling and migration by a new finite difference scheme based on the Galerkin method for irregular grids Du
 - Poststack and prestack depth migrations using Hale's extrapolator *Al-Saleh*
 - Stability and accuracy analysis of the space-frequency domain wavefield extrapolators *Liu*

Synopsis

- Anisotropy
 - Anisotropic velocity modeling *Elapavuluri*
 - Seismic modeling in structurally complex anisotropic media (2nd author) VTI media Elapavuluri
 - Characteristics of P-, SV- and SH-wave propagation in a weakly anisotropic medium *Kelter*
 - Estimation of Thomsen's anisotropy parameters in layered VTI media *Xiao*
- Noise Reduction
 - Multiple Attenuation by Semblance Weighted Radon Transform *Cao*
- Computing
 - Multigrid deconvolution of seismic data Millar
 - Solving surface consistent statics with multigrid *Millar*

Wr = s

	W	S
• W and s known	31×31	31
• Reduce to smallest size	15×15	15
 Antialias filter each reduction 	7×7	7
• Save	3×3	3
Average value	1	1

Gauss-Seidel $\mathbf{r} \gg \mathbf{\widehat{W}}^{-1} \mathbf{s}$

S \prod_{n+1} **r**_n • Estimate r₁ 1 • Interpolate **r**₃ 3 3×3 3 • Improved estimate of r₃ >3 • Interpolate **r**₇ 7×7 7 7 • Improved estimate of r₇ Interpolate r_{15} 15 • 15×15 15 15 • Improved estimate of r_{15} 31 31×31 31 31 Interpolate **r**₃₁ • Improved estimate of r_{31} 6

Gauss-Seidel $\mathbf{r} \gg \widehat{\mathbf{W}}^{\mathbf{I}} \mathbf{s}$

- Estimate **r**₁
- Interpolate **r**₃
- Improved estimate of r₃-
- Interpolate **r**₇
- Improved estimate of r₇
- Interpolate **r**₁₅
- Improved estimate of r₁₅
- Interpolate **r**₃₁
- Improved estimate of r₃₁

S				
	r _n	W	S	r _{<i>n</i>+1}
	1	1	1	1
	3	<u>3×3</u>	3	→ 3
	7	7×7	7	7
	15	15×15	15	15
	31	31×31	31	31
				7

Gauss-Seidel $\mathbf{r} \gg \mathbf{\widehat{W}}^{-1} \mathbf{s}$

	\mathbf{r}_n	W	S	\mathbf{r}_{n+1}
• Estimate r ₁	1	1	1	1
• Interpolate r ₃	-	•	-	•
• Improved estimate of r ₃	3	3×3	3	3
• Interpolate r ₇	7	$7 {\scriptstyle\bigtriangledown} 7$	7	7
• Improved estimate of r ₇	/		1	/
• Interpolate r ₁₅	15	15×15	15	15
• Improved estimate of r ₁₅				
• Interpelate *	- 31	31×31	31	31
• Impression Final of r ₃₁				8

Multiple attenuation Zhihong (Nancy) Cao

Multiple attenuation Zhihong (Nancy) Cao

Anisotropy Mary Xiao

Anisotropy Pavan Elapavuluri

- Conventional EO uses hyperbolic eqn.
- Now use shifted hyperbola to include anisotropy effects
- Objective: improve velocity model

Anisotropy Amber Kelter

Finite element / difference Xiang Du

- Combine finite-element with finite difference
- Full wave equation
- Greater stability
- Larger step size
- Variable depth increment
- Modelling and Migration

Stable response

Bin interval

Bin interpolation

 $\sqrt{2} = [1:2,2,2,2,2,2,2,2,2,2,2,2,...] = [1:2^*]$

 $\sqrt{2} = [1:2,2,2,2,2,2,2,2,2,2,2,2,...] = [1:2^*]$

 $\pi \approx \frac{3}{1}, \quad \frac{22}{7}, \quad \frac{333}{106}, \quad \frac{355}{113}, \quad \frac{103993}{33102}, \quad \frac{104384}{33215}, \quad \frac{208341}{66317}, \quad \text{and} \quad \frac{312689}{99532}$

Downward continuation Bar Downward extrapolation Downward marching

21

Bancroft

Finite difference

Phase-shift

No x dependence ... Assume constant velocity at this layer

Phase-shift operator (k_x, z) space

Phase-shift operator (k_x, z) space

Phase-shift operator (k_x, z) , (x, z), (x, t)

(x, t)

Magnitude of the phase-shift op. (x, z) space

(X, ω)

The red-tipped shark

Phase-shift op. (x, t) space gz = 250m

Phase-shift op. (x, t) space gz = 10m

Phase-shift op. (k_x, z) space gz = 10m

Constant frequency operator

Phase-shift op. (k_x, z) **space** z constant

Phase-shift op.

- Applied (convolved) many times in (x, z)
- <u>Multiplied</u> many times in (k_x, z)
- Amplitudes greater than one will "blow up"

Phase-shift op.

Phase-shift op. (x, z) space

Phase-shift op.

Phase-shift op. (k_x, z) space

kх

Phase-shift op. (kx, z) space Desired

Boxcar

- Any time we truncate, we convolve with sinx/x in the "other" domain.
- Poor choice
- Can use a better shaped window
- Consider convolving a boxcar with itself (cascading)

3 point boxcar

Boxcar convolved with itself

Cascading boxcar 3 times

Cascading boxcar 1 to 10 times

Boxcar in x, and sinc function in k_x

Cascading 1, 3, and 10

Application of 113 to amplitude of phase-shift operator, 1, 10, 100, 1000

Comments on **z** X PS operator

- 1. Any truncation in (x, z) space causes sinc ripple
- 2. Ripple reduced by improved window shape
- 3. Larger window in x space improves shape of PS op.
- 4. Larger window does not reduce amplitude of ripple
- 5. Operator at same frequency changes with velocity reducing cascading effect
- 6. Cascaded operator attenuates higher dips
- 7. But...lower part of section has reduced dips

Design goals for **z** X PS operator

- 1. Shorter operator produces faster runtimes
- 2. Size of operator for acceptable attenuation of higher dips
- 3. Smoothness of operator related to stability in (k_x, z) space

Downward contin. Extrapolators *Kun Liu*

Hale's extrapolators Saleh Al-Saleh

