

The FOCI™ method of depth migration

Gary Margrave Saleh Al-Saleh Hugh Geiger Michael Lamoureux

POTSI

Outline

Wavefield extrapolators and stability A stabilizing Wiener filter Dual operator tables Spatial resampling Post stack testing Pre stack testing

The phase-shift extrapolation expression

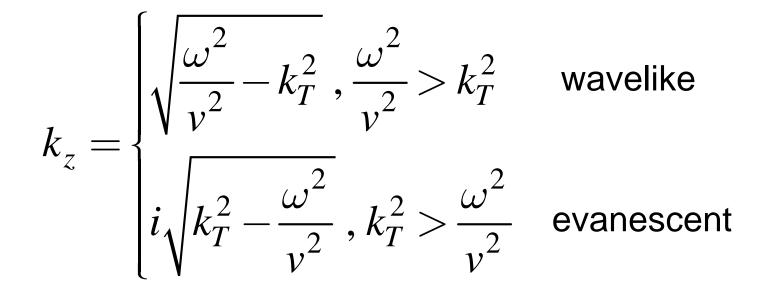
$$\psi(x_T, z, \omega) = \frac{1}{(2\pi)^{n-1}} \int_{\mathbb{R}^{n-1}} \varphi(k_T, z = 0, \omega) \left[e^{ik_z z}\right] e^{-ik_T \cdot x_T} dk_T$$

$$\psi(x_T, z, \omega)$$
 output wavefield

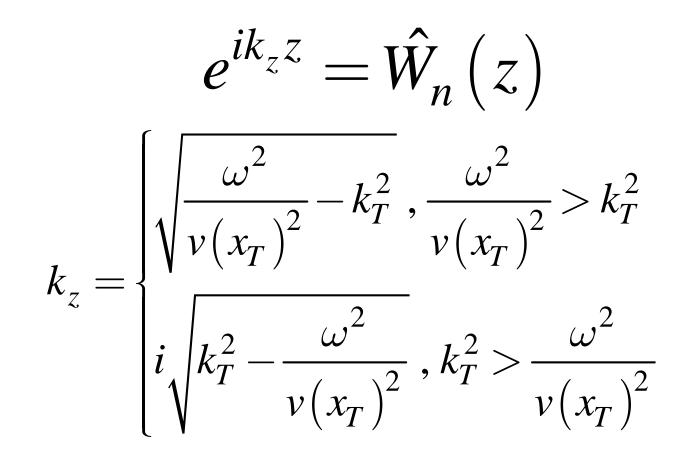
$$\varphi(k_T, z=0, \omega)$$
 Fourier transform of input wavefield

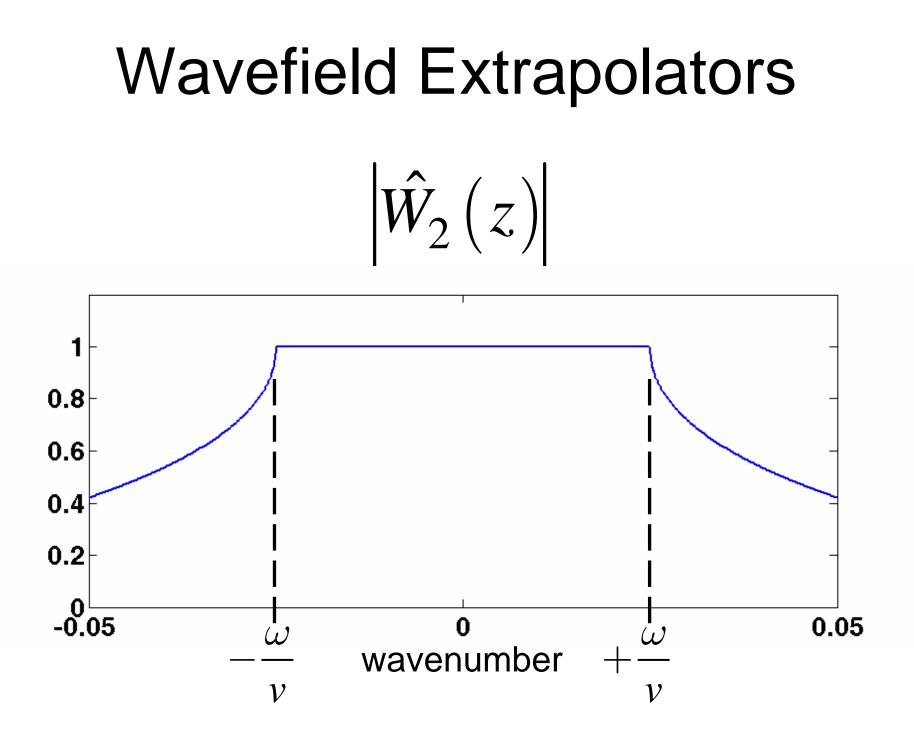
The phase-shift operator

$$e^{ik_z z} = \hat{W}_n(z)$$

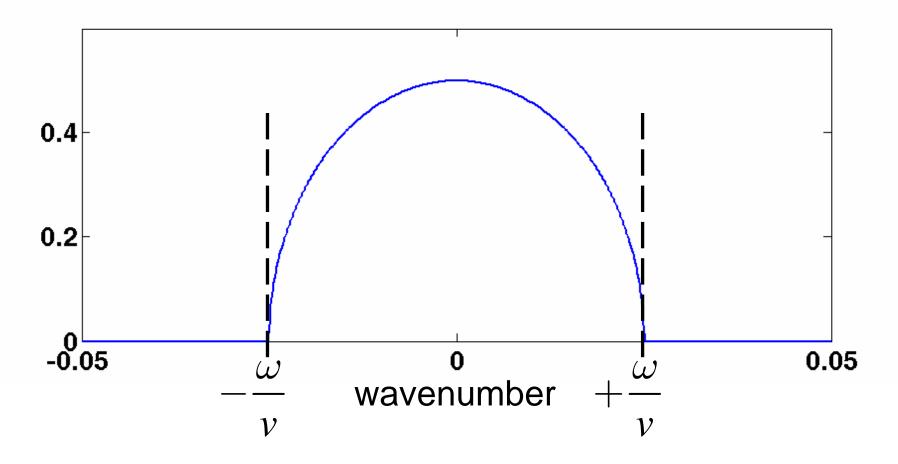


The PSPI extension





phase
$$\left[\hat{W}_{2}(z)\right]$$



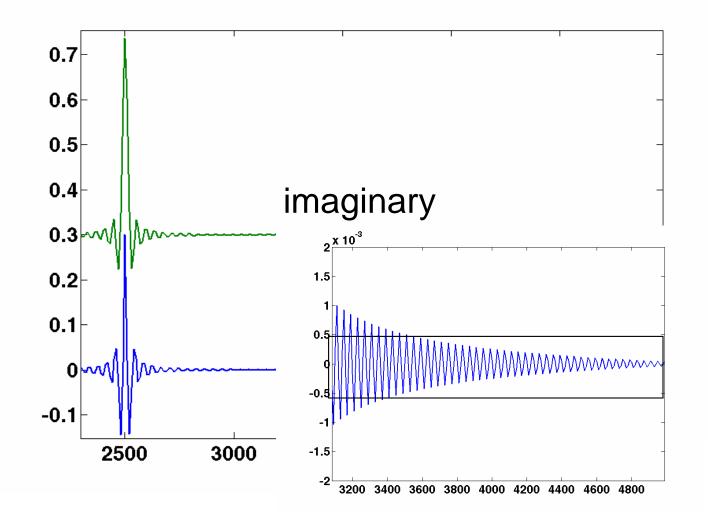
In the space-frequency domain

$$\psi(x_T, z, \omega) = \int_{\mathbb{R}^{n-1}} \psi(\hat{x}_T, z = 0, \omega) W_n(x_T - \hat{x}_T, z, \nu, \omega) d\hat{x}_T$$

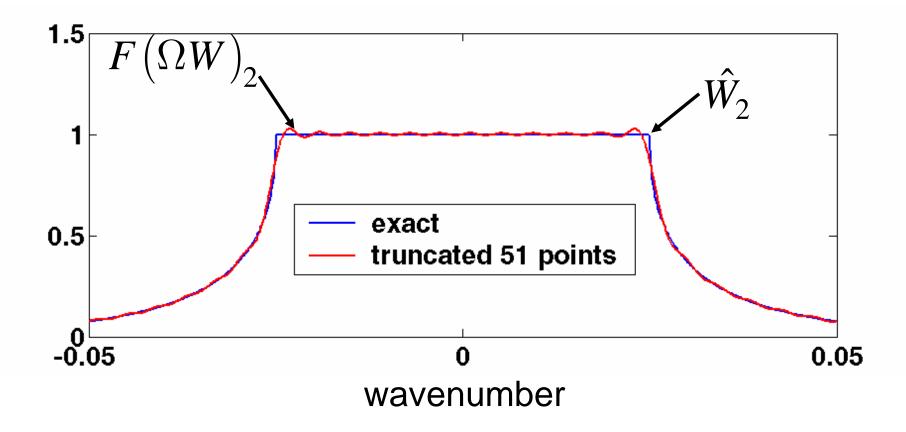
where

$$W_n(x_T - \hat{x}_T, z, \omega) = \frac{1}{(2\pi)^{n-1}} \int_{\mathbb{R}^{n-1}} \hat{W}_n(k_T, z, \omega) e^{-ik_T \cdot (x_T - \hat{x}_T)} dk_T$$

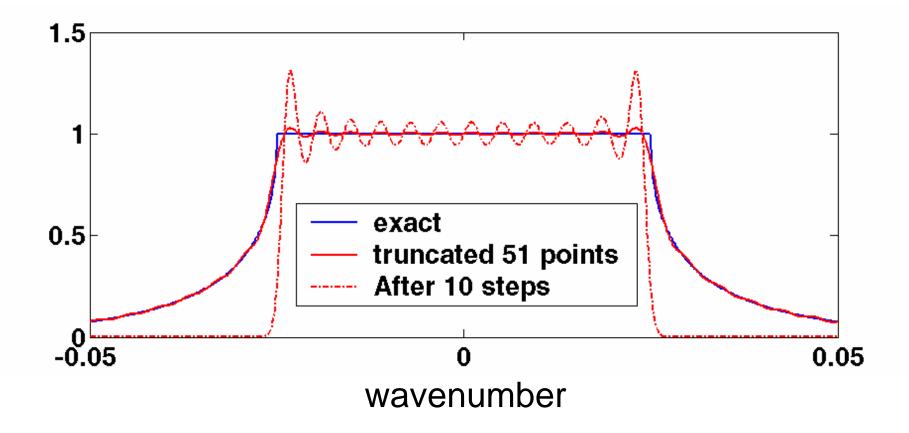
In the space-frequency domain



Back to the wavenumber domain



Back to the wavenumber domain



Stabilization by Wiener Filter

Two useful properties

$$\hat{W}_n(k_T, z, \omega) = \hat{W}_n\left(k_T, \frac{z}{2}, \omega\right) \hat{W}_n\left(k_T, \frac{z}{2}, \omega\right)$$

Product of two half-steps make a whole step.

$$\hat{W}_{n}^{-1}(k_{T}, z, \omega) = \hat{W}_{n}^{*}(k_{T}, z, \omega), \quad k^{2} > k_{x}^{2}$$

The inverse is equal to the conjugate in the wavelike region.

Stabilization by Wiener Filter

A windowed forward operator for a half-step

$$\tilde{W}_n(z/2) = \Omega W_n(z/2)$$

Solve by least squares $\tilde{W}_n(z/2) \bullet WI_n = F^{-1} \left[\left| \hat{W}_n(z/2) \right|^{\eta} \right]$ $0 \le \eta \le 2$

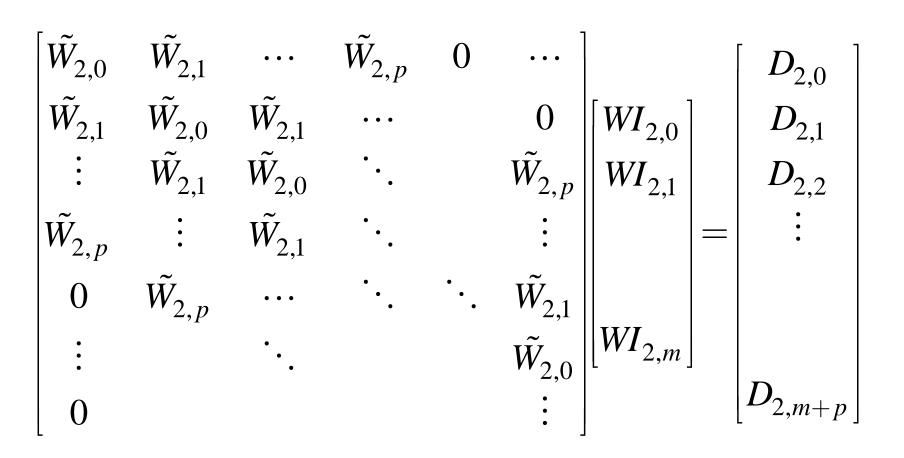
Stabilization by Wiener Filter

 $W\!I_n$ is a band-limited inverse for $\tilde{W}_n(z/2)$ Both have compact support

Form the FOCITM approximate operator by $W_{nF}(z) = WI_n^* \bullet \tilde{W}_n(z/2) \approx W_n(z)$

FOCI[™] is an acronym for Forward Operator with Conjugate Inverse.

Linear System to Solve



Properties of FOCI operator

Let

$$n_{inv} = length(WI_n)$$
 $n_{for} = length(\tilde{W}_n(z/2))$

Then $length(W_{nF}(z)) = n_{op} = n_{for} + n_{inv} - 1$

Properties of FOCI operator

 n_{for} determines phase accuracy.

 n_{inv} determines stability.

Empirical observation: $n_{inv} \approx 1.5 n_{for}$

Properties of FOCI operator

Amount of evanescent filtering is inversely related to stability

$$\eta = \begin{cases} 0 \cdots \text{no evanescent filtering (} \sim 1000 \text{ steps)} \\ 1 \cdots \text{half evanescent filtering (} \sim 100 \text{ steps)} \\ 2 \cdots \text{full evanescent filtering (} \sim 50 \text{ steps)} \end{cases}$$

Operator tables

Since the operator is purely numerical, migration proceeds by construction of operator tables.

k_{\min}	$W_{nF}\left(k_{\min}\right)$
$k_{\min} + \Delta k$	$W_{nF}\left(k_{\min}+\Delta k\right)$
$k_{\min} + 2\Delta k$	$W_{nF}\left(k_{\min}+2\Delta k\right)$
• • •	• • •
k _{max}	$W_{nF}\left(k_{\max}\right)$
$k_{\min} = \frac{\omega_{\min}}{v}$ $\Delta k = \frac{\Delta \omega}{m_{\max}(v)}$ $k_{\max} = \frac{\omega_{\max}}{v}$	

mean(v)

 v_{\min}

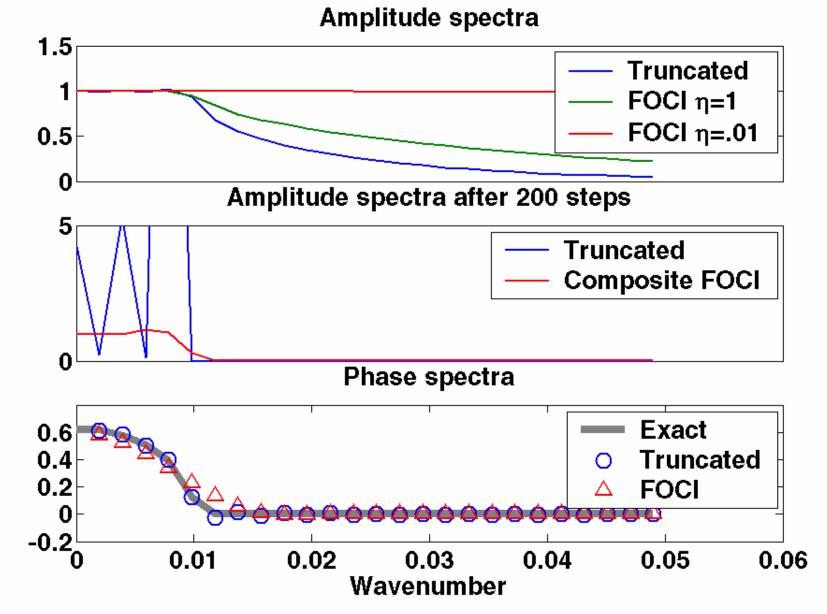
 $v_{\rm max}$

Operator tables

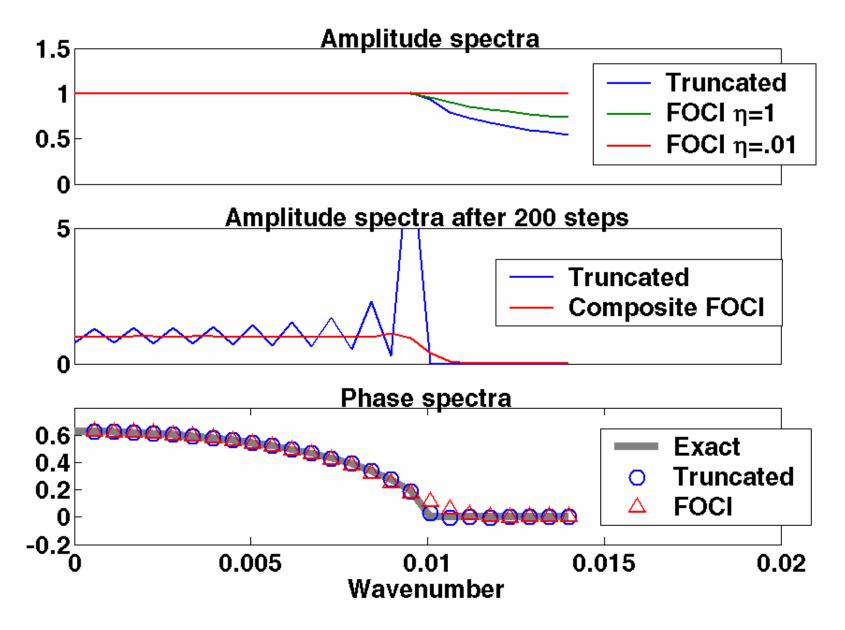
We construct two operator tables for small and large η . The small η table is used most of the time, with the large η being invoked only every nth step.

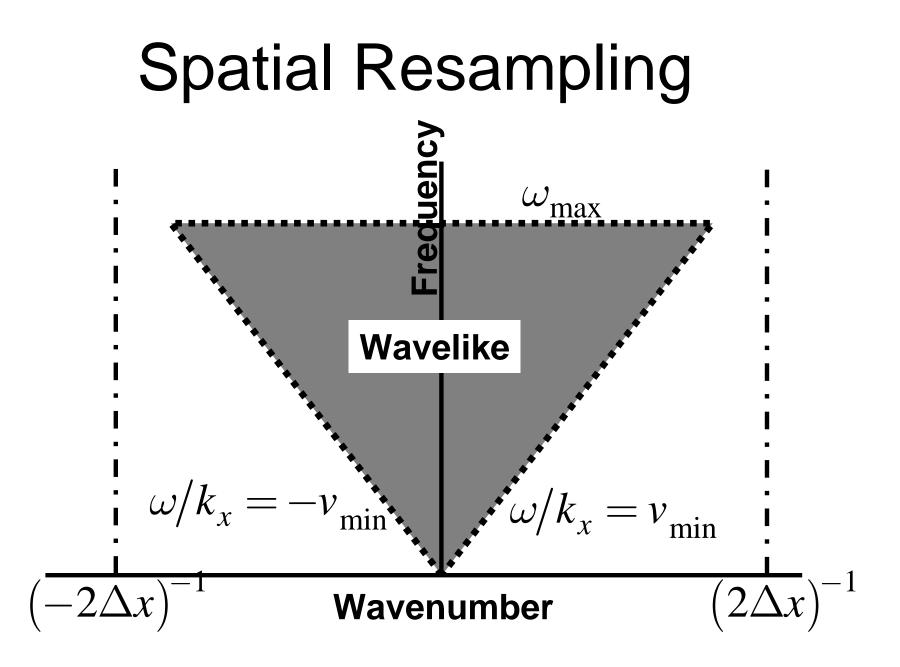
$$\eta = \begin{cases} 0 \cdots \text{no evanescent filtering (} \sim 1000 \text{ steps)} \\ 1 \cdots \text{half evanescent filtering (} \sim 100 \text{ steps)} \\ 2 \cdots \text{full evanescent filtering (} \sim 50 \text{ steps)} \end{cases}$$

Operator Design Example

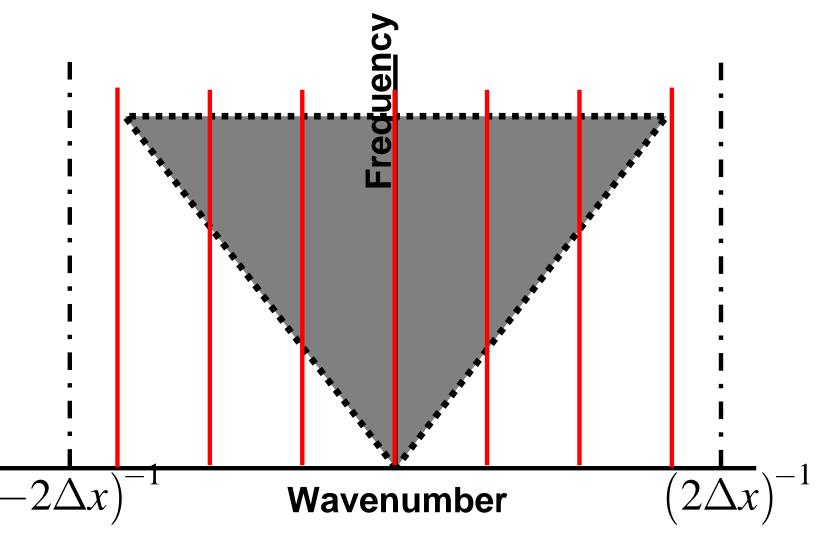


Improved Operator Design

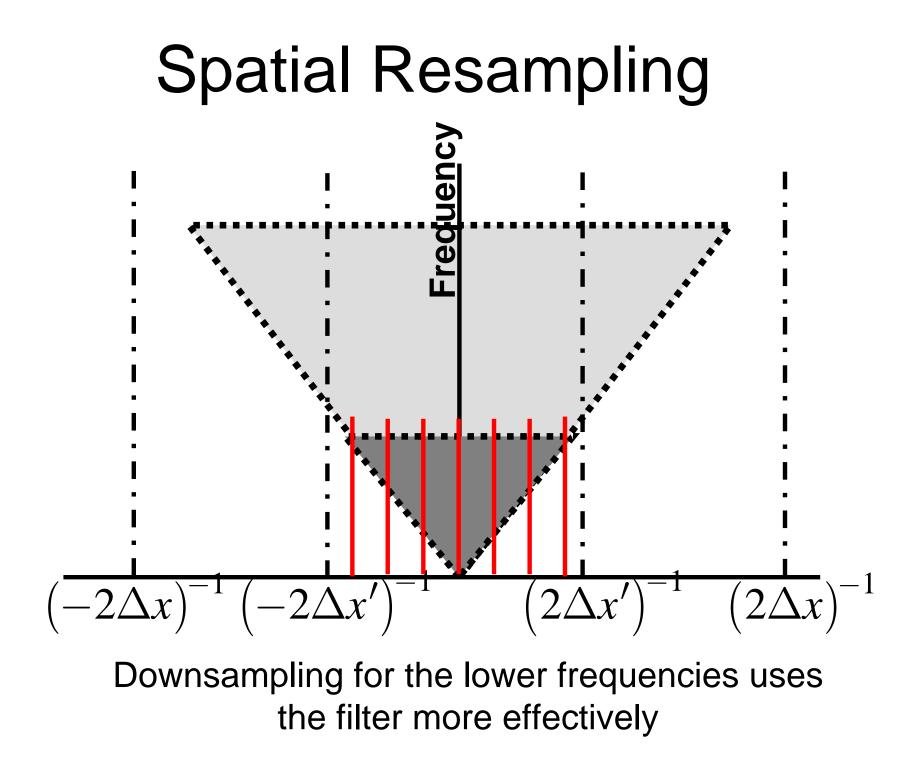


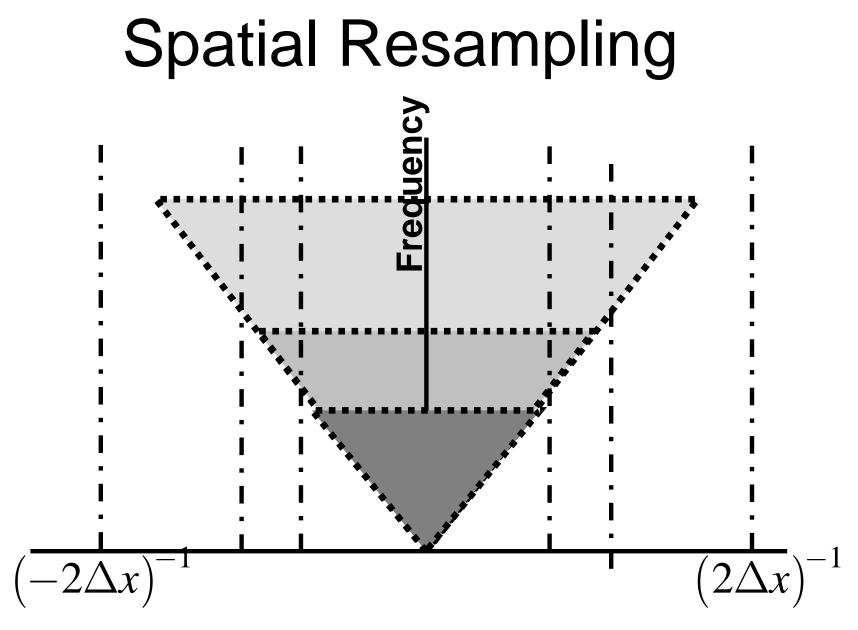


Spatial Resampling



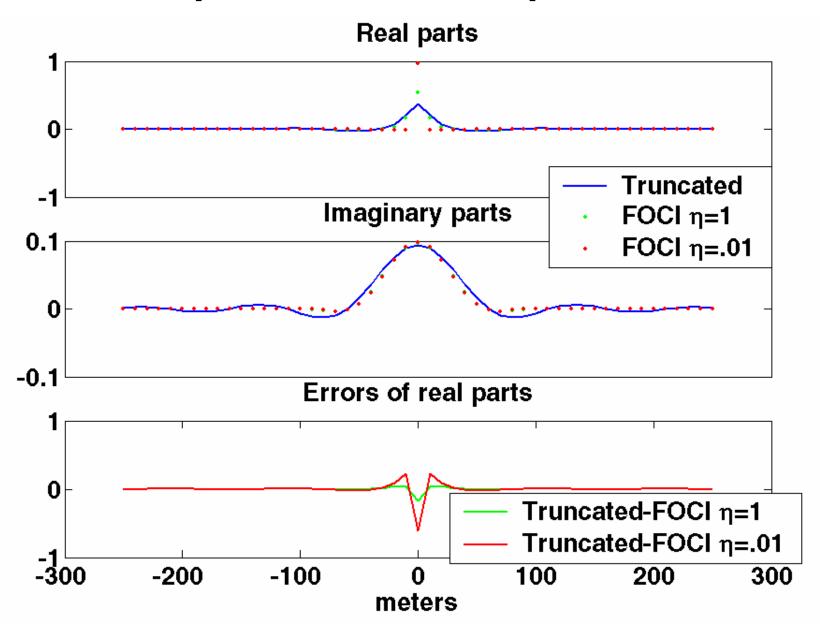
In red are the wavenumbers of a 7 point filter



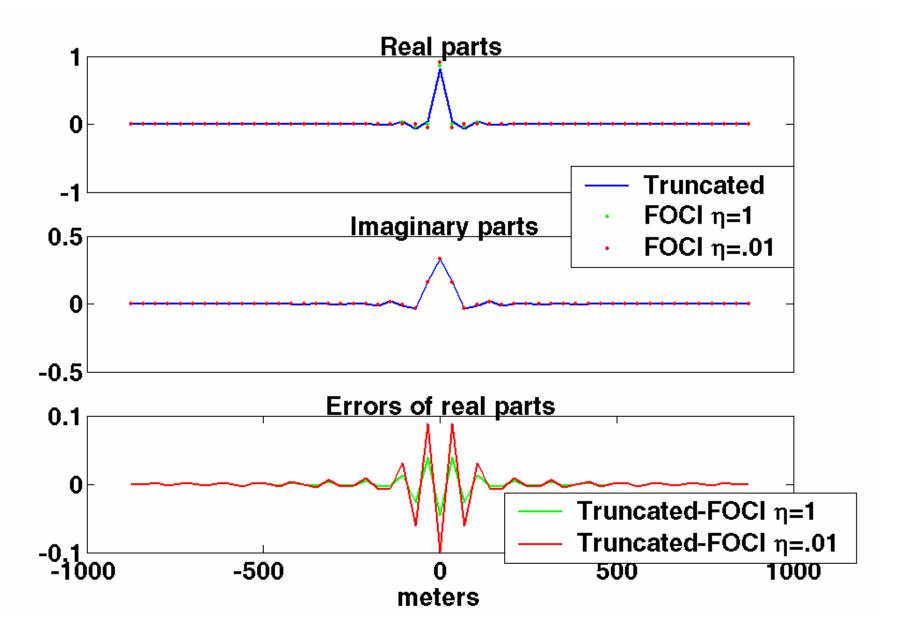


Spatial resampling is done in frequency "chunks".

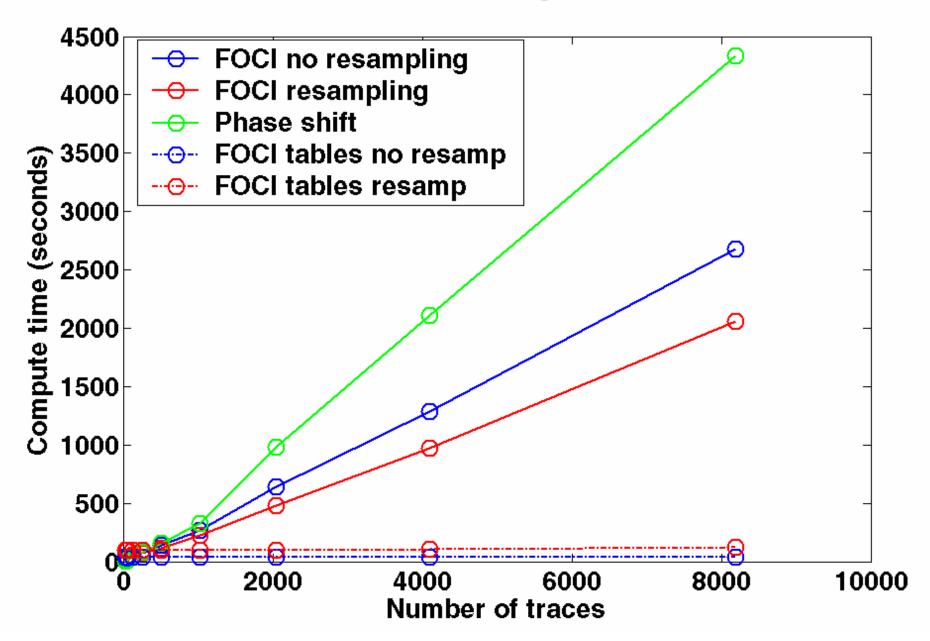
Operator in Space



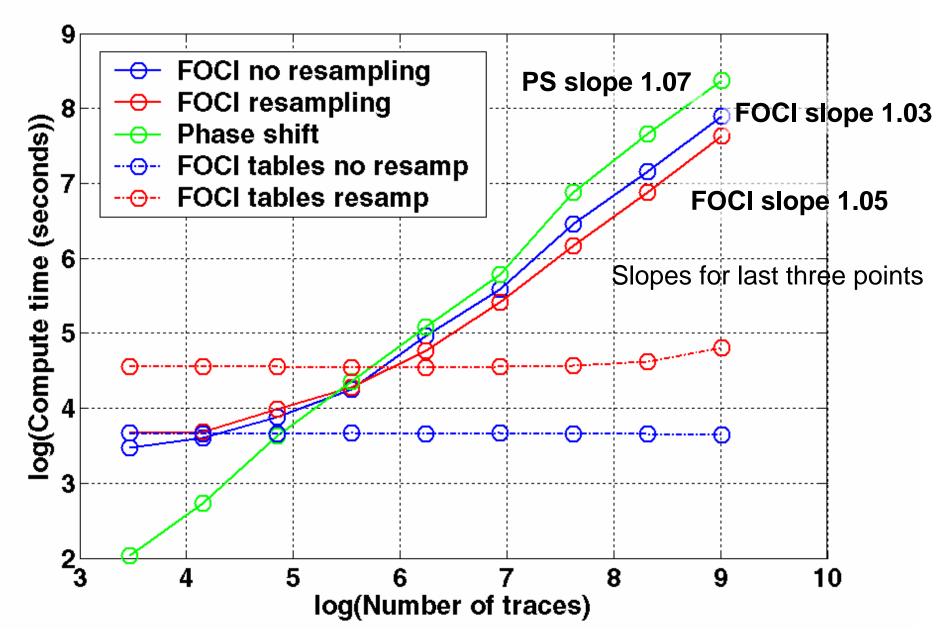
Improved Operator in Space



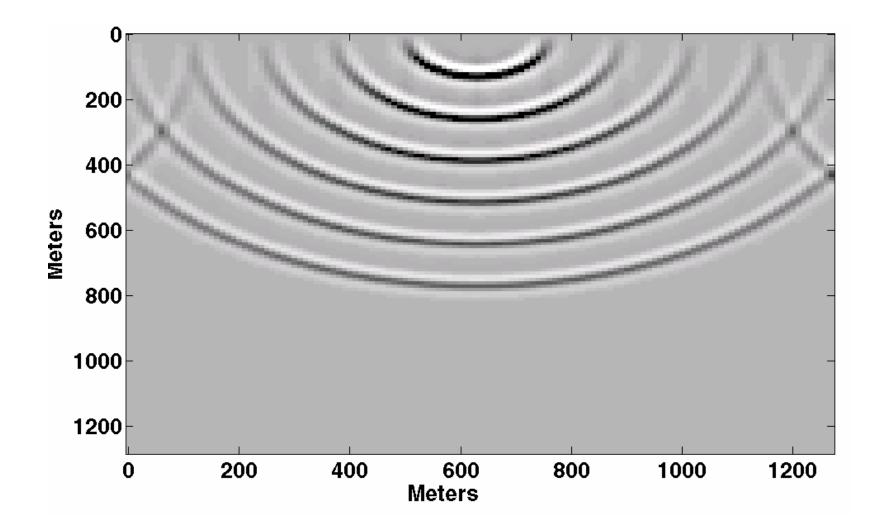
Run Time Experiment



Run Times log-log Scale

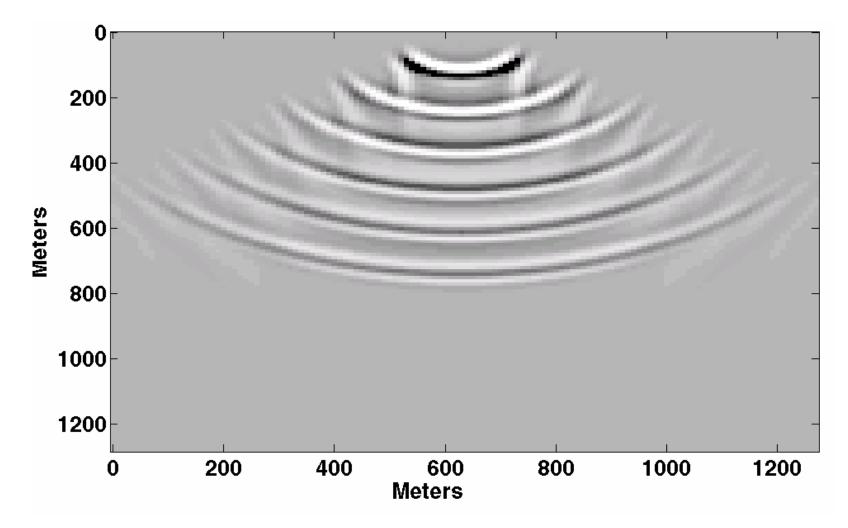


Phase Shift Impulse Response



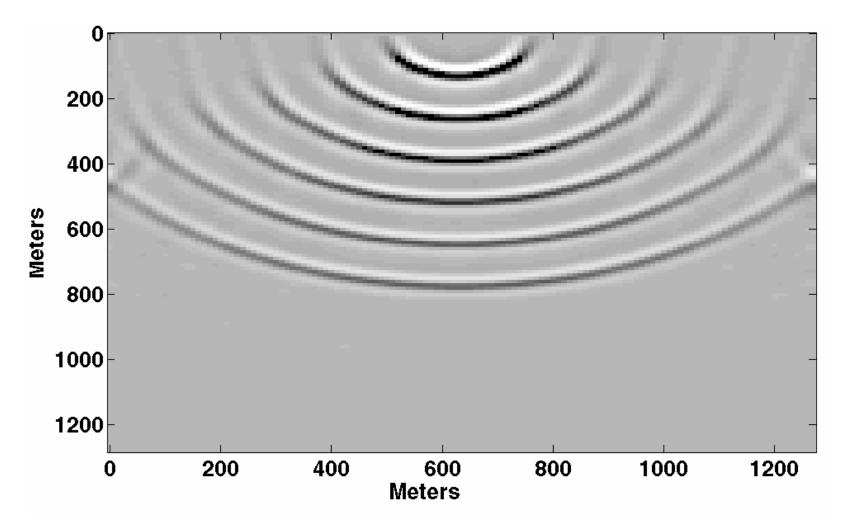
FOCI Impulse Response

nfor=7, ninv=15, (21 pt), no spatial resampling

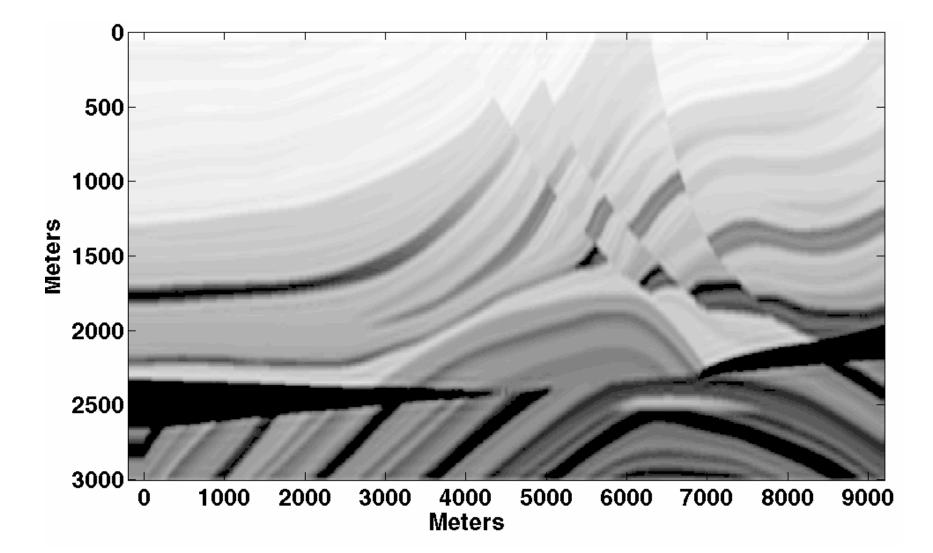


FOCI Impulse Response

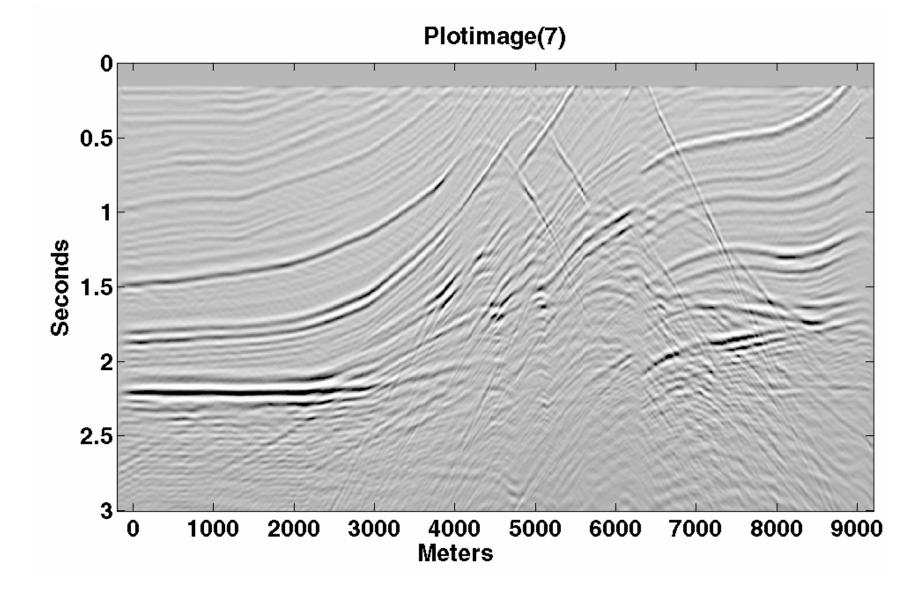
nfor=7, ninv=15, (21 pt), with spatial resampling



Marmousi Velocity Model

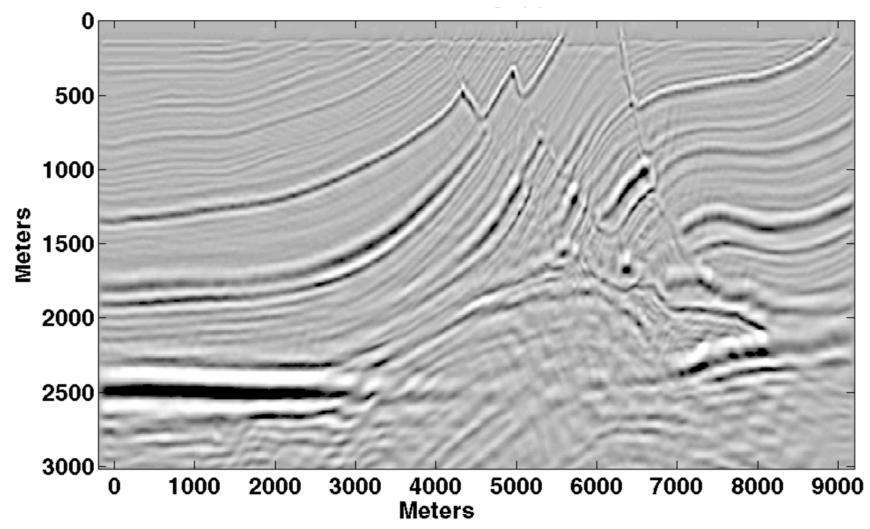


Exploding Reflector Seismogram

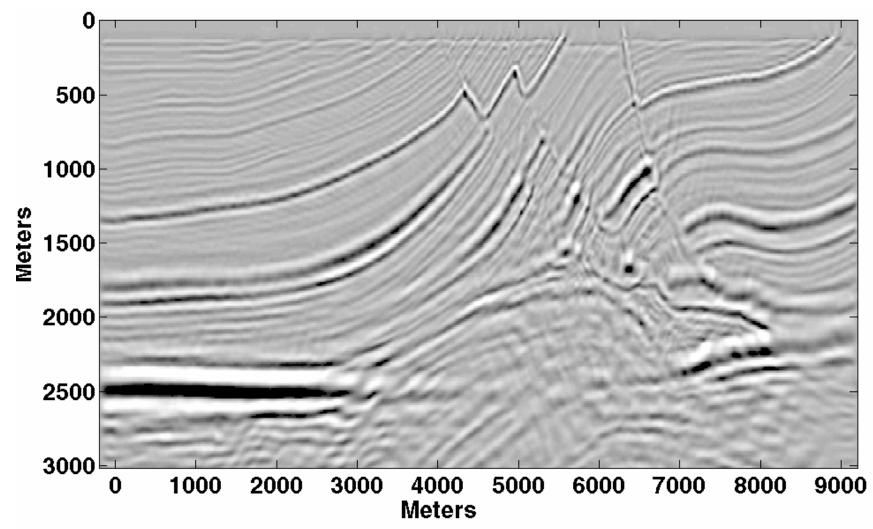


FOCI Post-Stack Migration

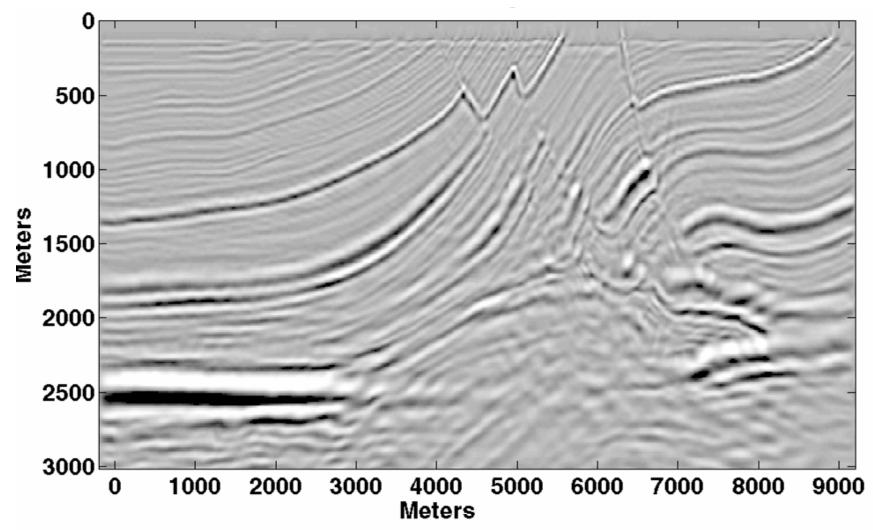
nfor=21, ninv=31, nwin=0



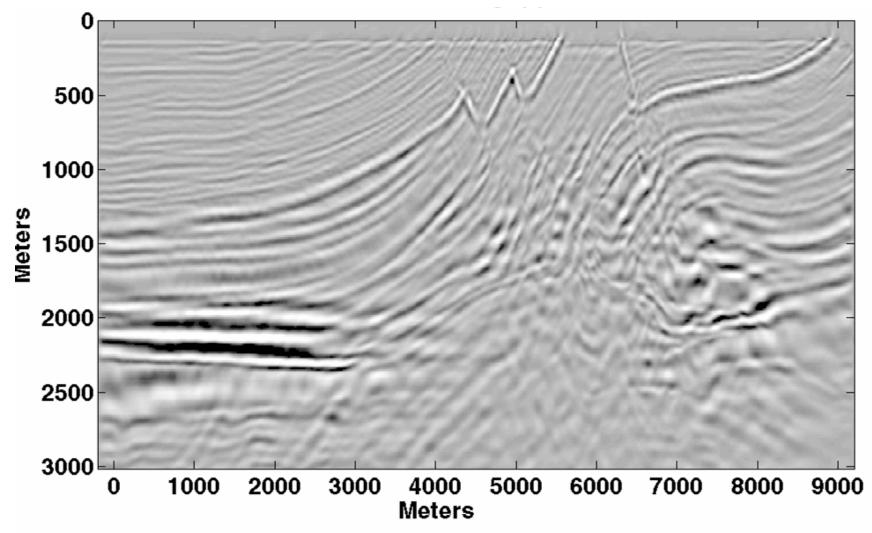
nfor=21, ninv=31, nwin=51



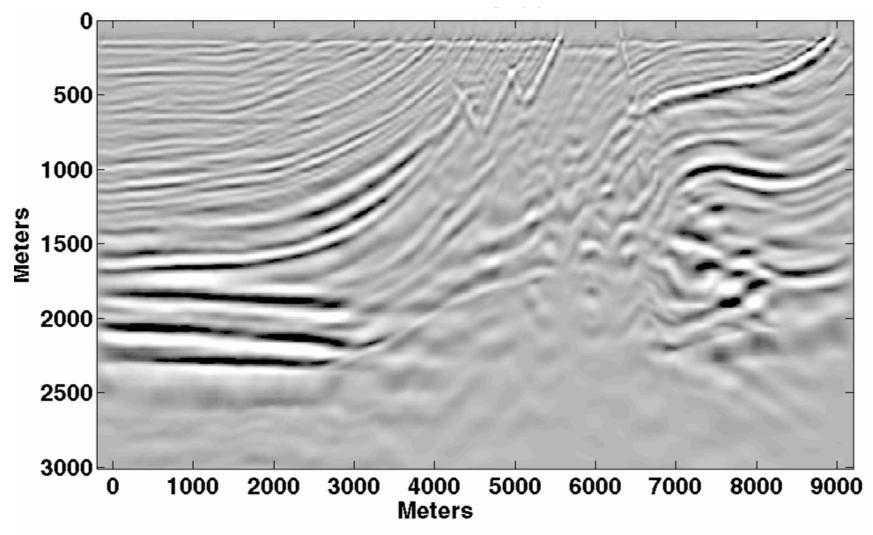
nfor=21, ninv=31, nwin=21



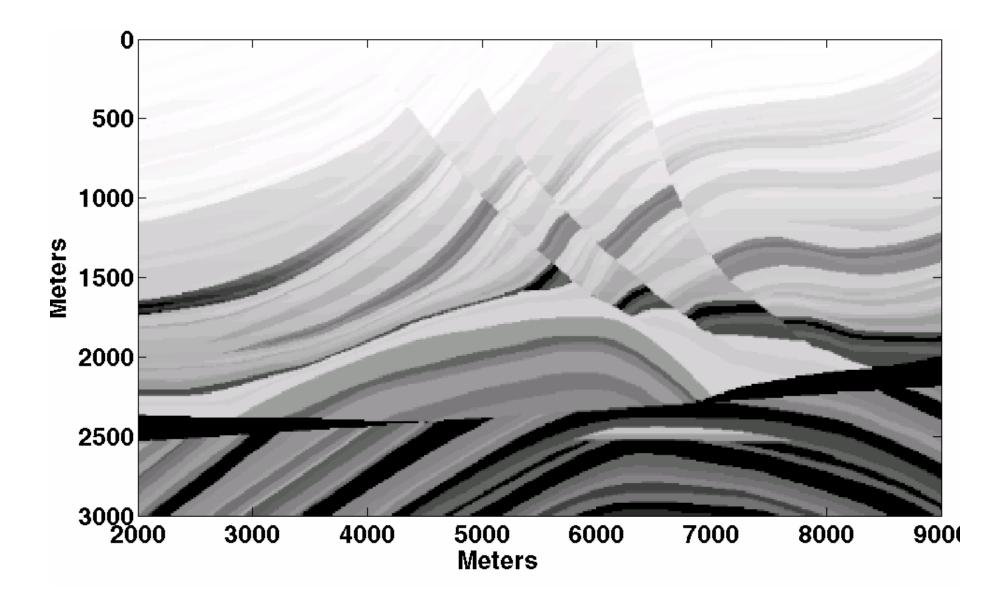
nfor=7, ninv=15, nwin=0



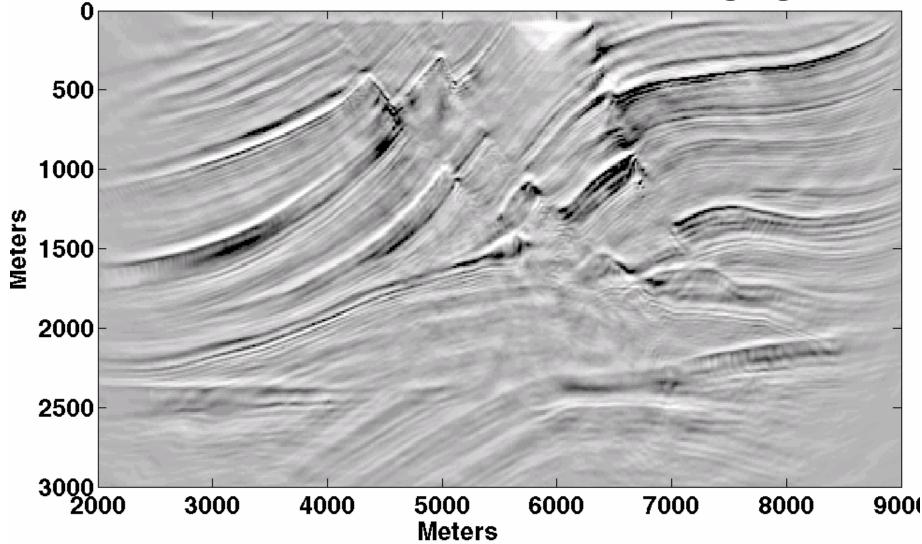
nfor=7, ninv=15, nwin=7



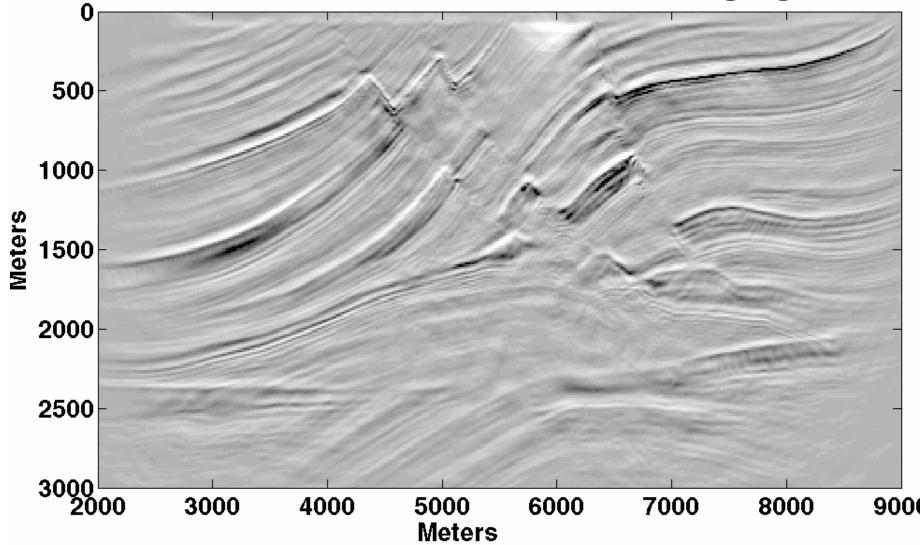
Marmousi Velocity Model

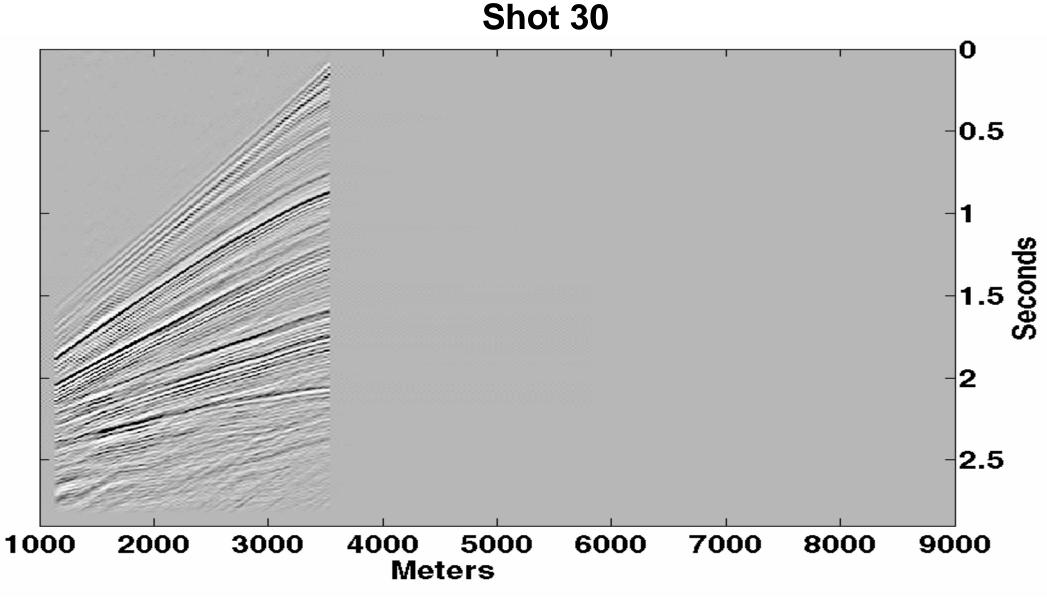


nfor=21, ninv=31, nwin=0, deconvolution imaging condition

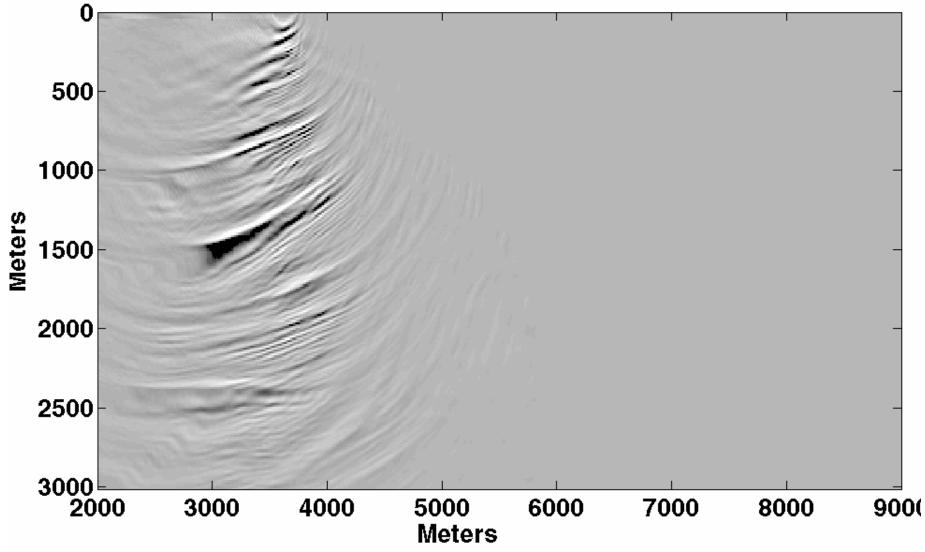


nfor=21, ninv=31, nwin=0, deconvolution imaging condition

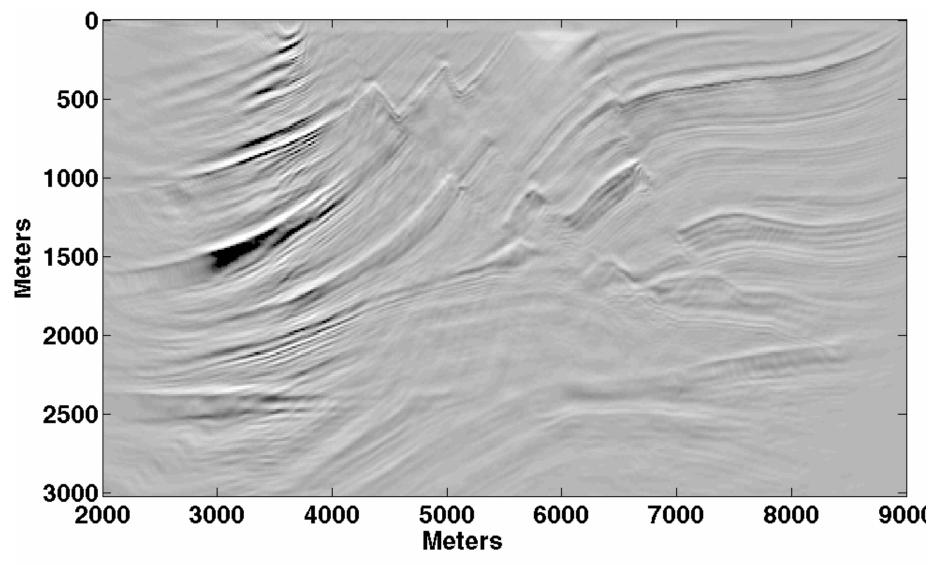




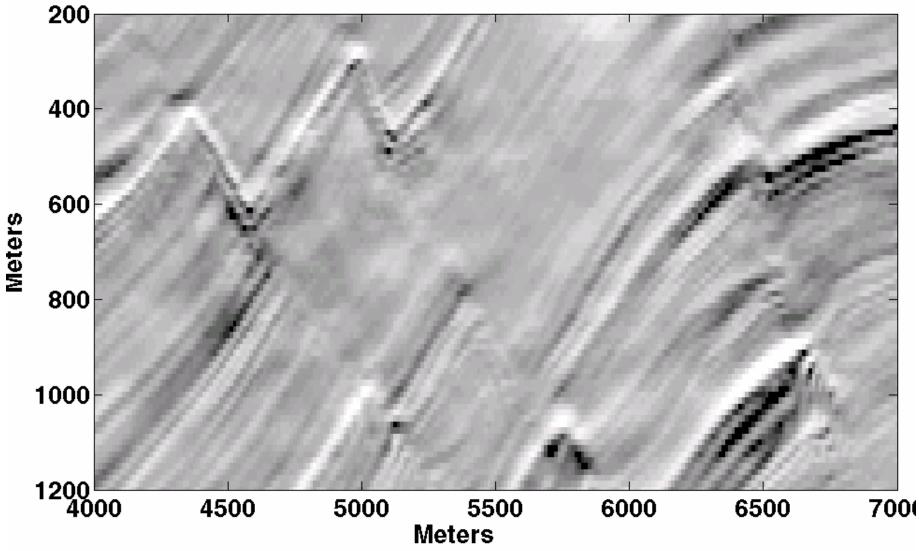
Shot 30



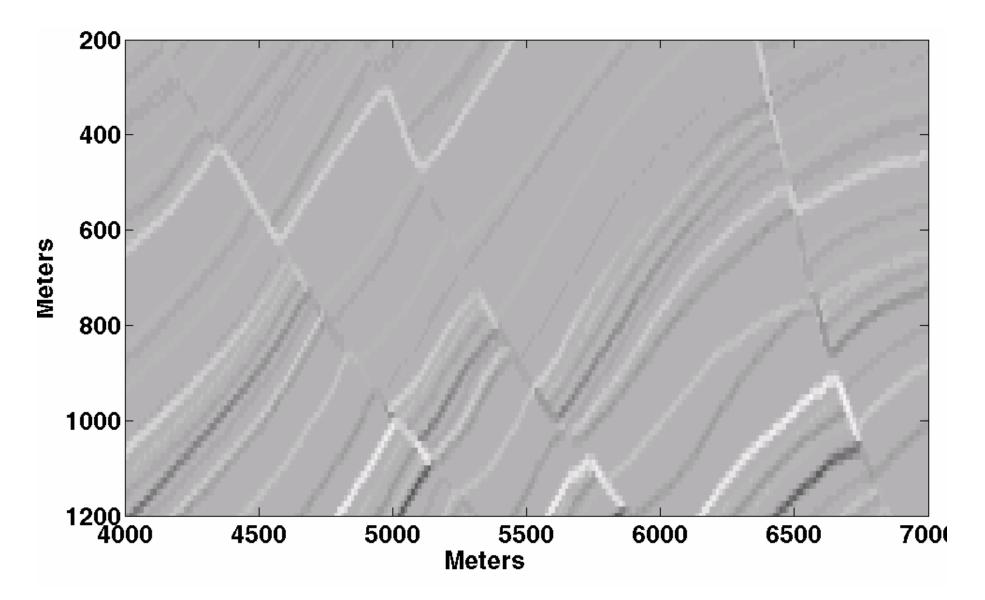
Stack +50*Shot 30



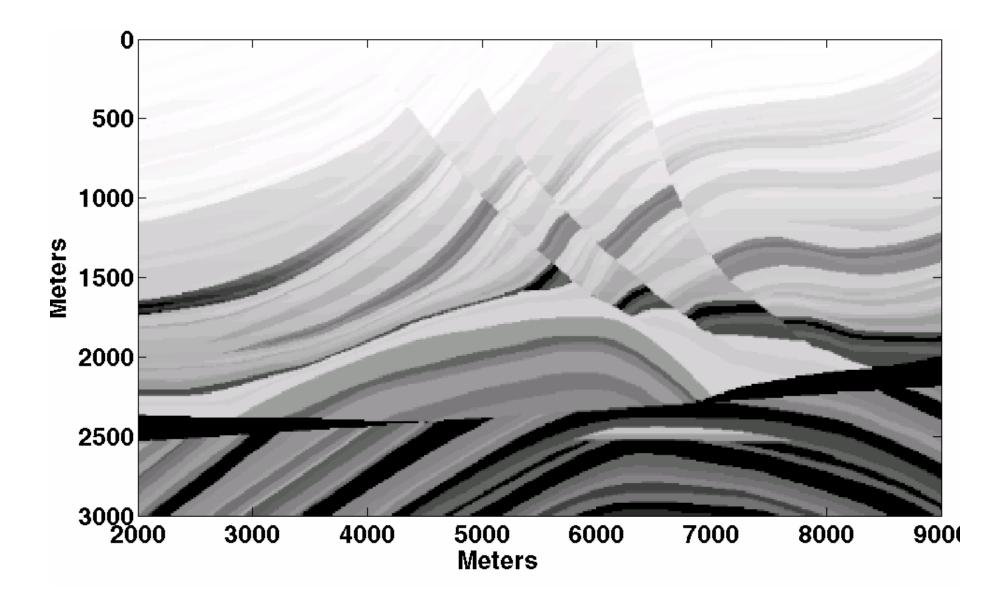
Deconvolution imaging condition



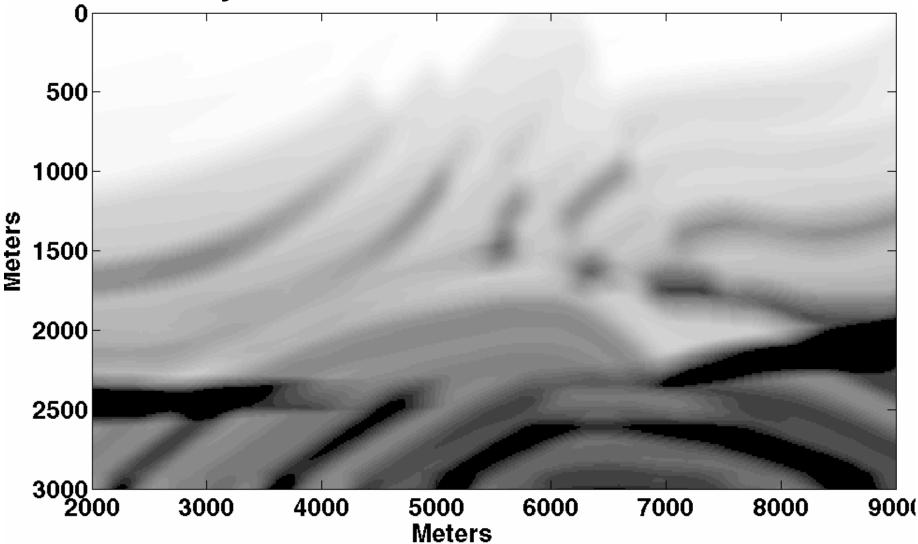
Marmousi Reflectivity Detail



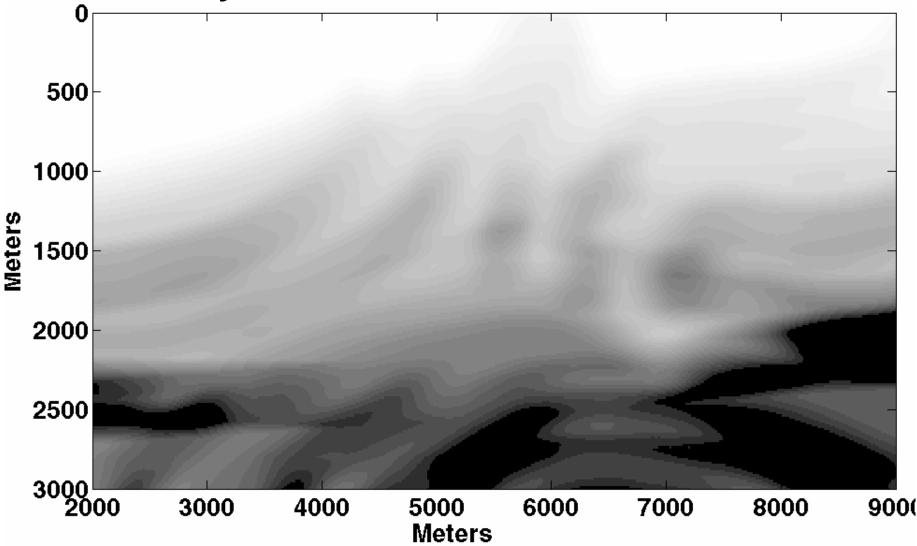
Marmousi Velocity Model



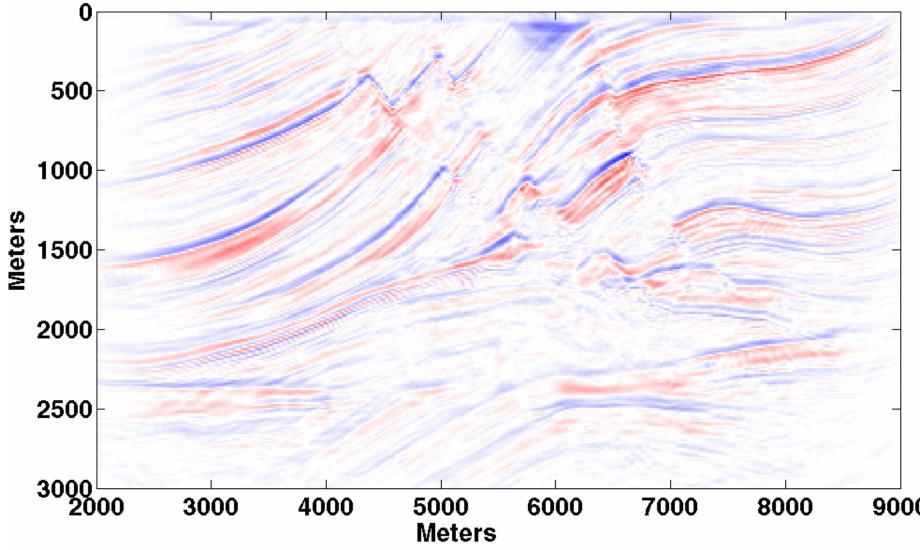
Velocity model convolved with 200m smoother



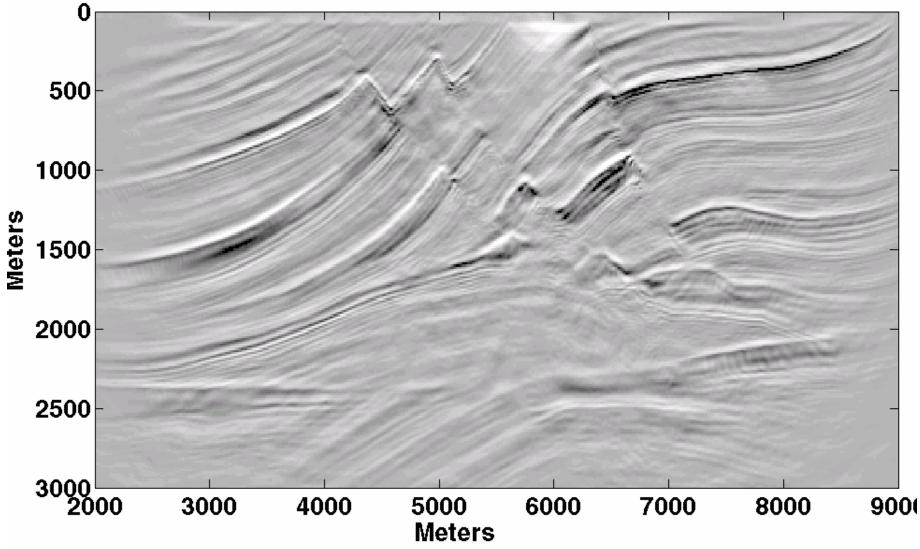
Velocity model convolved with 400m smoother



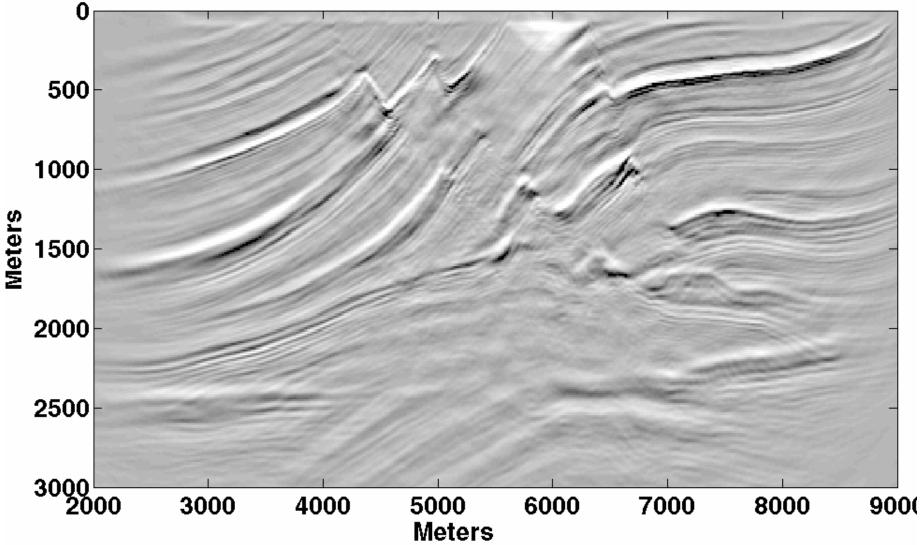
Exact Velocities



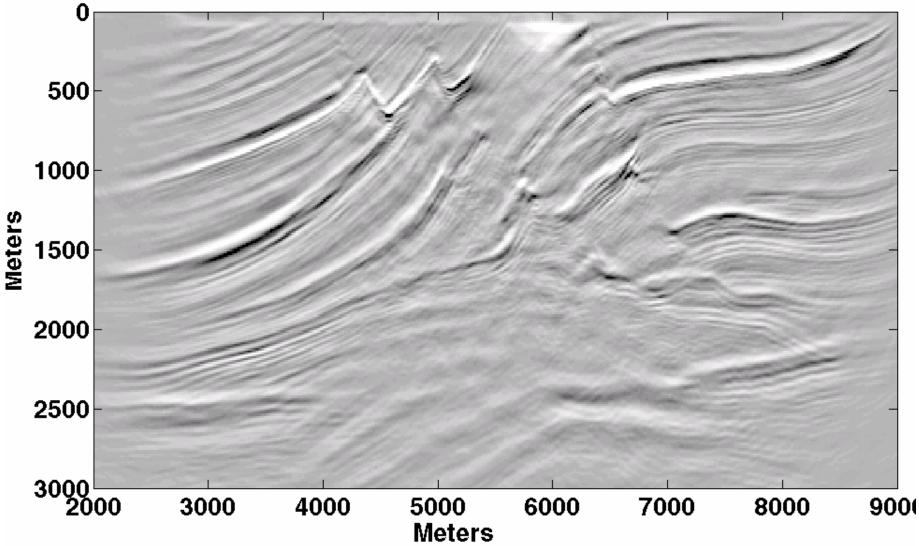
Exact Velocities



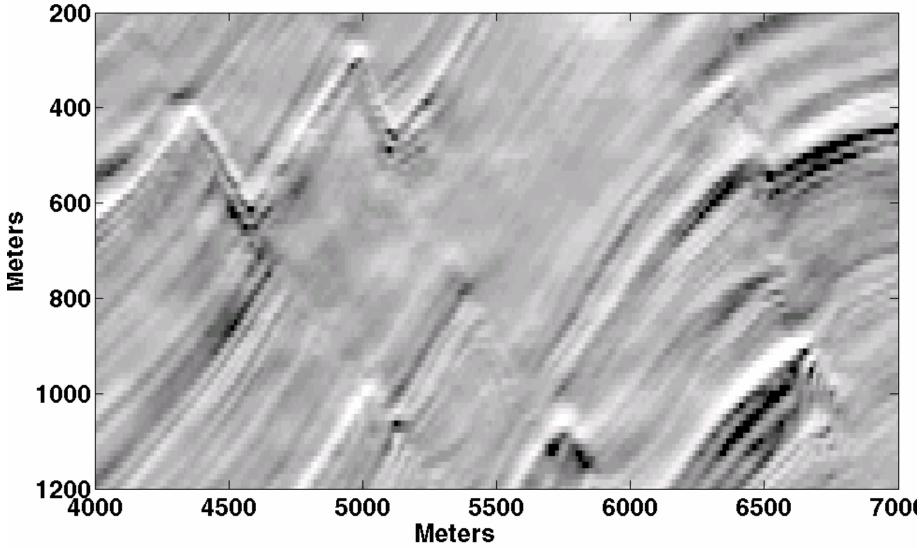
Velocities smoothed over 200m



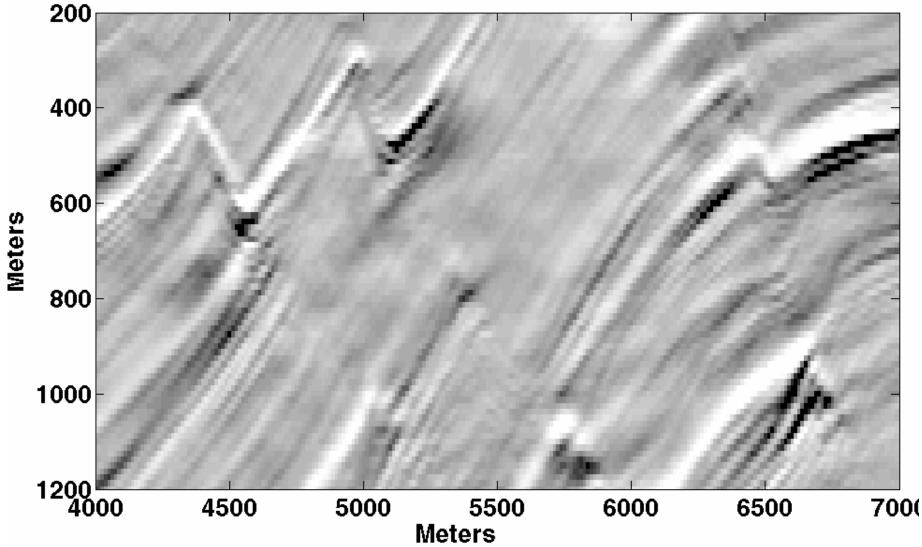
Velocities smoothed over 400m



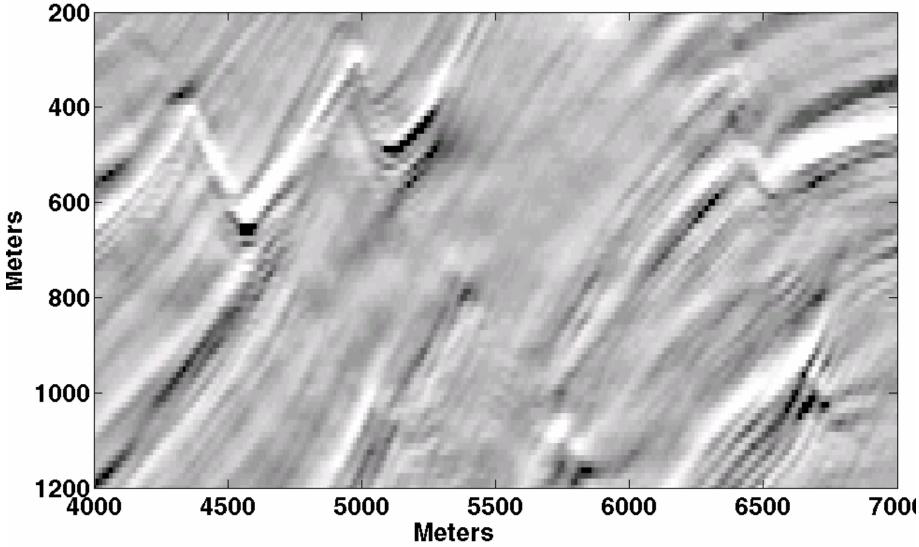
Exact Velocities



Velocities smoothed over 200m



Velocities smoothed over 400m



Run times

Full prestack depth migrations of Marmousi on a single 2.5GHz PC using Matlab code.

20 hours for the best result

1 hour for a usable result

Conclusions

Explicit wavefield extrapolators can be made local and stable using Wiener filter theory.

The FOCI method designs an unstable forward operator that captures the phase accuracy and stabilizes this with a band-limited inverse operator.

Reducing evanescent filtering increases stability.

Spatial resampling increases stability, improves operator accuracy, and reduces runtime.

The final method appears to be $\sim O(NlogN)$.

Very good images of Marmousi have been obtained.

Research Directions

Better phase accuracy.

Extension to 3D.

Extension to more accurate wavefield extrapolation schemes.

Migration velocity analysis.

Development of C/Fortran code on imaging engine.

Acknowledgements

We thank:

Sponsors of CREWES

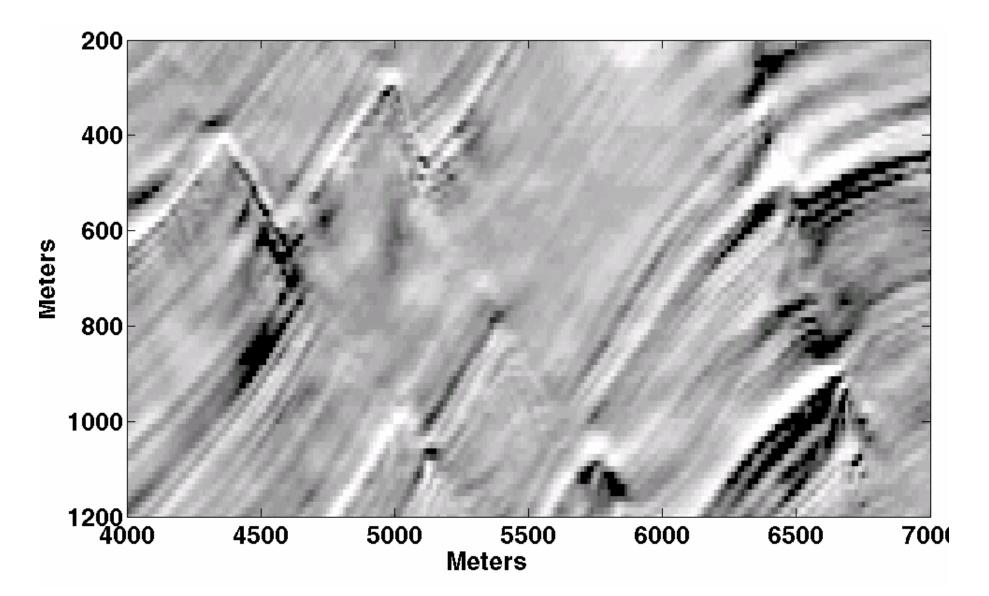
Sponsors of POTSI

NSERC

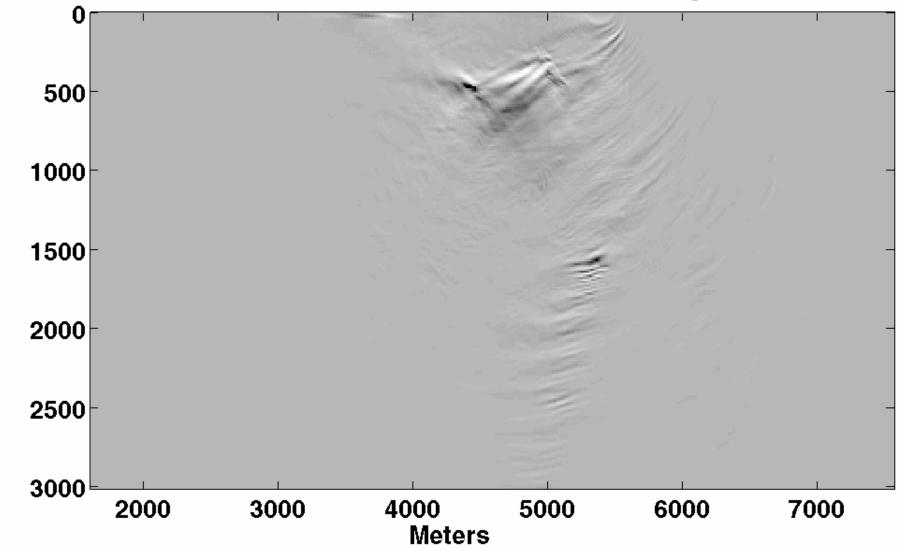
MITACS

PIMS

A US patent application has been made for the FOCI process.



nfor=21, ninv=31, nwin=0, deconvolution imaging condition With enhanced evanescent filtering



nfor=21, ninv=31, nwin=0, deconvolution imaging condition Previous evanescent filtering

