Automatic selection of reference velocities for recursive depth migration

Hugh Geiger and Gary Margrave

CREWES Nov 2004

POTSI* Sponsors:

KEY SEISMIC

*Pseudo-differential Operator Theory in Seismic Imaging

The problem:

- Many recursive wavefield extrapolators require a limited set of reference velocities for efficient implementation
- How should these reference velocities be chosen?

Objectives:

- Efficient computation
 - a minimum number of reference velocities
- Accurate wavefield extrapolation
 - reference velocities 'close' to model velocities

Some specific requirements

- PSPI lower and upper bounding velocities (v_{min}, v_{max})
 - ideally minimize large interpolations (wavefield is a weighted summation)
- Split-step more accurate focusing with a slower velocity

Basic approach 1: Linear progression

• choose an approximate velocity spacing dV $nV=round((v_{max}-v_{min})/dV)$

$$v_{step} = (v_{max} - v_{min})/nV$$

- what is a good choice for dV?
 - empirical testing required
 - reasonable for both low and high velocities?

Basic approach 2a: Geometric progression

- choose an appropriate percentage step v_{prent}
 v(i) = (1+v_{prent})*v(i-1)
 - Kessigner (1992) recommends v_{prcnt} =0.15
 - start at v_{min} for profile?
 - start at v_{min} for complete velocity model? (perhaps if using lookup tables)

Statistical method of Bagaini et al (1995)

- choose a preliminary dv (geometric?)
- equally spaced bins over $v_{min}: v_{max}$ (e.g. $nB_{temp} = 6$)
- bin the velocities to give probability density P_i , $\Sigma P_i = 1$
- optimal number of bins by statistical entropy $S=\Sigma P_i log P_i$ $nB_{opt} = round(exp(S)+0.5)$ (e.g. $nB_{opt} = 5$)

Probability distribution of velocity in temporary bins

- calculate cumulative probability distribution Y_i , $Y_i = \sum P_i$
- each optimal bin to hold 1/nB_{opt} (e.g. 0.2)
 - start at v_{min}
 - linearly interpolate from temporary bin boundaries (e.g. at 0.2, 0.4, 0.6, 0.8)
- · Is this optimal? bins not necessarily close to peaks

New peak search method

- cluster velocities
 - new cluster where jump exceeds $v_{prcntmax}$
- Now, within each cluster:
- use Bagaini method for optimal number of bins nB_{opt}
- · create a new probability distribution with finer bins
- descending sort of P_i 's, choose all P_i 's where $\Sigma P_i < 0.9$
- place v_{temp} at all P_i 's, include v_{min} , v_{max}
- · use 'greedy search' to combine closely spaced Pi's
 - start search at bin spacing of 1, then 2, etc.
 - weighted linear average to move v_{temp}
- stop when at $v_{temp} = nB_{opt}$

ClusterVels Bagaini: vPrcntStep=0.09, step > 1.5*vPrcntStep, 6 refvels

ClusterVels mod Bagaini: vPrcntStep=0.09, step < 1.5*vPrcntStep, 7 refvels

ClusterVels Peak Search2: vPrcntStep=0.09, step > 1.5*vPrcntstep, 6 refvels

Marmousi bandlimited reflectivity

PSPI with velocity clustering algorithm

data: deconpr 50 13 .0002 whiten [4 16 35 60] static -60ms shot: ricker fdom 24 ghost array phsrot -68 (to zp) whiten [4 16 35 60]

Marmousi bandlimited reflectivity

Marmousi shallow reflectivity

Linear

Geometric

Bagaini

PSPI reference velocities: Bagaini et al (1995)

Peak Search

distance m

Modified Bagaini: clusters

Marmousi shallow reflectivity

Linear

Geometric

Bagaini

Peak Search

Modified Bagaini: clusters

Static shifts - affect focusing

(figures courtesy J. Bancroft)

With a static shift of the source and/or receiver wavefield, the extrpolated wavefields will not be time coincident at the reflector, causing Focusing and positioning errors.

Marmousi source array: 6 airguns at 8m spacing, depth 8m receiver array: 5 hydrophones at 4m spacing, depth 12m

Modeled with finite difference code (courtesy Peter Manning) to examine response of isolated reflector at 0° and ~45° degree incidence

After free-surface ghosting and water-bottom multiples, the Marmousi airgun wavelet propagates as ~24 Hz zero-phase Ricker with 60 ms delay.

Deconvolution

- The deconvolution chosen for the Marmousi data set is a simple spectral whitening followed by a gap deconvolution (40ms gap, 200ms operator)
- this yields a reasonable zero phase wavelet in preparation for depth imaging

- the receiver wavefield is then static shifted by -60ms to create an approximate zero phase wavelet
- if the receiver wavefield is extrapolated and imaged without compensating for the 60ms delay, focusing and positioning are compromised, as illustrated using a simple synthetic for a diffractor

diffractor imaging with no delay

diffractor imaging with 60ms delay

reflectivity x: 4000-6000 z: 0-1000

PSPI whiten [4 16 35 60] cvel .2% clip 6

data: deconpr 50 13 .0002 whiten [4 16 35 60] static Oms shot: ricker fdom 24 ghost array phsrot -68 (to zp) unwhiten

PSPI whiten [4 16 35 60] cvel .2% clip 6

data: deconpr 50 13 .0002 whiten [4 16 35 60] static -16ms shot: ricker fdom 24 ghost array phsrot -68 (to zp) unwhiten

PSPI whiten [4 16 35 60] cvel .2% clip 6

data: deconpr 50 13 .0002 whiten [4 16 35 60] static -32ms shot: ricker fdom 24 ghost array phsrot -68 (to zp) unwhiten

PSPI whiten [4 16 35 60] cvel .02% clip 6

data: deconpr 50 13 .0002 whiten [4 16 35 60] static -56ms shot: ricker fdom 24 ghost array phsrot -68 (to zp) unwhiten

PSPI whiten [4 16 35 60] cvel .02% clip 6

data: deconpr 50 13 .0002 whiten [4 16 35 60] static -56ms shot: ricker fdom 24 ghost array phsrot -45 (to zp) whiten [4 16 35 60]

Marmousi bandlimited reflectivity - shifted to match Zhang et al. (2003)

Zhang et al. (2003) - positioning not accurate

PSPI reference velocities: peak search - shifted to match Zhang et al. (2003)

Marmousi bandlimited reflectivity (as before)

Marmousi shallow reflectivity

PSPI creates discontinuities at boundaries – smoothing may be good!

Conclusions

- Preprocessing to zero phase, shot modeling, and correction of static shifts important for imaging
- Optimal selection of reference velocities desired to maximize accuracy and efficiency of wavefield extrapolation
- Linear or geometric progression does not take into account distribution of velocities
- Bagaini et al. method does not necessarily pick reference velocities close to model velocities
- New peak search method selects reference velocites close to model velocities

Conclusions (cont)

- However, Bagaini method performs well on Marmousi!
- Our PSPI implementation provides a good standard for judging our other algorithms