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Introduction
Drawbacks to scalar extrapolation for elastic 

migration:
• Neglects mode conversions 
• Fails to keep track of polarization changes
• Difficult to fully account for anisotropic 

effects, in particular shear wave splitting 
(birefringence) for HTI media
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Variation of Polarization with 
Slowness: HTI



Introduction
Standard processing of birefringent shear 

waves:
• Assumes vertical incidence waves
• Neglects variation of  shear wave 

polarization with propagation angle
• Neglects changes in velocity, (and time 

delay) with propagation angle
• Often neglect variations of symmetry axis 

with depth
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Theory

First order, 6x6 form of elastic wave-equation:

A = 6x6 fundamental elasticity matrix
depends on horizontal slowness p, frequency ω and 
elastic constants

u = displacement vector
τ = vertical traction vector
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Theory

Diagonalize:

vU = up-going wave-mode vector
vD = down-going wave-mode vector
Λ = diagonal matrix of eigenvalues (vert. slowness)
D = eigenvector matrix (from polarizations)

Solution:
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V(z) Extrapolation

p : horizontal slowness
zn : nth depth level
v : wave-mode vector in k-ω domain ( k = pω )
Λn : diagonal matrix of eigenvalues (vert. slowness)
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V(z) Extrapolation
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p : horizontal slowness
zn : nth depth level
v : wave-mode vector in k-ω domain ( k = pω )
Λn : diagonal matrix of vertical slowness (P, S1, S2)
b : displacement-stress vector in k-ω domain
Dn : eigenvector matrix (from polarizations)

decompositionrecomposition extrapolation



V(z) Extrapolation
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V(x,z) Extrapolation Operator
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PSPI Elastic Extrapolation
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Spatial Interpolation: PSPI

Standard PSPI
– Extrapolate with N reference velocities
– Interpolate based on actual velocity at each spatial 

position
• Isotropic elastic case: dependence on VP and 

VS is (almost) separable 
⇒ cost ∝ NVp + NVs OK

• HTI elastic case: non-separable dependence 
on 6 parameters

⇒ cost ∝ (NVpNVs)(NεNδNγ)Nφ BAD!



Spatial Interpolation: PSPAW

“Phase shift plus adaptive windowing”
– Windows (“molecules”) constructed from 

elementary small windows (“atoms”)
c.f. Scalar adaptive method (Grossman et al., 2002)

1. Compute phase slowness for P, S1, S2 modes 
as a function of lateral position and phase angle

2. For each molecule, atom acceptance based on: 
• Maximum phase error over slownesses
• Maximum variation of HTI symmetry axis

3. Begin new molecule if either criteria are violated
⇒ Cost ∝ # Windows (usually OK)



Adaptive Windowing:

Phase slowness for HTI to Isotropic transition model



Imaging Condition
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Isotropic Model 



Isotropic Model 



Isotropic Data P-P Image (PSPAW)



Isotropic Data P-S Image (PSPAW)



AVO on Flat Reflector from 
Migration of Single Shot

PP

PS



HTI Model 
Iso: “S1”=SH=90°, 

“S2”=SV=0°

NOTE: In following images, we (arbitrarily) assign SH 
mode to S1, and SV to S2, for isotropic layers.

HTI: S1=-45°, S2=45°

inline

Symmetry axis



HTI Data P-P Image (PSPAW)



HTI Data P-S1 Image (PSPAW)

Migrated with true HTI model



HTI Data P-S1 Image (PSPAW)

Migrated with isotropic model

Incorrect Imaging  of isotropic interface
(no SH mode should exist)



HTI Model P-S2 Image (PSPAW)

Migrated with true HTI model



HTI Data P-S2 Image (PSPAW)

Migrated with isotropic model

Focussing degrades 



The Marmousi-2 Elastic OBC Model
From Martin, Marfurt and Larsen, “Marmousi-2: an updated model for 

the investigation of AVO in structurally complex areas”, SEG 2002

Original (acoustic)
Marmousi model



Marmousi-2 Mid-section:
P-Impedance

Water Layer



Marmousi -2 Mid-Section:
PP Image (PSPI)

Water layer 
multiples

Diffraction
Noise



Marmousi-2 Mid-section:
S-Impedance

Water Layer: IS=0



Marmousi -2 Mid-Section:
PS Image (PSPI)

Water layer 
Multiple?



Marmousi-2 Shallow: IP

Gas Charged 
Sand

Water Wet 
Sand



Marmousi -2 Shallow: PP Image



Marmousi -2 Shallow: PS Image



Marmousi-2 Shallow: IS

Water Wet 
Sand

Gas Charged 
Sand



Conclusions
• Developed elastic wave-equation migration 

applicable to HTI anisotropy
• AVO response compares well to Zoeppritz for flat 

reflector under isotropic layer
• Two PSPI-type algorithms for spatial variations

– “Standard” PSPI for isotropic cases
– PSPAW for HTI

• HTI migration focuses S1 and S2 images - isotropic 
migration fails to

• Marmousi tests demonstrate:
– Multiples and aliased noise are problematic 
– Imaging in structural area: PP better than PS
– Shallow resolution of PS better than PP
– Fluid lithology discrimination
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