

Radon transforms and multiple attenuation of White Rose data

Zhihong Cao John Bancroft

Outlines

- Introduction to the Radon transform
 - Definition
 - Problems of the transform
- The semblance-weighted Radon method
- Data examples
 - Synthetic data
 - Real data
- Conclusions
- Acknowledgements

Introduction: Definition

- -The Radon transform is defined as an integration of data along certain paths: such as hyperbola or parabola
- -Basically, a point in the Radon domain stands for an event in the CMP domain
- -Events with different velocities, such as primaries and multiples, map to different points in the Radon domain

Introduction: Definition

Parabolic Radon transform in equations:

Forward transform

$$u(q,\tau) = \sum_{h} d(t = \tau + qh^2, h)$$

 $\mathbf{u} = \mathbf{L}^{\mathrm{T}} \mathbf{d}$

- Inverse transform

$$d(t,h) = \sum_{q} u(\tau = t - qh^{2}, q)$$

$$d = Lu$$

Problem 1: Smearing

Why smearing

CMP gather

Radon panel

- -Near offsets data are repeatedly transformed into the Radon domain;
- -Near offsets energy sharing causes smearing problem.

Problem 2: data loss

 Radon transform is not an orthogonal algorithm, which means we lose data when we perform the Radon transform.

0.4

Forward

Trivers

Forward

Smear

Objectives:

Reduce the smearing problem in the Radon domain and improve the resolution

Prevent data loss

Step 1 - weighting

- Weighting the transform with the semblance of the input gather;
- Semblance is defined in a similar way with the Radon Transform. The only difference is that semblance is independent of amplitudes of events and it ranges from 0-to-1;

→ Step 2 - sorting

- Find out the most important traces in the Radon domain;
- First transform data along these important traces and remove the corresponding data from the input gather.

Forward Radon transform:

$$u(q,\tau) = \sum_{h} d(t = \tau + qh^2, h)$$

Semblance:

$$S(q,\tau) = \frac{\sum_{l} \sum_{h} \left(d\left(t = \tau + qh^{2}, h\right)\right)^{2}}{N_{h} \sum_{l} \sum_{h} d^{2}\left(t = \tau + qh^{2}, h\right)}$$

- Same integration paths with the Radon transform;
- Values are normalized to 0-to-1, dependent of amplitudes;
- Offers coherency measurement of events;
- Weight the Radon transform with semblance will improve the Radon resolution.

CMP gather

Radon panel

- -Near offsets data are repeatedly transformed into the Radon domain, which causes smearing problem;
- -How to avoid transforming data repeatedly?
- -If it is avoided, can we reduce the smearing?

- -Once a Radon panel is obtained by the semblance-weighted method, energy along each trace is estimated;
- -A new turn of Radon calculation is first performed along the most powerful trace and corresponding data will be removed from the input.

Example: synthetic data

NMO-corrected CMP gather

Two events

20 ms between the peaks

AVO effect

Example: synthetic data

- Two things: resolution and data loss
- Reconstructed Gather = Gather obtained by inverse transforming the Radon Panel
- Residual Gather = Original Gather Reconstructed Gather

The tool to examine if any data loss or how much data loss

The less energy this gather contains, the less data loss happens.

Example: synthetic data

Methods:

- Least-squares solution (Thorson and Claerbout, 1985; Hampson 1986; Beylkin,1987; Yilmaz, 1989)
- Frequency domain high resolution method (Sacchi and Ulrych , 1995)
- Semblance-weighted Radon transform (Ng and Perz, 2004)

Least-squares solution

Radon Panel

Residual Gather

Thorson and Claerbout (1985), Hampson (1986), Beylkin (1987), Yilmaz (1989)

Frequency domain high-res method

Radon Panel

Residual Gather

Sacchi and Ulrych (1995)

Semblance weighted Radon method

Radon Panel

Residual Gather

Synthetic Data: multiple attenuation

If primaries are muted, a multiple only CMP gather can be reconstructed from the residual energy.

Synthetic Data: multiple attenuation

Muting primaries in the Radon domain

Reconstructed multiple only gather

Primary only gather by subtracting ...

Demultipled Gather

Velocity Analysis

Multiple Reflections

Conclusions

- The three Radon methods examined can preserve data well;
- The semblance weighted high resolution Radon method gives the best resolution in the Radon panel;
- The Radon transform is a very powerful application on multiple attenuation as long as multiples have different velocities from primaries.
- After demultipled, velocity analysis becomes easy work.

Acknowledgements

- ◆ Mark Ng (GeoX) and Daniel Trad (Veritas DGC)
- ◆ CREWES staffs
- ◆ CREWES Project and CREWES Sponsors
- ◆ University of Calgary, SEG and CSEG