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Mode Conversion of an Incident P-wave
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Consider an interface
between two different
geological formations,
shown on the left.

An incident P-wave on
the boundary produces
P and S reflected and
transmitted waves.

This is called mode
conversion, and we
wish to compute the
amplitudes of each ray.



Linearized approximations to Zoeppritz

1 Zoeppritz (1919) solved for the amplitudes of the
reflected and transmitted waves, giving a set of four
equations with four unknowns.

[] Various authors have derived linearized
approximations to the Zoeppritz equations which
Involve the sum of three elastic parameter terms.

1 The various combinations are:

.,V and p (Aki-Richards, 1980, Wiggins et al., 1983,
Fatti et al., 1994)

B\, pand g, or Poisson’s ratio (Shuey, 1985)
B 1, u(Lamé parameters), and p. (Gray et al., 1999)
B K, u (Bulk and shear modulus), and p. (Gray et al.)



The general linearized equation

L1 All of the linearized approximations can be
written in the same form as:
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where the scaling terms a, b, and c are functions of @
and in-situ (Vp/Vs)?, to be called 32, the p, terms are
the average parameter values across the boundary,

and the Ap, terms are the differences of the parameter
values across the boundary.

Ll Let us briefly review the terms in the various

equations.




Parameter term summary
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Scaling term summary
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Applying the various equations

[l These equations can be used either in modeling or to
extract parameter estimates from seismic data.

Angle
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To extract parameters, we pick
the amplitudes at a constant
time on an angle gather,
compute the a, b, c terms and
solve the following equation:
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Some observations (1)

1 The Aki-Richards formulation was the first to be
derived (the “mother” of linearized AVQO!).

1 The Wiggins and Fatti formulations are simply
algebraic re-formulations of Aki-Richards and give
the same value for a given model.

1 The Wiggins and Shuey formulations are well
known and can be written:

R..(8) = A+ Bsind+Csin“@tan° 6

where A is the intercept (or zero-offset reflectivity Ryp),

B is the gradient, and C is the curvature. A and B can
be cross-plotted to reveal fluid anomalies.



Some observations (2)

[l The Aki-Richards formulations involve only V., Vs and
p, but the other formulations use elastic constants
which are nonlinearly related by the equations:




Some observations (3)

[l Thus, Iinstead of simply using algebra to re-arrange
terms, Shuey (1984) and Gray et al. (1999) made
use of the differential forms given by:

oV oV
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[l This means that these equations will give slightly
different values than the Aki-Richards expressions
when applied to a model.
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A generalized formulation

L1 It was noted that the two formulations by Gray et
al. (1999) (lup and Kup) differed only by the
constants 1/2 and 1/3.

[1 Russell et al. (2003) asked the question:
“For the porous reservoir rock, which term is more
applicable, 4 or K?”

[1 As we showed, It doesn’t matter when each term
IS expanded for porous media.

[1 We thus replaced these terms with a more general
term f, which reduces to either A or K.

[l The theory was initially developed by Biot (1941)
and Gassmann (1951). A good summary is found
In Krief et al. (1990).



General equation for P-wave velocity

[] By equating Biot and Gassmann’s formulations, the
general equation for saturated P-wave velocity can

be written:
f+s
VP_sat = \/ d
Psat
where:

f= a2M, a fluid/porosity term in which ¢ is the Biot
coefficient and M is the fluid modulus, and

S= Kyy + 43 = Agy + 21 = a dry skeleton term.

Also: the shear modulus & is independent of the fluid.



The fluid term

L1 Using the seismic velocities and density, we can
extract the fluid term using the equation:

f =pVZ—c(pVS)=f +s—cu

L] The constant ¢ must be chosen so that the term s —cu is
equal to zero. This gives us the following relationship:

C= (VP / VS )zry = yjry

O Noting that pV¢ = x4 and dividing both sides of the
first equation through by this term, we find:
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Table of values

Here I1s a table of values for the various ratios:

ydry”2

(4)

(3)

(2)
(1)

4.000
a9
3.000
2.500
2 o0
2.250
2.233
2000
1855

ydry

2.000
[ 86
1.732
1.581
] 528
1.500
1.494
1.414
1155

odry

0.333
0.286
0.250
0.167
0120
0.100
0.095
0.000

-1.000

Kdry/ u

2.667
2.000
1.667
1.167
1L /01810
0.917
0.900
0.667
0.000

Adryl u

2.000
=5
1.000
0.500
0o
0.250
0.233
0.000
06kl

In the above table note that (1) corresponds to Kup,
(2) to Aup, (3) to a clean sand and (4) to a shale.



A generalized formulation
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Using this equation: Af =

we can re-formulate the Aki-Richards equation as:
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Some observations

Note the following points:

L1 If we use y,,* = 2, we obtain the Gray et al. (1999)
expression for A, u, p.

L1 If we use y,,» = 4/3, we obtain the Gray et al. (1999)
expression for K, 4, p.

[1 For a clean sandstone, y.,* = 2.333 (Ky/u=1)

[l For a shale, y,,* = 3.333 (Ky/u =2, Tad Smith,
personal communication)

[l Since we never have a situation in which ., /%=1,
the scaling coefficient for the fluid term will always
be positive or zero.

] The fluid term equals zero if we are dealing with a
dry or non-porous rock.



Real data study — Input gathers

COP 327 328 329 330 331 332
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We applied the f-u-p method to a Class 3 gas sand from Alberta.
The super-gathers are shown above, with the zone of interest
highlighted. Since the far angle is at 30°, the density term
extraction is considered unreliable.
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Real data study — rock skeleton result
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Here is the rock skeleton extraction (4w ) with a picked event
at the zero-crossing of the gas sand.



Conclusions

L1 In this talk, we combined the linearized
Amplitude Variations with Offset (AVO)
technique with the Biot-Gassmann theory of
poroelasticity.

[1 This gave us a way to extract fluid and
skeleton effects from a reservoir using
prestack angle gathers, from a knowledge of
the dry and saturated velocity ratios.

[1 One caution is that it is not clear what “dry”
means for rocks such as shales and fractured
carbonates. More research Is needed.



