Finite Difference elastic modeling of the topography and the weathering layer

Saul E. Guevara and Gary F. Margrave

Outline

- Near surface issues and FD modelling.
- Example 1: Models with sloping flat surface.
- Example 2: Models with real topography.
- Discussion and final remarks.

Near surface layer issues

- Delay caused by Topography, heterogeneity in thickness and velocities (Statics).
- Critical for converted waves: time delays can be about 100 ms.
- Noise generated at the NSL: Rayleigh waves and so on.
- How to overcome these issues?

FD 2D Elastic modelling

- Finite difference corresponds to the wave equation: P, Sv, Rayleigh.
- Topography can be implemented.
- Realistic.
- Methods for analysis and filtering can be tested.

Topography implementation

Stencil: staggered grid by Levander, 1988. Topography by Hayashi *et al.*, 2001.

Models tested

- Not horizontal surface.
- Near Surface Layer about 40 m in thickness

WAVELET

•Near Surface Vp about 900 m/s.

•A flat reflector.

Layer	Thickness at the SP			Density (Kg/m³)
	(m)			
1	Variable	0	0	0
2: NSL	40	900	450	2000
3	600	2000	1000	2400
4	150	2800	1400	2400

EXAMPLE 1: Sloping flat surface

Source Freq=20 Hz Slope=~45°

NSL Case 1: Thickness 20 m Vp/Vs=4

Case 1: Thickness 20 m

Case 2: Thickness 50 m Vp/Vs=2

NSL Case 2: Thickness 50 m Vp/Vs=2

Flat slope: Polarization analysis

With Near surface layer

Without Near surface layer

EXAMPLE 2: Real topography modelling

•Based on a real setting in the Andes (Colombia).

Seismogram: real topography

Comparison: Seismogram without a Near Surfave low-velocity Layer

Discussion

- Noise generated by the Near Surface Layer shows relation to velocities, thickness, source signature.
- How real are these results?
- Some effects can be related to the algorithm implementation: 2D elastic, discretization (surface).
- Required testing of algorithms.
- Also required improvement in geological models.

Final remarks

- FD is a valuable tool to study the characteristics of real seismograms related to Near surface problems and to test processing methods.
- Viscoelasticity and anisotropy can have meaningful effect, and could be implemented in FD.
- Shortcoming: Computer cost.
- The results agrees with real data that, under some conditions, seismic events (specially converted waves) are difficult to observe.

Acknowledgements

- CREWES sponsors.
- Kevin Hall (Crewes) and Felix Cordoba (Numerica Ltda).
- Ecopetrol (Colombia).