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m Review of 2007 footprint simulations

m Description of method for angle-
weighted stacking

m Application of method in 2D
m [llustration of method in 3D
m Conclusions and future work



Recap: 2D Footprint Simulations

+

m Modelled an exhaustive 2D dataset:
shots and receivers spaced at 5 m
intervals over a 400 m long model

m Created five shot decimations with
shot spacings of 10 m, 25 m, 50 m,
100 m, and 200 m

m Applied Kirchhoff prestack migration
and stacked migrated shot records



Recap: 2D Simulation (fter cary, 2007)

m Prestack migrated sections:
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Recap: 3D Footprint Simulations

m Modelled an exhaustive dataset via Rayleigh-
Sommerfeld and created one decimation

m Migrated with 3 prestack migration algorithms
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Recap: 3D Footprint Simulations

m Comparison: exhaustive vs. decimated
on a featureless reflector

Exhaustive




Recap: 3D Footprint Simulations

m Comparison of different migration
algorithms for the decimated dataset:




Recap: ‘07 Footprint Simulations
+- 2D: Footprint manifests as residual
migration wavefronts in decimated
datasets

m 3D: Periodic amplitude variations
appear in migrated depth slices

m 3D: Migration algorithms, in particular
migration weights, make a big
difference in observed footprint

> Can footprint reduction be achieved
via prestack migration weights?



Method
+

m Bleistein migration weights convert
from uniform, infinite source and
receiver coverage to uniform angular
illumination of image point

m Still need to compensate for discrete,
finite, irreqgular sampling (e.q.
decimated dataset)

m Normalization may allow wavefronts to
properly interfere



Method
+

O jf(x)dx R AxY f(x,), only if samples are
regular and infinite

m Analogy: numerical integration

m For irregular sampling, must compute a
weighted sum: ¥ f(x,)Ax,

m Kirchhoff migration: multidimensional
integral in space, approximated by a sum,
and weighted in order to achieve uniform
illumination of the image point



Method

m Concept: illumination of imaging hemisphere
by delta angles
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Method

m Delta is also the normal to the
migration impulse response
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Method
+

m Consider illumination of imaging
hemisphere by delta vectors

m Each source-receiver pair defines a
delta angle for each image point

m Want to achieve uniform illumination
by normalizing by delta hit counts



Method
+

m Delta bin hit counts vs. shot decimation

Exhaustive 10 m Decimation 25 m Decimation
400 150

Image point location ' .. 100

50

___*_4 50 0 50 50 0 50 %50 o 50
S bin d bin S bin

50 m Decimation 100 m Decimation 200 m Decimation
80 - 40 ;

.
60 . 20
7 * »
. + +
+ +

40
20
0

10




Method
+

m Fold weights: 1/decimated_hits
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Method
+

m Ratio weights: exh_hits/dec_hits
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Method
+

m Migrate each shot record into delta-
limited volumes and apply weights
during stacking:

Im(xi’yi’zi): Z ZWK *Wj(xi’yi’zi’gk)

jshots | kbins

m Or, precompute weights and apply
during conventional migration,
because weights are only a function of
image point position and delta




2D Application

m Results: delta

ratio weights
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2D Application

m Results: delta
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2D Application

m Comparison: ratio vs. fold weights
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2D Application
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2D Application

m Comparison: delta ratio vs. abs(delta)
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2D Observations

+

m Delta ratio weights appear to reduce
footprint artefacts

m Delta fold weights compensate for
aperture but enhance edge artefacts

m Bin width affects results

m Considering the sign of delta produces
better results than abs(delta)




3D Method
+

m Full simulations, similar to in 2D are
currently being produced

m Hit count maps for single shots show
how the method will apply
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3D Delta Hit Counts

m Exhaustive survey non-zero deltas:

Hit count for 5<[0.01,10)° Hit count for 5<[10,20)° Hit count for 5¢[20,30)°
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3D Delta Hit Counts

m Decimated survey non-zero deltas:
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3D Observations

+

m Delta hit counts for single shots reflect
differences in illumination between
exhaustive and decimated datasets

m Delta weights result from summing the
hit count maps for all shots



Conclusions

_|,

m Delta weights attempt to compensate
for irregular image point illumination

m In 2D simulations, footprint appears to
be reduced when delta ratio weights
are applied during stacking of
migrated shot records

m The method is similarly applicable in
3D



Future work

+

m More work determining optimal
binning

s Implementation of Gaussian
windowing

m Production of weighted stacks in 3D

m More work on theoretical weights



Acknowledgements

+

m Sponsors of CREWES
m Sponsors of POTSI
m NSERC

m Alberta Ingenuity

A0\ ALBERTA

FATAN INGENUITY

I8 sse8 UNIVERSITY OF

v CREWES


http://potsi.math.ucalgary.ca/logos/Potsitrans.png

